
 OOP and the Janus Principle
 Joel C. Adams

Department of Computer Science
Calvin College

Grand Rapids, MI 49546
1 (616) 526-8562

adams@calvin.edu

ABSTRACT
It is easy for computer science students and educators to write
software applications in Java or C++ that are not object-oriented.
In this paper, we present the Janus Principle – a simple software
engineering principle (related to the MVC design pattern) whose
use produces highly object-oriented code. We demonstrate its
effect by developing a simple Java networking application, first
without using the Janus Principle, and then using it. Students and
educators who follow this principle will write programs
containing highly reusable code.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Design, Standardization, Languages, Theory

Keywords
Design Patterns, MVC, Object Oriented Programming, Reusable
Code, Software Engineering, User Interfaces.

1. INTRODUCTION
With its emphases on object hierarchies, inheritance, and
polymorphism, object-oriented programming (OOP) is a major
departure from procedural and modular programming. Computer
science (CS) students and educators who learned to program
under one of the older approaches face a significant challenge in
making the paradigm shift required by the OOP approach (e.g.,
see [4], [5]).

In this paper, we present a simple software design principle that
we have personally found to be quite useful in helping us
internalize the practices of OOP. For reasons that will become
apparent, we call this the Janus Principle. This principle differs
from previous, related work (e.g., [2], [4]) by emphasizing support
for multiple user-interfaces as a design principle.

2. THE JANUS PRINCIPLE
What we call the Janus Principle is conceptually quite simple:

Design and write object-oriented applications
so that they support multiple, reuseable, user interfaces

with minimal redundant coding.

Our principle’s namesake was the Roman god of transitions and
entryways. (The month of January – the transition from the old
year to the new year – is named after Janus.) As shown in Figure
1, he is usually depicted with two (but sometimes more) faces,
one looking back to the old, and one looking forward to the new:

Figure 1. Depiction of the Roman God Janus [1]

Janus is a suitable namesake for this principle because (i) the user
interface is the “entryway” for a user to a software application;
and (ii) just as Janus had two or more faces, software written
using this principle will support two or more (inter)faces.
Following this principle produces software that supports:
• different graphical user interfaces (GUIs) for different

platforms (e.g., MacOS, MS-Windows, Linux, …); and
• GUI and command-line interfaces (CLI) on the same platform.
However its real power stems from its “with minimal redundant
coding” clause. In isolation, this clause leads to the OO
mainstays of refactoring, inheritance, and polymorphism.
Combined with the rest of the principle, the clause produces an
abstraction containing the application’s core functionality that is
distinct from its user-interface. This abstraction is necessarily
reusable by other applications. As we shall see, this principle is
strongly related to the well-known Model-View-Controller
(MVC) design pattern [7].

In our experience, few CS educators know of this principle. As a
result, they neither follow it in the example software they present
to students, nor require it of their students on programming
projects. Upon hearing it, many CS educators have expressed
great appreciation for a single principle that helps them and their
students write object-oriented code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’06, March 1–2, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

3. NON-JANUS SOFTWARE
Programming in a language that supports OOP (e.g., Java) does
not ensure that one is writing OO software. Non-OO
programming is especially common in the textbook examples for
courses like Algorithms, Operating Systems, Network
Programming, and Parallel Programming. Such examples
frequently use object-based programming [3] instead of OOP.

As a simple illustration, consider the implementation of a client
for the TCP/IP daytime service in Java. A server for the daytime
service listens to port 13 for client connections and, upon
receiving one, sends that client the current date and time. A
daytime client’s behavior is also fairly simple:

1. Get the name of a daytime server s from the user
2. Open a TCP connection c to port 13 on s
3. Read the daytime server’s time t via c
4. Display t for the user
5. Close c
Figure 2 presents a typical Java daytime client implementation
(i.e., without the Janus Principle). This particular client gets the
name of the daytime server from the command-line:

// TypicalDaytimeClient.java
import java.net.*; // Socket, InetAddress, ...
import java.io.*; // BufferedReader, ...

class TypicalDaytimeClient {
 public static void main(String [] args) {
 if (args.length != 1) {
 System.err.println("Usage: java " +
 "TypicalDaytimeClient <server>");
 System.exit(1);
 }

 try {
 // get name of time-server from user
 String host = args[0];
 // open connection to port 13 on it
 final int PORT = 13;
 InetAddress addr =
 InetAddress.getByName(host);
 Socket sock = new Socket(addr, PORT);
 BufferedReader sockIn =
 new BufferedReader(
 new InputStreamReader(
 sock.getInputStream()));

 // get time from time-server

 String response = "",
 temp = null;
 while (true) {
 temp = sockIn.readLine();;
 if (temp == null) break;
 response += temp;
 }
 // display time
 System.out.println(response);
 // close our end of the connection
 sock.close();

 } catch (IOException ioe) {
 e.printStackTrace();
 }
 }
}

Figure 2. An Object-Based CLI Daytime Client

Figure 3 shows an example execution of the program using the
U.S. government server time.nist.gov in Boulder Colorado:

$ java TypicalDaytimeClient time.nist.gov

53601 05-08-19 14:03:10 50 0 0 853.2 UTC(NIST) *

Figure 3. Running the Daytime Client

While the code in Figure 2 solves the problem, it represents an
object-based solution, not an object-oriented solution. It is in
essence the same solution one would write in Fortran or C if those
languages provided String, Socket, and so on as built-in types.
Put differently, none of the code in this solution can be reused by
another application. If a different application needs to use the
daytime service, that application must replicate the code to build a
connection to the server, read from it, and close the connection,
wasting time, effort, and space. More than 50% of the code in
Figure 2 would be replicated in the new application.

If we present solely these kinds of examples to our students in our
advanced courses, our students will imitate our examples.

4. THE MVC PATTERN
In Section 2, we mentioned that the Janus Principle is strongly
related to the MVC design pattern. Before we apply this principle
to the problem of building a daytime client, we first review the
MVC pattern, and see how it relates to our principle.

4.1 MVC with One User Interface
The Model-View-Controller (MVC) design pattern originated as a
foundation of the Smalltalk-80 system [7], which served as the
inspiration for operating systems like Apple’s MacOS and
Microsoft Windows. More recently, MVC has been used as the
design pattern for the widgets in Java’s Swing package [8].

While these references give MVC a strong historical pedigree, its
importance lies in its separation of an application’s state
information or Model from its user interface or View. The third
piece of the pattern – the Controller – manages communication
between the Model and View, specifying what happens in each in
response to the user’s interaction/behavior.

Because an MVC Model is independent of its user interface, it can
be used by different Views (e.g., one View for MacOS, another
for Windows, and another for Unix systems). The MVC pattern
thus encourages us to write reusable Model code.

In a “pure” MVC design, each piece of the pattern is implemented
as a separate class. These can be related to one another as shown
in the classic UML diagram of Figure 4:

Figure 4. UML Diagram: The MVC Pattern

As depicted in Figure 4, the Model has no linkage to the View,
and the View has no linkage to the Model. However the
Controller has an aggregation dependency linkage to each.

… …

Model View Controller

…

4.2 MVC with Multiple User Interfaces
Decoupling of the View from the Model allows us to build
multiple interfaces for an application, as shown in Figure 5:

Figure 5. MVC with Multiple Views

Because there is a 1-to-1 correspondence between Views and
Controllers, it is common (at least in Java) to combine these into a
single class, yielding the diagram shown in Figure 6:

Figure 6. A Simplified Multiple-View MVC

In our experience, most students will acknowledge that such
separation is beneficial in theory, but they will not make it their
practice unless they personally experience its benefits. To do so,
we give them programming assignments that require them to build
multiple, reuseable user interfaces for their applications, without
redundant coding (i.e., require them to apply the Janus Principle
in software projects). For many assignments, students can use a
UML diagram based on the one in Figure 6.

The diagram in Figure 6 can be generalized for applications in
which the View and Controller need to be separated, and different
Controllers inherit common code from a superclass. This more-
general diagram is available for download via the world wide web
from http://www.calvin.edu/~adams/software/janus/.

5. JANUS-PRINCIPLE SOFTWARE
To demonstrate the use of the Janus Principle, we now show how
it might be used in a network programming course to implement a
multi-interface daytime client. In the code examples that follow,
we omit most of the documentation, to save space.

5.1 The Model
Earlier, we saw that the basic steps a daytime client must take are:

1. Get the name of a daytime server s from the user
2. Open a TCP connection c to port 13 on s
3. Read the daytime server’s time t via c
4. Display t for the user
5. Close c

We begin by separating the responsibilities of the Model from
those of the View. Steps 1 and 4 are interactions with the user, so
they are the responsibility of the View+Controller. This leaves
steps 2, 3, and 5 – the core functionalities of the application – as

the responsibility of the Model. We therefore build a
DaytimeClient class that provides these latter functionalities, as
shown in Figure 7:

// DaytimeClient.java

import java.net.*; // Socket, InetAddress

import java.io.*; // BufferedReader, ...

class DaytimeClient {
 private final int PORT = 13;
 private Socket mySocket;
 private BufferedReader myReader;

 // build connection to time-server
 public DaytimeClient(String host) {
 try {
 InetAddress addr =
 InetAddress.getByName(host);
 mySocket = new Socket(addr, PORT);
 myReader = new BufferedReader(
 new InputStreamReader(
 mySocket.getInputStream()));
 }
 catch(Exception e) { e.printStackTrace(); }
 }

 // get response from time-server
 public String receive() {
 String result = "";
 try {
 String temp = null;
 while (true) {
 temp = myReader.readLine();
 if (temp == null) break;
 result += temp;
 }
 }
 catch (Exception e) { e.printStackTrace(); }
 return result;
 }

 // close our end of the connection
 public void finalize() {
 try { mySocket.close(); }
 catch (Exception e) { e.printStackTrace(); }
 }
}

Figure 7. The Model for a Daytime Client

Our class constructor provides the functionality of step 2; our
receive() method provides the functionality of step 3; and our
finalize() method provides the functionality of step 5.

It is worth mentioning that our finalize() method overrides the
definition of finalize() from Java’s Object class. Java’s
garbage collector automatically invokes an object’s finalize()
method just before it reclaims the storage of a DaytimeClient
object. Thanks to this auto-invocation, our View+Controller
classes will not need to explicitly invoke finalize(). They will
(of course) need to construct an instance of DaytimeClient and
send that instance the receive() message (see below).

5.2 A Command-Line View+Controller
As described earlier, steps 1 and 4 are the responsibility of a
daytime client’s View. In Figure 8, we present a View class
containing methods for performing these steps via the command-
line, plus a main() method that acts as a Controller:

…

Model

…

View1 Controller1

…

…

ViewN ControllerN

…

…

Model View+Controller1

…

View+ControllerN

…

class DaytimeCLI{
 private String [] args = null;

 public DaytimeCLI(String [] args) {
 if (args.length != 1) {
 System.err.println("java DaytimeCLI <host>");
 System.exit(1);
 }
 this.args = args;
 }

 public String getServer() { return args[0]; }

 public void display(String daytime) {
 System.out.println(daytime);
 }

 public static void main(String [] args) {
 DaytimeCLI view = new DaytimeCLI(args);
 String server = view.getServer();
 DaytimeClient model = new DaytimeClient(server);
 view.display(model.receive());
 }
}

Figure 8. A Command-Line Daytime View+Controller

This client is functionally equivalent to that shown in Figure 2,
but its core functionality now resides in a separate
DaytimeClient Model, its View lies in a reusable DaytimeCLI
class, and its controller lies in that class’s main() method.

This View+Controller is invoked in a manner like that of Figure 3,
and its output is similarly equivalent, as shown in Figure 9:

$ java DaytimeCLI time.nist.gov

53601 05-08-19 15:54:13 50 0 0 799.7 UTC(NIST) *

Figure 9. Running DaytimeCLI

This approach exhibits greater modularity than the approach
shown in Figure 2: (i) the application’s core functionality now
resides in one class (DaytimeClient), (ii) its View now resides
in another class (DaytimeCLI), and (iii) both of these are reusable
by other applications. For example, any application that needs to
read the day and time from a remote system can create an instance
of the DaytimeClient class to do so.

5.3 A Menu-Driven View+Controller
Being able to enter the name of the daytime-server on the
command-line is convenient for testing our DaytimeClient
Model, but it isn’t a very user-friendly approach. In particular, it
requires the user to know the name of a daytime server. While
such names are fairly easy to find on the Internet (e.g., see [6]), a
more user-friendly View+Controller might use the console to
present a menu of choices from which the user can choose a time-
server. Because our client’s core functionality is encapsulated in
our DaytimeClient class, building such a View+Controller is
straightforward, as shown in Figure 10:

import java.io.*; // BufferedReader, ...

class DaytimeConsole {
 private String MENU = null;
 private BufferedReader kbd = null;

 public DaytimeConsole() {
 MENU = "Choose a daytime server...\n\n" +
 "Enter:\n" +
 "\t1 for time.nist.gov (CO)\n" +
 "\t2 for time-a.nist.gov (MD)\n" +
 "\t3 for time-nw.nist.gov (WA)\n" +
 "\t4 to enter a different server\n" +
 "--> ";
 kbd = new BufferedReader(
 new InputStreamReader(System.in));
 }

 public String getServer() {
 String server = null;
 System.out.print(MENU);
 try {
 int item = Integer.parseInt(kbd.readLine());
 switch (item) {
 case 1:
 server = "time.nist.gov";
 break;
 case 2:
 server = "time-a.nist.gov";
 break;
 case 3:
 server = "time-nw.nist.gov";
 break;
 case 4:
 System.out.print("Enter server name: ");
 server = kbd.readLine();
 break;
 default:
 System.err.println(item + " is invalid");
 System.exit(1);
 }
 } catch(IOException e) { e.printStackTrace(); }

 return server;
 }

 public void display(String daytime) {
 System.out.println(daytime);
 }

 public static void main(String [] args) {
 DaytimeConsole view = new DaytimeConsole();
 String server = view.getServer();
 DaytimeClient model = new DaytimeClient(server);
 view.display(model.receive());
 }
}

Figure 10. A Menu-Driven Daytime View+Controller

Unlike Figure 8, the getServer() method in Figure 10 performs
step 1 by displaying a menu from which the user chooses a server.

As in Figure 8, the main() method in Figure 10 serves as this
View’s Controller, coordinating the interaction between this View
and the Model. The main() and display() methods of Figures
8 and 10 happen to be identical, though this need not be the case
(e.g., in a GUI View). While space limits prevent us from doing
so here, this common code can be refactored into (and then
inherited from) a superclass, to minimize redundant coding.

When executed, the View+Controller in Figure 10 generates a
very different user-interface from that shown in Figure 9, though
its output is equivalent. Figure 11 shows a sample execution:

$ java DaytimeConsole

Choose a daytime server...

Enter:
 1 for time.nist.gov (CO)
 2 for time-a.nist.gov (MD)
 3 for time-nw.nist.gov (WA)
 4 to enter a different server
--> 3
53601 05-08-19 16:29:31 50 0 0 615.7 UTC(NIST) *

Figure 11. Running DaytimeConsole

The Janus Principle thus makes it relatively easy to write software
that offers different user-interfaces for different kinds of users.

5.4 A GUI View+Controller
Using the same Model, we can also build a graphical user-
interface for the daytime service. Figure 12 shows one in action:

Figure 12. Running DaytimeGUI

Space limits prevent us from presenting its source code, but it and
the other programs in this paper are available via the world-wide-
web from http://www.calvin.edu/~adams/software/janus/.

6. DISCUSSION
We have presented a modest application to illustrate the use of the
Janus Principle. In a more complex application, the principle’s
“with minimal redundant coding” clause will motivate the use of
refactoring, inheritance and polymorphism. We deliberately
chose our application for (we hope) clarity, and to show how the
Janus Principle is beneficial even for a simple application.

We have successfully used this principle in courses ranging from
Operating Systems to Network Programming to High
Performance Computing – courses in which OO software
engineering practices are frequently neglected. When presenting
a new topic, (e.g., client-server networking), we usually begin
with an object-based example like that shown in Figure 2. By
doing so, the students’ first exposure to the topic is in one self-
contained file, helping them get an overview of that topic.
Once the students have seen an object-based version and any
questions have been addressed, we immediately present an
alternative Janus-Principle version, to illustrate and reinforce the
importance of OO software-engineering.
We then typically assign a 1-week project in which the students
gain hands-on experience with the topic. The students are not
required to use the Janus Principle on this project. In our
experience, most will build object-based applications because the
examples in their textbooks are usually object-based.

Following this 1-week project, we assign a short (3-day) mini-
project in which the students must add a second user-interface to
their project, using the Janus Principle. Since the students have
already completed one user-interface, this mini-project amounts to
refactoring the Model from their first project, revising its user-
interface slightly to form one View+Controller, and then building
a second View+Controller for their second user-interface.

If this “project plus mini-project” approach is used consistently in
a course, the students soon learn to “short-circuit” the process and
design their projects according to the Janus Principle at the outset,
so that they have less work to do on the mini-project.

If this approach is used consistently throughout a CS curriculum,
most students will eventually internalize it and begin to design
reusable software on their own.

7. CONCLUSIONS
If students see only non-OO examples in our courses, we should
not be surprised if they write non-OO programs for their projects.
The Janus Principle is a simple guideline that can help both
instructors and students write better programs.

Applications written using this principle will support multiple,
reusable user interfaces with minimal redundant coding.
Designing applications in accordance with the principle requires a
level of abstraction that produces highly object-oriented code,
even if we do not actually build more than one user interface.
By following this principle as instructors and “encouraging” our
students to do so, they will directly experience the benefits of
OOP, helping them internalize its practice and methodology.

8. REFERENCES
[1] Alciato’s Book of Emblems, Used by permission. Online:

http://www.mun.ca/alciato/.

[2] E. Arif, A Methodology for Teaching Object-Oriented
Programming Concepts in an Advanced Programming
Course, ACM SIGCSE Bulletin (32) 2, June 2000, 30-34.

[3] O. Astrachan, Using Classes Early, An Object-Based
Approach to Using C++ in Introductory Courses,
Proceedings of the 29th SIGCSE, Feb 1998, 383-387.

[4] J. Bergin and R. Winder, Understanding Object-Oriented
Programming, ACM SIGPLAN Notices (37) 6, June 2002,
18-25.

[5] R. Decker and S. Hirshfield, The Top 10 Reasons Why
Object-Oriented Programming Can’t Be Taught In CS-1,
Papers of the 25th SIGCSE, March 1994, 51-55.

[6] T. O’Brian, NIST Internet Time Servers. Online:
http://tf.nist.gov/service/time-servers.html, August 20, 2005.

[7] L. Pinson & R. Wiener, An Introduction to Object-Oriented
Programming and Smalltalk, Addison-Wesley, 1988, 336-
358.

[8] T. Sunsted, MVC meets Swing, JavaWorld, April 1998,
Online: http:// www.javaworld.com/javaworld/jw-04-
1998/jw-04-howto.html

