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ABSTRACT 
We provide a systematic transformation of an LL(1) grammar to 
an object model that consists of 
• an object structure representing the non-terminal symbols and 

their corresponding grammar production rules, 
• a union of classes representing the terminal symbols (tokens). 

We present a variant form of the visitor pattern and apply it to the 
above union of token classes to model a predictive recursive 
descent parser on the given grammar.  Parsing a non-terminal is 
represented by a visitor to the tokens.  For non-terminals that have 
more than one production rule, the corresponding visitors are 
chained together according to the chain of responsibility pattern in 
order to be processed correctly by a valid token.  The abstract 
factory pattern, where each concrete factory corresponds to a non-
terminal symbol, is used to manufacture appropriate parsing 
visitors. 

Our object-oriented formulation for predictive recursive descent 
parsing eliminates the traditional construction of the predictive 
parsing table and yields a parser that is declarative and has 
minimal conditionals.  It not only serves to teach standard 
techniques in parsing but also as a non-trivial exercise of object 
modeling for objects-first introductory courses. 
Categories and Subject Descriptors 
D.1.5 [Programming Techniques]: Object-oriented 
Programming. 

General Terms 
Algorithms, design, languages. 

Keywords 
Parsing, grammar, CS1/CS2, objects-first, design patterns, 
pedagogy, modeling. 

1 INTRODUCTION 
The 2001 ACM Computing Curricula lists the objects-first 
approach as a legitimate way to teach object-oriented 
programming (OOP) in introductory computer science courses 
[1].  OOP educators would concur that in order for such courses to 

be effective, they must progress normally yet quickly to cover 
topics that are complex enough to make a compelling case for 
OOP (see for instance, [2][3]).  A wealth of problems in various 
phases of a compiler can be appropriately modeled as object-
oriented systems.  However, such problems are rarely discussed at 
the introductory level in current computer science curricula. 

A quick tour of web sites and extant textbooks [4][5][6][7] seems 
to indicate that context-free grammars (CFG) and their related 
topics are usually relegated to upper division courses in 
programming languages and compiler construction.  Efforts have 
been made to introduce object-oriented design patterns such as the 
composite and visitor patterns into such courses at the semantic 
analysis phases but not at the syntax analysis phase [5][8].  
Perhaps because it is considered well understood, the current 
treatment of predictive recursive descent parsing (PRDP), typified 
by the construction of a predictive parsing table and the use of a 
large stack of conditionals on the token type to select the 
appropriate production rule, offers no innovation and incorporates 
no object-oriented concepts.  Such a procedural approach does not 
scale, is rigid and cannot easily adapt to change: a small 
modification in the grammar such as adding a new production rule 
for an existing non-terminal symbol will require a complete 
rewrite of the code. 

We present in this paper an object-oriented formulation of PRDP 
for LL(1) grammars that is flexible and extensible, yet simple 
enough to be taught in a CS2 objects-first course.  At this level, it 
is pedagogically prudent to start with a simple grammar and 
gradually expand it to enforce and enhance the student’s 
understanding.  Thus, it is crucial that an open-ended number of 
tokens, non-terminal symbols and production rules can be added 
to a given grammar with minimal perturbation to the existing 
code.  The key design element is to equip the tokens with the 
capability to perform an open-ended number of tasks and to shift 
the responsibility of determining what production rule to parse to 
the tokens themselves.  Such capability is effectuated via a variant 
of the visitor pattern [9] whose formulation will be described in 
Section 2. 

We also need to model the non-terminal symbols of a grammar 
and their corresponding production rules, which define the syntax 
for all sentences generated by the given grammar.  Section 3 
illustrates via a simple example a systematic transformation of a 
given LL(1) grammar to an equivalent grammar where each non-
terminal symbol translates to a class/interface whose production 
rules are expressed in terms of “has-a” and “is-a” relationships.  
The composite pattern [9] is used extensively here, resulting in an 
object model that represents the meta-structure of the parse tree. 

In our parsing framework, the parsing of each non-terminal is 
modeled as a visitor to a token.  To decouple the parsing visitors 

 



and achieve a much higher level of modularity, we apply the 
abstract factory pattern [9] and relegate the manufacturing of 
parsing visitors to appropriate concrete factories instead.  Section 
4 explains how such a design helps produce a robust object-
oriented predictive recursive descent parser that requires only 
local knowledge of each grammar rule and as a result is flexible 
and readily extensible. 

Section 5 demonstrates the flexibility and extensibility of our 
parsing approach with an example of how expanding the original 
grammar with several new tokens, non-terminals and production 
rules only results in minimal perturbations of the existing code. 

2 DESIGN PATTERNS FOR TOKENS 
Our object-oriented formulation of LL(1) grammars seeks to 
delineate and decouple the task of parsing each grammar rule for 
each non-terminal from the task of selecting the appropriate rule 
to parse.  The parsing algorithm for each non-terminal X knows 
exactly what the rules are for X and how to proceed with each of 
the rules but does not know which rule to apply without 
identifying the current token.  On the other hand, the current token 
intrinsically knows its type and thus can select the appropriate 
rule but does not know what the rule needs to do at that juncture.  
The visitor pattern allows these two classes of objects to 
cooperate to carry out the correct parsing task at the correct time 
without querying the current input token for its type: the tokens 
serve as hosts and the parsing algorithms are the visitors. 

However, the standard visitor pattern requires that the number of 
hosts is invariant, which does not meet our design goal of being 
able to add an arbitrary numbers of tokens, i.e. hosts, to the 
system.  At the core of the visitor pattern is the guarantee that any 
given host only calls the method of the visitor corresponding to 

that host.  Instead of a single visitor interface that offers a fixed 
number of methods to a fixed number of hosts, consider a union 
of interfaces, one per host. 

We implement this union as an interface called ITokVisitor with a 
single default case method corresponding to the abstract host, 
AToken (see Listing 1).  Thus, every concrete host accepts this 
visitor.  Each concrete host defines its own visitor sub-interface 
with a method specific to that host.  When a concrete host accepts 
a visitor using AToken.execute(…), it checks if that visitor is its 
own specific visitor and calls the host-specific method of the 
visitor if this is the case, otherwise it calls the default case 
method.  For instance, in Listing 1, the NumToken host checks if 
the visitor, algo, is of type INumVisitor.  If it is, the host-specific 
method of the visitor, numCase(…), is called, otherwise the 
default case method, defaultCase(…), is called. 

The visitor pattern is designed for situations where the host’s type 
is unknown at run-time.  During parsing, the current token may be 
one in a set of valid tokens.  To enable the current token to select 
the appropriate visitors, we apply the chain of responsibility 
design pattern [9] to chain together all the visitors of the valid 
tokens.  The assumption that the grammar is LL(1) guarantees that 
exactly one visitor in the chain corresponds to the current valid 
token.  This point will be further elucidated in Section 4, where 
we describe the lazy manufacturing of appropriate visitors using 
factories. 

The tokens so designed do not have any knowledge about any 
grammar or any action one wants to do with them.  This allows 
the tokens from the same set to be used in different grammars.  
Moreover, we can add any new token to the system by sub-
classing AToken and defining a corresponding nested sub-
interface for ITokVisitor without affecting any of the existing 
code.  Section 5 will further illustrated the flexibility and 
extensibility of our design. 

We now tackle the problem of modeling the non-terminals and 
their production rules. 

3 DESIGN PATTERNS FOR NON-
TERMINALS AND PRODUCTION 
RULES 

As a simple example, consider the CFG for infix arithmetic 
expressions using only addition, numbers and identifiers: 

E :: F | F + E   F :: num | id 

The above grammar is not LL(1) but can be left-factored to yield 
the following equivalent LL(1) grammar. 

E :: F E’   F :: num | id 
E’ :: empty | + E 

This grammar isn’t quite ready to be modeled as classes however.  
This is because there is still a sequence of symbols, “+ E”, that is 
not yet associated with a unique symbol.  So, we perform one 
more grammar transformation where each distinct sequence of 
two or more symbols on the right-hand side of the production 
rules is given a unique non-terminal symbol on the left-hand side 
of the rules (“+ E” is replaced by E1a).  Single tokens occurring 
in a branch also receive their own non-terminal (num and id are 
replaced by F1 and F2, respectively).  It is clear that this is an 
equivalent grammar because it simply gives names to existing 
sequences of symbols or tokens.  Below, we have changed the 
names slightly to remove the primes and create Java-legal symbol 
names: 

public abstract class AToken { 
    private String _lexeme; 
    public abstract Object execute(ITokVisitor algo, Object param); 
} 
// ---------------------------------------------- 
public interface ITokVisitor { 
    public Object defaultCase(AToken host, Object param); 
} 
// ---------------------------------------------- 
public class NumToken extends AToken { 
 
    public static interface INumVisitor extends ITokVisitor { 
        public Object numCase(NumToken host, Object param); 
    } 
 
    public static abstract class AChainVis implements INumVisitor { 
        private ITokVisitor _successor; 
        protected AChainVis(ITokVisitor successor) { 
            _successor = successor; 
        } 
 
        public Object defaultCase(AToken host, Object param) { 
            return host.execute(_successor, param); 
        } 
    } 
 
    public Object execute(ITokVisitor algo, Object param) { 
        return (algo instanceof INumVisitor)? 
               ((INumVisitor) algo).numCase(this, param): 
               algo.defaultCase(this, param); 
    } 
} 

Listing 1: Modified visitor pattern for tokens (constructors 
omitted) 



E :: F E1   F :: F1 | F2 
E1 :: empty | E1a  F1 :: num 
E1a :: + E   F2 :: id 

In an object model, there are two fundamental types of 
relationships, “is-a”, represented by inheritance, and “has-a”, 
represented by composition.  Thus, in order to create an object 
model of our grammar, we need to see if these two relations are 
expressed by the grammar.  We find that non-terminals with more 
than one production rule (“branches”) can be represented with an 
“is-a” inheritance relationship because the union of those 
production rules says that any term on the right-hand side can be a 
representation of the left-hand side.  F in the grammar above is 
such a branch: F1 "is-a” valid representation of F, and so is F2.  
On the other hand, some rules represent a sequence of terms, such 
as the rules E and E1a above.  The left-hand side of these 
“sequences” can be said to be composed of the right-hand side 
terms.  Thus, the distinct non-terminal sequences can be 
represented by compositional relationships.  E, for example, “has-
a” E1 and an F. 

We can now simply and directly create our object model of the 
grammar.  In Figure 1 we see that all the non-terminals are 
represented by classes or interfaces.  Branches are represented by 
interfaces to allow multiple inheritances, and sequences are 
represented by classes because they require fields.  In addition, all 
the terminal symbols, which are the possible tokens “+”, 
identifiers and numbers, are represented by their own classes.  
The empty term and the end-of-file token are represented 
individual classes as well. The recursive nature of the grammar is 
immediately evident as the composite design pattern in the class 
structure. 

If the above object structure is indeed a good representation of the 
grammar it models, then it will contain all the relationships, 
features and other information in that grammar.  Therefore, 
instead of doing a large-scale case analysis over the entire 
grammar, if we let the object structure drive the processing of a 
token stream, then all the necessary case information will 
automatically be present. 

4 FACTORIES 
The goal here is to maximally decouple the elements of the 
grammar, which will lead to a parsing system that is robust and 
extensible.  The problem with directly defining and instantiating 

the parsing visitors is that at any given stage, one must analyze the 
details of the grammar to the level of knowing all possible tokens 
at that stage.  This analysis may require one to look beyond the 
immediate relationships a class may have with any other classes.  
For instance, to find the possible tokens that could be the start of 
an E term, one must look down to the F term.  However, the code 
to process an E term should only be concerned with the fact that 
an E term is composed of a F term and an E1 term, and should 
not be coupled to the internal nature of the F, E1 or any other 
terms.  Likewise, when parsing a branch, such as F, one must 
create the union of all the visitors that parse the branch’s 
subclasses.  Luckily, an LL(1) grammar insures that there are no 
conflicts between methods of the visitors to the branch’s tokens 
because each token uniquely determines a sequence.  However, if 
a branch consists of further branches, again, this would entail 
delving into the details of the grammar at deeper levels.  In 
addition, the presence of loops in the grammar further complicates 
the analysis as it impacts the construction order of the visitors. 

To remedy this problem, one must re-think the instantiation 
process of the visitors.  In particular, in order to decouple the 
construction of the visitor for one term from the details of other 
terms, one must abstract and encapsulate the construction process.  
This is done by the abstract factory design pattern.  Using 
factories to instantiate the parsing visitors  
• enables each term to be decoupled from any other term by 

hiding the instantiation details. 
• enables the construction of the union of visitors by chaining, 

which is used to implement branches. 
• enables the lazy construction of already installed visitors 

which is needed to create circular relationships. 

Each non-terminal symbol (and its corresponding class) is 
associated with a factory that constructs its parsing visitor (see 
Listing 2).  All factories adhere to a basic factory interface which 
provides the methods to instantiate the parsing visitors.  For 
convenience, all the factories are derived from an abstract factory, 
ATVFactory, which provides access to the tokenizer. 

The factories for sequence terms (e.g. E and E1a) are initialized 
with the factories of their composed terms.  The actual creation of 
the visitors is delayed until the first call to makeVisitor() or 

 
Figure 2: Class diagram of the factories of the token visitors. 

 
Figure 1: Object model of the example grammar. 



makeChainedVisitor(), since only then is it guaranteed that all 
factories have been created and circular references can safely be 
established.  The initializer object _initializer, which performs 
this lazy construction, is instantiated anonymously and replaces 
itself with a no-operation to ascertain it is executed only once.  
This is an example of the state design pattern.  Listing 2 shows 
how the use of anonymous inner classes in the makeVisitor() 
method to instantiate the parsing visitor creates a closure that 
includes the stored visitor, _parseE. 

The factories for branch terms (e.g. F, see Listing 3) are 
initialized with the factories for all their right-hand side terms.  A 
visitor that parses a branch is the union of all the visitors that 
parse its subclasses.  Since the grammar is LL(1), and each 
method of a visitor corresponds to a particular token, none of the 
subclasses’ visitors utilize the same method for processing.  Thus 
the union of the subclasses’ visitors can be accomplished by using 
the chain of responsibility design pattern [9].  But since the 
factory for the branch doesn’t know what methods are utilized by 
the subclasses’ visitors, it is forced to delegate the process of 
creating this chain to one of the factories of the subclasses.  
Hence, all factories provide a method, 
makeChainedVisitor(ITVFactory succ), to produce a visitor 
that, in case itself is not the intended receiver (i.e. defaultCase() 
is called), delegates to another visitor, the successor succ, thereby 
establishing the chain of responsibility.  The E and empty terms 
are special cases since they have defined behaviors for all token 
cases.  Thus the visitors for these terms can only be the end of a 
chain. 

The result is that instead of constructing the parsing visitors 
directly, one now constructs the parsing visitor factories displayed 
in Figure 2.  Note that the object structure of the factories matches 
that of the grammar object model in Figure 1, except that all the 
factory-factory relationships are compositional.  Each factory’s 
construction only requires the factories of those terms it is directly 
related to, either by composition or by subclass.  One thus need 
only know the grammar one level at a time, no global knowledge 
of the grammar is needed.  This decoupling of the grammar terms 
makes the system very robust with respect to changes in the 
grammar.  To start parsing, we simply ask the top-level factory, 
EFact, to make its visitor and apply that visitor to the first token.  
Note that we can avoid using mutating setXXX() methods usually 
necessary to produce a circular relationship if we create factories 
as inner classes inside the closures of other factories that use 
them.  In Listing 2, EFact.this can be accessed directly because 
EFact closes over E1aFact.  In Listing 3, instances of F1Fact 
and F2Fact can be created directly since they are implemented as 
inner classes of FFact.  We have demonstrated this technique in 
an automated parser generator; unfortunately, this nesting of 
factory classes tends to generate a single unwieldy source file for 
a large grammar. 

5 EXTENDING THE GRAMMAR 
Consider a grammar that adds parenthesized expressions and 
multiplication to the grammar used above: 

E :: S E1   T :: num T1 
E1 :: empty | E1a  V :: id T1 
E1a :: + E   T1 :: empty | T1a 
S :: P | T | V   T1a :: * S 
P :: ( E ) 

For this new grammar, we have changed the composition of E, 
added five more non-terminals, three tokens, and seven 
production rules, and removed a non-terminal and a rule.  To 
parse this grammar, we have to change only two fields and one 
constructor parameter in the E class, and replace the F factory, 
FFact, with the new S factory, SFact, in the factory for E.  The 
remaining classes can be added without modifying any of the 

// E1aFact is an inner class of EFact 
 
// parse “+” followed by an E 
private class E1aFact extends ATVFactory { 
  private EFact _eFact; 
  private ITokVisitor _parseE; 
 
  private IInit _initializer = new IInit() { 
    public void init() { 
      _initializer = NoOpInit.Singleton; // do it only once 
      _parseE = _eFact.makeVisitor(); // make visitor 
    } 
  }; 
 
  public E1aFact(ITokenizer tkz) { super(tkz); _eFact = EFact.this; } 
   
  public ITokVisitor makeVisitor() { 
    _initializer.init(); // lazy initialization 
    return new PlusToken.ADefaultVis() { 
      public Object plusCase(PlusToken host, Object inp) { 
        return new E1a(host, (E) nextToken().execute(_parseE, inp)); 
      } 
      public Object defaultCase(AToken host, Object param) { 
        throw new IllegalArgumentException("Wrong token"); 
      } 
    }; 
  } 
 
  public ITokVisitor makeChainedVisitor(final ITokVisitor succ) { 
    _initializer.init(); // lazy initialization 
    return new PlusToken.AChainVis(succ) { 
      public Object plusCase(PlusToken host, Object inp) { 
        return new E1a(host, (E) nextToken().execute(_parseE, inp)); 
      } 
    }; 
  } 
} 

Listing 2: Typical factory for a sequence parsing visitor. 

// FFact is an inner class of EFact 
 
// parse either an F1 or an F2 
private class FFact extends ATVFactory { 
  private F1Fact _f1Fact; 
  private F2Fact _f2Fact; 
 
  public FFact(ITokenizer tkz) { 
    super(tkz); 
    _f1Fact = new F1Fact(tkz); 
    _f2Fact = new F2Fact(tkz); 
  } 
 
  public ITokVisitor makeVisitor() { 
    return _f1Fact.makeChainedVisitor(_f2Fact.makeVisitor()); 
  } 
 
  public ITokVisitor makeChainedVisitor(ITokVisitor succ) { 
    return _f1Fact.makeChainedVisitor( 
        _f2Fact.makeChainedVisitor(succ)); 
  } 
 
  private class F1Fact extends ATVFactory { ... } 
  private class F2Fact extends ATVFactory { ... } 
} 

Listing 3: Typical factory for a branch parsing visitor. 



existing code.  The UML class diagram for the terminals and non-
terminals is depicted in Figure 3, the diagram for the factories can 
be found in Figure 4.  Again, the structure of the factories matches 
that of the grammar. 

In a procedural style it is hard to achieve the same extensibility 
that our object-oriented formulation exhibits.  Traditionally, the 
addition of the “(“ token as legal beginning of an expression would 
require a pervasive change to the existing parser.  Our modified 
visitor pattern combined with the factory pattern provides the 
desired decoupling that pinpoints where the changes should be 
made and prevents a propagation of changes through the system. 

6 CONCLUSION 
We have created an object-oriented predictive recursive descent 
parser by starting with an LL(1) context-free grammar and 
applying a simple transformation.  The resulting equivalent 
grammar was directly modeled by a class structure using 
inheritance to represent branches and composition to represent 
sequences. Since the tokens determine whether or not the input 
corresponds to the grammar, a variant of the visitor design pattern 
was used to provide direct dispatching to the appropriate parsing 
code, thus eliminating conditionals, and to allow the open-ended 
addition of tokens to the grammar with minimal perturbation of 
the existing code.  The code thus became declarative in nature.  
The abstract factory pattern was used to decouple the individual 
grammar elements from each other and create a flexible, 
extensible system.  The traditional global case analysis, predictive 
parsing table and attendant stack of conditionals gave way to a 
simple local analysis and delegation-based behavior.  The chain of 
responsibility pattern was used to model the union of parsing 
behaviors needed under branching conditions.  While it is beyond 
the scope of this paper, the object structure of the parse tree can 
easily be extended with its own visitors to enable semantic 
analysis of the parsed input. 

It is important to recognize that OO PRDP cannot be taught in 
isolation.  It must be carefully integrated into an objects-first 
curriculum that emphasizes OOP/OOD, design patterns, and 
abstract decomposition.  At our institution, this material is 
covered near the end of CS2, which is an OO data structures and 

algorithms course.  At this point in the curriculum, the students 
are already versed in basic OOP/OOD practices, including all the 
design patterns mentioned here.  The PRDP formulation serves 
not only to expose the students to fundamentals of syntactic 
analysis, but also as a vehicle for teaching them how to 
decompose a problem into a flexible and extensible object system. 
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