Design Patterns for Parsing

ABSTRACT

We provide a systematic transformation of an LL(1) grammar to

an object model that consists of

e an object structure representing the non-terminal symbols and
their corresponding grammar production rules,

e a union of classes representing the terminal symbols (tokens).

We present a variant form of the visitor pattern and apply it to the
above union of token classes to model a predictive recursive
descent parser on the given grammar. Parsing a non-terminal is
represented by a visitor to the tokens. For non-terminals that have
more than one production rule, the corresponding visitors are
chained together according to the chain of responsibility pattern in
order to be processed correctly by a valid token. The abstract
factory pattern, where each concrete factory corresponds to a non-
terminal symbol, is used to manufacture appropriate parsing
visitors.

Our object-oriented formulation for predictive recursive descent
parsing eliminates the traditional construction of the predictive
parsing table and yields a parser that is declarative and has
minimal conditionals. It not only serves to teach standard
techniques in parsing but also as a non-trivial exercise of object
modeling for objects-first introductory courses.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]:
Programming.

Object-oriented

General Terms
Algorithms, design, languages.

Keywords
Parsing, grammar, CS1/CS2, objects-first, design patterns,
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1 INTRODUCTION

The 2001 ACM Computing Curricula lists the objects-first
approach as a legitimate way to teach object-oriented
programming (OOP) in introductory computer science courses
[1]. OOP educators would concur that in order for such courses to

be effective, they must progress normally yet quickly to cover
topics that are complex enough to make a compelling case for
OOP (see for instance, [2][3]). A wealth of problems in various
phases of a compiler can be appropriately modeled as object-
oriented systems. However, such problems are rarely discussed at
the introductory level in current computer science curricula.

A quick tour of web sites and extant textbooks [4][5][6][7] seems
to indicate that context-free grammars (CFG) and their related
topics are usually relegated to upper division courses in
programming languages and compiler construction. Efforts have
been made to introduce object-oriented design patterns such as the
composite and visitor patterns into such courses at the semantic
analysis phases but not at the syntax analysis phase [5][8].
Perhaps because it is considered well understood, the current
treatment of predictive recursive descent parsing (PRDP), typified
by the construction of a predictive parsing table and the use of a
large stack of conditionals on the token type to select the
appropriate production rule, offers no innovation and incorporates
no object-oriented concepts. Such a procedural approach does not
scale, is rigid and cannot easily adapt to change: a small
modification in the grammar such as adding a new production rule
for an existing non-terminal symbol will require a complete
rewrite of the code.

We present in this paper an object-oriented formulation of PRDP
for LL(1) grammars that is flexible and extensible, yet simple
enough to be taught in a CS2 objects-first course. At this level, it
is pedagogically prudent to start with a simple grammar and
gradually expand it to enforce and enhance the student’s
understanding. Thus, it is crucial that an open-ended number of
tokens, non-terminal symbols and production rules can be added
to a given grammar with minimal perturbation to the existing
code. The key design element is to equip the tokens with the
capability to perform an open-ended number of tasks and to shift
the responsibility of determining what production rule to parse to
the tokens themselves. Such capability is effectuated via a variant
of the visitor pattern [9] whose formulation will be described in
Section 2.

We also need to model the non-terminal symbols of a grammar
and their corresponding production rules, which define the syntax
for all sentences generated by the given grammar. Section 3
illustrates via a simple example a systematic transformation of a
given LL(1) grammar to an equivalent grammar where each non-
terminal symbol translates to a class/interface whose production
rules are expressed in terms of “has-a” and “is-a” relationships.
The composite pattern [9] is used extensively here, resulting in an
object model that represents the meta-structure of the parse tree.

In our parsing framework, the parsing of each non-terminal is
modeled as a visitor to a token. To decouple the parsing visitors



public abstract class AToken {
private String _lexeme;
public abstract Object execute(ITokVisitor algo, Object param);

}
/e

public interface ITokVisitor {
public Object defaultCase(AToken host, Object param);

}
[/ mmmm e
public class NumToken extends AToken {

public static interface INumVisitor extends ITokVisitor {
public Object numCase(NumToken host, Object param);

}

public static abstract class AChainVis implements INumVisitor {
private ITokVisitor _successor;
protected AChainVis(ITokVisitor successor) {
_suCCessor = successor;
}

public Object defaultCase(AToken host, Object param) {
return host.execute(_successor, param);
}

}

public Object execute(ITokVisitor algo, Object param) {
return (algo instanceof INumVisitor)?
((INumVisitor) algo).numCase(this, param):
algo.defaultCase(this, param);

}
}

Listing 1: Modified visitor pattern for tokens (constructors
omitted)

and achieve a much higher level of modularity, we apply the
abstract factory pattern [9] and relegate the manufacturing of
parsing visitors to appropriate concrete factories instead. Section
4 explains how such a design helps produce a robust object-
oriented predictive recursive descent parser that requires only
local knowledge of each grammar rule and as a result is flexible
and readily extensible.

Section 5 demonstrates the flexibility and extensibility of our
parsing approach with an example of how expanding the original
grammar with several new tokens, non-terminals and production
rules only results in minimal perturbations of the existing code.

2 DESIGN PATTERNS FOR TOKENS

Our object-oriented formulation of LL(1) grammars seeks to
delineate and decouple the task of parsing each grammar rule for
each non-terminal from the task of selecting the appropriate rule
to parse. The parsing algorithm for each non-terminal X knows
exactly what the rules are for X and how to proceed with each of
the rules but does not know which rule to apply without
identifying the current token. On the other hand, the current token
intrinsically knows its type and thus can select the appropriate
rule but does not know what the rule needs to do at that juncture.
The visitor pattern allows these two classes of objects to
cooperate to catry out the correct parsing task at the correct time
without querying the current input token for its type: the tokens
serve as hosts and the parsing algorithms are the visitors.

However, the standard visitor pattern requires that the number of
hosts is invariant, which does not meet our design goal of being
able to add an arbitrary numbers of tokens, i.e. hosts, to the
system. At the core of the visitor pattern is the guarantee that any
given host only calls the method of the visitor corresponding to

that host. Instead of a single visitor interface that offers a fixed
number of methods to a fixed number of hosts, consider a union
of interfaces, one per host.

We implement this union as an interface called /TokVisitor with a
single default case method corresponding to the abstract host,
AToken (see Listing 1). Thus, every concrete host accepts this
visitor. Each concrete host defines its own visitor sub-interface
with a method specific to that host. When a concrete host accepts
a visitor using AToken.execute(...), it checks if that visitor is its
own specific visitor and calls the host-specific method of the
visitor if this is the case, otherwise it calls the default case
method. For instance, in Listing 1, the NumToken host checks if
the visitor, algo, is of type INumVisitor. If it is, the host-specific
method of the visitor, numCase(...), is called, otherwise the
default case method, defaultCase(...), is called.

The visitor pattern is designed for situations where the host’s type
is unknown at run-time. During parsing, the current token may be
one in a set of valid tokens. To enable the current token to select
the appropriate visitors, we apply the chain of responsibility
design pattern [9] to chain together all the visitors of the valid
tokens. The assumption that the grammar is LL(1) guarantees that
exactly one visitor in the chain corresponds to the current valid
token. This point will be further elucidated in Section 4, where
we describe the lazy manufacturing of appropriate visitors using
factories.

The tokens so designed do not have any knowledge about any
grammar or any action one wants to do with them. This allows
the tokens from the same set to be used in different grammars.
Moreover, we can add any new token to the system by sub-
classing AToken and defining a corresponding nested sub-
interface for ITokVisitor without affecting any of the existing
code. Section 5 will further illustrated the flexibility and
extensibility of our design.

We now tackle the problem of modeling the non-terminals and
their production rules.

3 DESIGN PATTERNS FOR NON-
TERMINALS AND PRODUCTION
RULES

As a simple example, consider the CFG for infix arithmetic

expressions using only addition, numbers and identifiers:
E:F|F+E F ::num |id

The above grammar is not LL(1) but can be left-factored to yield
the following equivalent LL(1) grammar.

E:FFE

E ::empty | +E

F ::num |id

This grammar isn’t quite ready to be modeled as classes however.
This is because there is still a sequence of symbols, “+ E”, that is
not yet associated with a unique symbol. So, we perform one
more grammar transformation where each distinct sequence of
two or more symbols on the right-hand side of the production
rules is given a unique non-terminal symbol on the left-hand side
of the rules (“+ E” is replaced by E1a). Single tokens occurring
in a branch also receive their own non-terminal (num and id are
replaced by F1 and F2, respectively). It is clear that this is an
equivalent grammar because it simply gives names to existing
sequences of symbols or tokens. Below, we have changed the
names slightly to remove the primes and create Java-legal symbol
names:
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Figure 1: Object model of the example grammar.

E:FE1 F:F1|F2
E1: empty | Ela F1: num
Ela:+E F2:id

In an object model, there are two fundamental types of
relationships, “is-a”, represented by inheritance, and ‘“has-a”,
represented by composition. Thus, in order to create an object
model of our grammar, we need to see if these two relations are
expressed by the grammar. We find that non-terminals with more
than one production rule (“branches”) can be represented with an
“is-a” inheritance relationship because the union of those
production rules says that any term on the right-hand side can be a
representation of the left-hand side. F in the grammar above is
such a branch: F1 "is-a” valid representation of F, and so is F2.
On the other hand, some rules represent a sequence of terms, such
as the rules E and E1a above. The left-hand side of these
“sequences” can be said to be composed of the right-hand side
terms.  Thus, the distinct non-terminal sequences can be
represented by compositional relationships. E, for example, “has-
a” E1and an F.

We can now simply and directly create our object model of the
grammar. In Figure 1 we see that all the non-terminals are
represented by classes or interfaces. Branches are represented by
interfaces to allow multiple inheritances, and sequences are
represented by classes because they require fields. In addition, all
the terminal symbols, which are the possible tokens “+”,
identifiers and numbers, are represented by their own classes.
The empty term and the end-of-file token are represented
individual classes as well. The recursive nature of the grammar is
immediately evident as the composite design pattern in the class
structure.

If the above object structure is indeed a good representation of the
grammar it models, then it will contain all the relationships,
features and other information in that grammar. Therefore,
instead of doing a large-scale case analysis over the entire
grammar, if we let the object structure drive the processing of a
token stream, then all the necessary case information will
automatically be present.

4 FACTORIES

The goal here is to maximally decouple the elements of the
grammar, which will lead to a parsing system that is robust and
extensible. The problem with directly defining and instantiating
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Figure 2: Class diagram of the factories of the token visitors.

the parsing visitors is that at any given stage, one must analyze the
details of the grammar to the level of knowing all possible tokens
at that stage. This analysis may require one to look beyond the
immediate relationships a class may have with any other classes.
For instance, to find the possible tokens that could be the start of
an E term, one must look down to the F term. However, the code
to process an E term should only be concerned with the fact that
an E term is composed of a F term and an E1 term, and should
not be coupled to the internal nature of the F, E1 or any other
terms. Likewise, when parsing a branch, such as F, one must
create the union of all the visitors that parse the branch’s
subclasses. Luckily, an LL(1) grammar insures that there are no
conflicts between methods of the visitors to the branch’s tokens
because each token uniquely determines a sequence. However, if
a branch consists of further branches, again, this would entail
delving into the details of the grammar at deeper levels. In
addition, the presence of loops in the grammar further complicates
the analysis as it impacts the construction order of the visitors.

To remedy this problem, one must re-think the instantiation

process of the visitors. In particular, in order to decouple the

construction of the visitor for one term from the details of other

terms, one must abstract and encapsulate the construction process.

This is done by the abstract factory design pattern. Using

factories to instantiate the parsing visitors

e cnables each term to be decoupled from any other term by
hiding the instantiation details.

e  cnables the construction of the union of visitors by chaining,
which is used to implement branches.

e cnables the lazy construction of already installed visitors
which is needed to create circular relationships.

Each non-terminal symbol (and its corresponding class) is
associated with a factory that constructs its parsing visitor (see
Listing 2). All factories adhere to a basic factory interface which
provides the methods to instantiate the parsing visitors. For
convenience, all the factories are derived from an abstract factory,
ATVFactory, which provides access to the tokenizer.

The factories for sequence terms (e.g. E and E1a) are initialized
with the factories of their composed terms. The actual creation of
the visitors is delayed until the first call to makeVisitor() or



/I E1aFact is an inner class of EFact

I/l parse “+” followed by an E

private class E1aFact extends ATVFactory {
private EFact _eFact;
private ITokVisitor _parseE;

private IInit _initializer = new lInit() {
public void init() {
_initializer = NoOplnit.Singleton; // do it only once
_parseE = _eFact.makeVisitor(); // make visitor

}
3

public E1aFact(ITokenizer tkz) { super(tkz); _eFact = EFact.this; }

public ITokVisitor makeVisitor() {
_initializer.init(); // lazy initialization
return new PlusToken.ADefaultVis() {
public Object plusCase(PlusToken host, Object inp) {
return new E1a(host, (E) nextToken().execute(_parseE, inp));

}
public Object defaultCase(AToken host, Object param) {
throw new lllegalArgumentException("Wrong token");
}
b
}

public ITokVisitor makeChainedVisitor(final ITokVisitor succ) {
_initializer.init(); // lazy initialization
return new PlusToken.AChainVis(succ) {
public Object plusCase(PlusToken host, Object inp) {
return new E1a(host, (E) nextToken().execute(_parseE, inp));
}
3
}
}

Listing 2: Typical factory for a sequence parsing visitor.

makeChainedVisitor(), since only then is it guaranteed that all
factories have been created and circular references can safely be
established. The initializer object _initializer, which performs
this lazy construction, is instantiated anonymously and replaces
itself with a no-operation to ascertain it is executed only once.
This is an example of the state design pattern. Listing 2 shows
how the use of anonymous inner classes in the makeVisitor()
method to instantiate the parsing visitor creates a closure that
includes the stored visitor, _parseE.

The factories for branch terms (e.g. F, see Listing 3) are
initialized with the factories for all their right-hand side terms. A
visitor that parses a branch is the union of all the visitors that
parse its subclasses. Since the grammar is LL(1), and each
method of a visitor corresponds to a particular token, none of the
subclasses’ visitors utilize the same method for processing. Thus
the union of the subclasses’ visitors can be accomplished by using
the chain of responsibility design pattern [9]. But since the
factory for the branch doesn’t know what methods are utilized by
the subclasses’ visitors, it is forced to delegate the process of
creating this chain to one of the factories of the subclasses.
Hence, all factories provide a method,
makeChainedVisitor(/TVFactory succ), to produce a visitor
that, in case itself is not the intended receiver (i.e. defaultCase()
is called), delegates to another visitor, the successor succ, thereby
establishing the chain of responsibility. The E and empty terms
are special cases since they have defined behaviors for all token
cases. Thus the visitors for these terms can only be the end of a
chain.

/I FFact is an inner class of EFact

/l parse either an F1 or an F2

private class FFact extends ATVFactory {
private F1Fact _f1Fact;
private F2Fact _f2Fact;

public FFact(ITokenizer tkz) {
super(tkz);
_f1Fact = new F1Fact(tkz);
_f2Fact = new F2Fact(tkz);

}

public ITokVisitor makeVisitor() {
return _f1Fact.makeChainedVisitor(_f2Fact.makeVisitor());

}

public ITokVisitor makeChainedVisitor(ITokVisitor succ) {
return _f1Fact.makeChainedVisitor(
_f2Fact.makeChainedVisitor(succ));
}

private class F1Fact extends ATVFactory{ ... }
private class F2Fact extends ATVFactory{ ... }

}

Listing 3: Typical factory for a branch parsing visitor.

The result is that instead of constructing the parsing visitors
directly, one now constructs the parsing visitor factories displayed
in Figure 2. Note that the object structure of the factories matches
that of the grammar object model in Figure 1, except that all the
factory-factory relationships are compositional. Each factory’s
construction only requires the factories of those terms it is directly
related to, either by composition or by subclass. One thus need
only know the grammar one level at a time, no global knowledge
of the grammar is needed. This decoupling of the grammar terms
makes the system very robust with respect to changes in the
grammar. To start parsing, we simply ask the top-level factory,
EFact, to make its visitor and apply that visitor to the first token.
Note that we can avoid using mutating setXXX() methods usually
necessary to produce a circular relationship if we create factories
as inner classes inside the closures of other factories that use
them. In Listing 2, EFact.this can be accessed directly because
EFact closes over E1aFact. In Listing 3, instances of F1Fact
and F2Fact can be created directly since they are implemented as
inner classes of FFact. We have demonstrated this technique in
an automated parser generator; unfortunately, this nesting of
factory classes tends to generate a single unwieldy source file for
a large grammar.

S EXTENDING THE GRAMMAR

Consider a grammar that adds parenthesized expressions and
multiplication to the grammar used above:

E: SE1 T: numT1

E1: empty | Ela ViidT1
Ela:+E T1: empty | T1a
S:P|T|V Tla:*S
P:(E)

For this new grammar, we have changed the composition of E,
added five more non-terminals, three tokens, and seven
production rules, and removed a non-terminal and a rule. To
parse this grammar, we have to change only two fields and one
constructor parameter in the E class, and replace the F factory,
FFact, with the new S factory, SFact, in the factory for E. The
remaining classes can be added without modifying any of the
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Figure 3: Object model for the extended grammar.

existing code. The UML class diagram for the terminals and non-
terminals is depicted in Figure 3, the diagram for the factories can
be found in Figure 4. Again, the structure of the factories matches
that of the grammar.

In a procedural style it is hard to achieve the same extensibility
that our object-oriented formulation exhibits. Traditionally, the
addition of the “(“ token as legal beginning of an expression would
require a pervasive change to the existing parser. Our modified
visitor pattern combined with the factory pattern provides the
desired decoupling that pinpoints where the changes should be
made and prevents a propagation of changes through the system.

6 CONCLUSION

We have created an object-oriented predictive recursive descent
parser by starting with an LIL(1) context-free grammar and
applying a simple transformation. The resulting equivalent
grammar was directly modeled by a class structure using
inheritance to represent branches and composition to represent
sequences. Since the tokens determine whether or not the input
corresponds to the grammar, a variant of the visitor design pattern
was used to provide direct dispatching to the appropriate parsing
code, thus eliminating conditionals, and to allow the open-ended
addition of tokens to the grammar with minimal perturbation of
the existing code. The code thus became declarative in nature.
The abstract factory pattern was used to decouple the individual
grammar elements from each other and create a flexible,
extensible system. The traditional global case analysis, predictive
parsing table and attendant stack of conditionals gave way to a
simple local analysis and delegation-based behavior. The chain of
responsibility pattern was used to model the union of parsing
behaviors needed under branching conditions. While it is beyond
the scope of this paper, the object structure of the parse tree can
casily be extended with its own visitors to enable semantic
analysis of the parsed input.

It is important to recognize that OO PRDP cannot be taught in
isolation. It must be carefully integrated into an objects-first
curriculum that emphasizes OOP/OOD, design patterns, and
abstract decomposition. At our institution, this material is
covered near the end of CS2, which is an OO data structures and
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Figure 4: Factories for the extended grammar.

algorithms course. At this point in the curriculum, the students
are already versed in basic OOP/OOD practices, including all the
design patterns mentioned here. The PRDP formulation serves
not only to expose the students to fundamentals of syntactic
analysis, but also as a wvehicle for teaching them how to
decompose a problem into a flexible and extensible object system.
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