
Synchronization During Java
VM Initialization and Termination

Mathias Ricken and Robert Cartwright
Dept. of Computer Science

Rice University
Houston, TX 77005

mgricken@rice.edu, cork@rice.edu

ABSTRACT
The Java language supports concurrent programming using
threads. Since thread scheduling is non-deterministic and a
thread’s time slice may end at any time, access to shared
data has to be synchronized to prevent an unintended
sequence of reads and writes that might corrupt data. Java
virtual machines (VMs) support synchronization using
monitors. With a tool developed to record the order of
synchronization operations involving monitors, a large
number of these costly operations were discovered during
VM initialization and termination, even though the
application seems strictly single-threaded at these times.

1. INTRODUCTION
As part of a larger project for deterministic unit testing of
concurrent programs, we implemented a record-and-replay
facility for Java programs that is independent of the VM
and transparent to the program. Assuming shared data is
protected by a consistent locking protocol and identical
input data, an application’s execution can be replayed by
recording and replaying the schedule of synchronization
operations, or “synchronization points” only; the actual
thread scheduling on an instruction level is irrelevant.

In Java, these synchronization points mark instances of
monitorenter and monitorexit instructions, as well as
several other operations, such as Object.wait and
Thread.sleep. Our application currently only records the
order in which monitorenter and monitorexit instructions
are executed; other synchronization points are not yet
processed.

During our tests of recording an application’s schedule, we
were surprised by the large number of synchronization
points that were present even in empty or very short
programs. In order to understand the relevance of these
synchronization points to later phases of the concurrent unit
testing project, we began a more detailed analysis.

Section 2 briefly describes our method of transparently
recording the sequence of synchronization points in
arbitrary programs without modifying the underlying VM.

Section 3 provides an analysis of the abundant
synchronization points before the user program begins to

execute in its main method, and section 4 discusses the
synchronization points present during VM termination,
after the user program has finished executing.

The conclusion in section 5 considers possible
improvements and offers directions for future work.

2. RECORDING SYNCHRONIZATION
POINTS

When a unit test is executed, we can assume the input data
– and thus the path through the program – is identical
during every execution. Thread scheduling therefore is the
only other factor that may influence program behavior, and
since thread scheduling is non-deterministic, a successful
unit test is rendered meaningless. To return to the
significant results of single-threaded unit testing,
concurrent unit tests have to be executed using all possible
schedules and are considered successful if and only if the
test was successful with each schedule. Recording the
schedule of one execution is a first step towards generating
and executing all possible schedules.

If all shared variables are consistently protected by locks,
then two threads cannot influence each other except
through shared but protected data, which can only be
accessed between synchronization points comprised of
monitorenter and monitorexit instructions. Recording
the order in which these synchronization points occur
therefore is sufficient to capture all significant aspects of
the schedule [1]. Situations in which a thread voluntarily
relinquishes and regains control of the processor, e.g. by
calling and returning from Object.wait or Thread.sleep,
also have to be recorded.

We record these synchronization points by modifying
(“instrumenting”) the Java bytecode of all classes before it
is executed. This method has several advantages over
alternative approaches:

• By instrumenting the bytecode, no changes to the
actual Java source code are necessary. The
application does not even have to be rebuilt to
enable or disable schedule recording.

• By using a custom class loader and performing the
instrumentation on-the-fly, the schedule can even

mailto:mgricken@rice.edu
mailto:cork@rice.edu

be recorded if classes are loaded dynamically and
no source code is available.

• The recording is created independent of the VM
executing the program and without requiring any
changes to the VM source code.

• The modifications done by the instrumentation are
implemented using regular Java or Java bytecode,
so the VM may perform a just-in-time (JIT)
compilation or other optimizations as it desires. It
is not necessary to resort to bytecode
interpretation.

When classes are loaded, their bytecode is scanned for
occurrences of monitorenter and monitorexit
instructions. If such an instruction is found, a call to a
method inside the recorder is added before the
monitorenter or after the monitorexit instruction. As
parameters, the type of the synchronization point and the
identity of the thread executing it are passed to the
recorder, as well as additional information about the
location, if desired. All of these pieces of information are
represented using primitive data (longs) so as to not create
additional object instances and complicate garbage
collection.

It is important to note that the method performing the
recording has to be synchronized itself; otherwise, several
threads were allowed to record events simultaneously and
potentially corrupt the data. However, the synchronization
of this method may not be recorded in the schedule, as the
method is not present in the original, unmodified program.
The same holds true for any code added during the
instrumentation that requires synchronization.

The recorder application executes in a second VM (master
VM) that is connected to the user program’s VM (slave
VM) using the Java Debug Interface (JDI). Therefore,
nothing in the recorder application can influence the
behavior and the thread scheduling of the user program.
Unfortunately, program execution in the slave VM has to
be suspended whenever the two VMs communicate, and
relaying the information about every synchronization point
to the master VM immediately severely degrades
performance. The information about the synchronization
points is therefore stored in a buffer (long[]) in the slave
VM and transferred to the master VM as one large piece
whenever the buffer is full.

The schedule of a user program is not solely controlled by
the synchronization points in the user program,
synchronization done in API code called by the user
program affects the schedule as well. Therefore,
synchronization points in the Java API – most of which is
found in the rt.jar file -- have to be recorded as well. To
avoid instrumenting the same classes time and again, we
instrument the rt.jar file and other parts of the Java API
using an off-line tool and create an alternate version of the
Java API that already includes all the necessary
modifications. This alternate version is then placed on the
Java boot classpath instead of the original API.

When we performed first tests on very small programs,
such as Program 1 and Program 2, we were surprised that
over 1,200 synchronization points were recorded,
regardless of the small size of the programs. We decided
that additional information about the location of these
synchronization points would be useful in determining
whether our recorder functioned properly, and maybe even
at later points in the project. However, all information
about synchronization points was stored in a buffer of
longs, so it was necessary to uniquely represent both class
and method names using just longs.

Our instrumentation tool achieves this by maintaining a
method database while it is instrumenting classes and
assigning each class a serial number. The method is
specified by its position in the class file. Whenever a
synchronization point is recorded, a class-method pair of
longs is recorded along with the synchronization point type
and thread. Given the method database and these pairs, it is
possible to retrieve the names of the class and method in
which a synchronization point occurred. If the location
needs to be specified even more precisely, the program
counter (PC) could be added as fifth piece of information.

When the schedule of a program is to be recorded, the user
starts the recorder application in the master VM and
specifies the user program using command line arguments.
Using JDI, the master VM then creates the slave VM,
establishes a set of events the master VM is interested in,
and initiates the execution of the user program. These
events are used to temporarily suspend execution in the
slave VM and process data at the start of the slave VM and
its death, when the main method is entered and exited, and
when the buffer is full and needs to be transferred and
emptied. The variety of JDI events is actually sufficient to
perform schedule recording without instrumentation and

public class EmptyTest {
 public static void main(String[] args) {
 }
}

Program 1: Empty Program

public class OneSyncBlockTest {
 public static void main(String[] args) {
 synchronized(OneSyncBlockTest.class) {
 }
 }
}

Program 2: Single Synchronized Block

just with JDI, but the performance loss of such an approach
is just unacceptable. An instrumented program with a
buffer and limited communication executes an order of
magnitude faster, as Figure 1 and Table 1 indicate.

3. SYNCHRONIZATION POINTS BEFORE
THE main METHOD

The recorded schedules [2] for all programs begin with
three threads in operation: “main” (0), “Reference Handler”
(1), and “Finalizer” (2). At least threads 1 and 2 appear to
belong to the first 12 synchronization points recorded,
which create three new threads: There are three
occurrences of a pair of monitorenter and monitorexit
instructions in the constructor of the Thread class, during
which we assign a unique ID number (given in parentheses
above) to each thread, and another pair in
Thread.nextThreadID, in which the Java API performs a
similar task. The ID assignment has to be synchronized to
ensure that a thread will always be assigned the same ID
under any given schedule. This, in essence, makes thread
creation a synchronization point in its own right. While it
may be possible to use Java’s existing IDs, we decided to
insert our own ID to maintain complete control. It is likely
that these 12 synchronization points actually create the
threads with IDs 1, 2, and 3, and that the “main” thread
with ID 0 exists without being explicitly created. We
currently do not know the name of the thread with ID 3.

A number of monitorenter and monitorexit pairs in
Hashtable.get follow, as well as synchronization points in

• sun.misc.Launcher$AppClassLoader.loadClass
• sun.misc.URLClassPath.getLoader
• java.util.Stack.pop and peek
• sun.misc.URLClassPath.getLoader
• java.net.URL.hashCode
• java.net.URLStreamHandler.getHostAddress

The next 64 synchronization points are all monitorenter
and monitorexit pairs in StringBuffer.append(char),

and this will be a reoccurring pattern during VM
initialization. While we do not know the value of the
character passed as parameter, we do know that one or
more strings are being constructed here by appending
characters, and each character creates two synchronization
points.

After these monitorenter and monitorexit pairs in
StringBuffer.append(char) there is another section of 12
synchronization points that create three threads, probably
with IDs 4, 5, and 6. At this time we do not know the
names of the threads with IDs 4 and 5; they seem to be
rather short-lived. Thread 6, however, remains alive for the
rest of the program execution and is named “Signal
Dispatcher”.

After these new threads are created, there are several more
long sequences in StringBuffer.append(char), and
additional synchronization points in the aforementioned
classes, as well as in

• java.lang.Runtime.loadLibrary0
• java.io.ExpiringCache.get
• java.lang.ref.Finalizer.add
• java.util.zip.ZipFile.getEntry
• java.util.zip.ZipFile.getInputStream
• java.util.zip.ZipFile.getInputStream
• java.util.zip.Inflater.inflate
• java.util.zip.Inflater.finished
• java.util.zip.Inflater.needsDictionary
• java.util.zip.ZipFile$ZipFileInputStream

 .read
• java.util.zip.ZipFile$ZipFileInputStream

 .close
• java.util.zip.Inflater.setInput
• java.util.zip.ZipFile.releaseInflater
• java.net.URL.set
• sun.misc.Resource.cachedInputStream
• sun.net.www.protocol.file.Handler

 .openConnection
• java.io.ExpiringCache.put
• java.security.Permissions.add
• java.io.FilePermissionCollection.add
• java.security.BasicPermissionCollection

 .add Time for n synchronization blocks

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

256 512 1024 2048 4096 8192 16384
Number of synchronization blocks

Ti
m

e
(s

)

No Buffer Buffer=64 Buffer=512 Buffer=1024

Figure 1: Performance With and Without Buffer

Number Time (s)
Sync.
Blocks No Buffer

64
Elements

512
Elements

1024
Elements

256 20.422 1.000 0.625 0.532
512 44.547 1.938 1.250 1.079

1024 85.219 3.657 2.547 2.360
2048 166.062 7.359 5.016 4.593
4096 334.718 14.094 9.953 9.391
8192 741.606 28.015 21.032 19.031

16384 1473.516 58.516 40.297 37.766

Table 1: Performance With and Without Buffer

http://www.protocol.file.Handler

It is safe to assume that classes are loaded from jar files,
which are just renamed zip files. The calls to
StringBuffer probably generate the names of jar files by
concatenating string constants with environment variables.
Java’s security model is being created and checked in the
background to ensure file and class accesses do not violate
security policies.

Interestingly, this is where the schedules for the empty
program (Program 1) and the non-empty program (Program
2) begin to differ: After 1,280 recorded synchronization
points, the empty program begins with VM termination. It
does not even enter the main method. Apparently, the VM
completely optimizes calls to empty methods away.

The non-empty program features several additional calls to
sun.misc.Launcher$AppClassLoader.loadClass,
probably to load the local classes of the user program, and
then runs through the synchronization points in the main
method exactly as expected: Program 2 has exactly one
pair of monitorenter and monitorexit instructions.

It is conceivable that the names and contents of command
line parameters change the number and sequence of
synchronization points slightly. We have not investigated
this issue yet.

In evaluating the existence of these synchronization points
it is critical to remember that all of them were executed by
the “main” thread. Several other threads were created and
even started, but none of them performed any
synchronization events that we were able to capture. If we
assume we are aware of all synchronization, and that the
initialization code of the VM is written in a correct and safe
way that is free of possible race conditions, then all these
synchronization points are unnecessary: In a single-
threaded environment – or a multi-threaded environment
without any shared data – no synchronization is necessary.

4. SYNCHRONIZATION POINTS AFTER
THE main METHOD

After the user program terminates, which – although we
have not experimented with this situation – should happen
when all non-daemon threads have died, a thread with ID 9
and the fitting name “DestroyJavaVM” begins to run
through a sequence of eight synchronization points.

Since the buffer only gets transmitted when it is full, we
cannot read the contents of the last buffer before the VM
dies unless the buffer coincidentally becomes full at the
same time. The master VM can also query the buffer when
a JDI event suspends the slave VM, but when the “VM
Death” event is received, the slave VM has already died
and the buffer contents are not available anymore. We
therefore do not have very good information about the
synchronization in “DestroyJavaVM” yet. We do know
that it appears to create another thread and then perform

some synchronization in java.lang.Shutdown.shutdown
and java.lang.Shutdown.sequence.

Fortunately, there are ways to receive detailed information
nonetheless: Once a synchronization point for thread 9 is
encountered, the current contents of the buffer are
transmitted, and then the buffer is deactivated. All
remaining synchronization points are reported to the master
VM immediately. That degrades performance, but during
shutdown that is not important anymore.

The small programs we have used for this study do not
show the effects of garbage collection, finalizers, and
daemon threads, either. In addition to the implementation
of the aforementioned improvements, further investigation
in these areas is needed.

When additional synchronization operations such as
Object.wait and Thread.sleep, but also thread creation
and thread death, are recorded – if possible with extended
information such as location and parameters – we will be
able to get a better understanding of the threads that VM
initialization and termination create internally.

5. CONCLUSION
The recording application developed for the concurrent unit
testing project has shown that on-the-fly instrumentation of
Java class files is a transparent and efficient method of
gathering runtime information independently of the VM.

The first results gathered with this tool show a surprisingly
large number of synchronization points even for empty or
very small programs – over 1,200 just in the VM
initialization and termination. These portions of program
execution seem to be single-threaded; therefore, it should
be possible to disable or remove synchronization and
improve program performance.

Assuming VM initialization and termination truly are
single-threaded, the unsynchronized StringBuilder class
should be used as an alternative to StringBuffer.
Generally, providing an unsynchronized version of
common data structures has the potential to enhance
runtime performance and simplify the concurrency aspects
of a program.

The hundreds of synchronization points incurred by the
unnecessary use of StringBuffer also underscore the need
for the ability to ignore certain uncritical synchronization
points when generating schedules for the concurrent unit
testing project.

6. REFERENCES
[1] D.L. Bruening. Systematic testing of multithreaded Java

programs. Master’s thesis, MIT, 1999.
[2] Available from the author.

