
Unit Testing for Concurrent Programs Corky Cartwright, Mathias Ricken
{cork|mgricken}@rice.edu

This project is kindly supported by

Unit Tests

► Written before the application code

► Must pass before code can be
 committed to the repository
 → Fewer bugs enter the repository

► Prevent old bugs from reappearing
 → Before a bug is fixed, a unit test
 exhibiting that bug is added

► Catch bugs early in development

► Current tools: JUnit, Ant

Our Experience with DrJava

► Unit tests used extensively
 → 30% of code lines are unit tests
 → 60% of code paths are tested

► Production quality software

► Constantly changing development
 team that includes sophomores

► Unit tests proved effective with
 single thread of control

► Major portion of DrJava is concurrent
 → Existing tools not effective

Test-Driven Development

Unpredictable Behavior ofUnpredictable Behavior of
Concurrent Unit TestsConcurrent Unit Tests

► Thread switching is non-deterministic and machine-specific
 → Unit tests may pass on one run, fail on the next

► Success of unit tests does not indicate correct concurrent behavior

► Project Goal: Develop an open-source framework for reliable unit testing of
 concurrent Java applications

Schedule-Based Unit TestingSchedule-Based Unit Testing
► Execution using a fixed schedule
 → Deterministic and machine-independent execution

► Execution using all different schedules
 → Success of unit tests implies correct concurrent behavior

► Unit testing not performance critical
 → Overhead more acceptable in unit testing than in acceptance testing

A Framework for ConcurrentA Framework for Concurrent
Unit TestingUnit Testing

► Open-source extension of JUnit
 → Portable and accessible

► Schedule-based execution
 → Deterministic, reliable results

► Detection of unguarded access
 → Valuable debugging information

► Validation of schedule suites
 → Unit testing remains automated

► Partial execution of test suite
 → Faster non-concurrent testing

► Testing of distributed programs
 → Desirable for testing of DrJava

Monitoring of SynchronizationMonitoring of Synchronization
Points in Java ProgramsPoints in Java Programs

► Java synchronization points
 → java.lang.Thread → java.lang.System
 → Synchronized methods & blocks → Access to volatile variables
 → Garbage collection & finalization → Remote Method Invocation (RMI)

► Monitoring necessary for schedule generation and monitored replay
 → Synchronization points delimit atomic blocks
 → Different thread may get executed when synchronization point is reached

► Custom class loader
 → Analyzes and modifies class files before they are loaded by the Java VM
 → Inserts calls to monitor methods before and after synchronization points

Class File Java VM

Monitor
Class

// Test.class
...
invokestatic SynchronizedMonitor.tryEnterBlock
monitorenter
invokestatic SynchronizedMonitor.enterBlock
...

Synchronization
Point

Class
Loader

Inserted
Bytecode

Method

Calls

Figure: A class file is loaded by the Java VM. The class loader detects synchronization points
 and inserts calls to monitor methods

► Extend framework to distributed Java programs using RMI
 (Remote Method Invocation)

► Data cannot be shared except using RMI operations
 → Treat RMI operations as additional synchronization points

► Challenge: Make all machines observe the dependencies in the
 replayed schedule

► Schedules depend on code base
 → May need to be regenerated if code changes

► Detect whether a code change affects synchronization behavior
 → Only regenerate schedules if necessary

► Detect whether a code change affects a unit test
 → Only execute unit test if necessary

Schedule Suite Validation Testing Distributed Programs

Detection of Unguarded Variable AccessDetection of Unguarded Variable Access
► Unguarded access to shared variables
 leads to non-deterministic behavior
 → Schedule generation relies on guarded
 variable access

► Custom class loader dynamically rewrites
 bytecode to monitor access to all shared
 variables

► Eraser algorithm detects if each variable is
 guarded by at least one lock during all accesses

► Perform cumulative intersection of the locks
 held during accesses to a particular variable

► If intersection is empty, variable is not properly
 guarded
 → No single lock held during all accesses to
 that particular variable

Figure: Cumulative intersection of locks held

► X is guarded, intersection is non-empty
► Y is not properly guarded, intersection is empty

Access 1 A C

Access 3 B C

Intersection C

Access 2 C

Locks heldVariable X
Access 1 A C

Access 3 B

Intersection

Access 2 C

Locks heldVariable Y

Schedule GenerationSchedule Generation
► Atomic blocks
 → Delimited by synchronization points
 (see box on the far right)
 → Instructions in an atomic block
 cannot directly affect another thread
 if shared variables are guarded

access

Th
re

ad
 T

1

Figure: If T1 holds the lock on V, T2 cannot access
 V at the same time. Hence, neither thread
 can directly influence the other through V

Th
re

ad
 T

2

Shared Variable

V

► Generation Technique 2: Exhaustive search
 → Enumeration of all arrangements of
 atomic blocks covers all possible
 program behaviors
 → Fewer arrangements of atomic blocks
 than of instructions

Figure: Enumerating arrangements of atomic blocks

Schedule 1 Atomic Block Atomic
Block

Atomic
Block

Atomic BlockAtomic
Block

Atomic
BlockSchedule n

Atomic BlockAtomic
Block

Atomic
BlockSchedule 2

.

.

.

► Generation Technique 1: Random delays
 → Delays inserted between atomic blocks
 to change scheduling behavior
 → Large number of schedules modified
 this way should ensure good coverage

Figure: Random delays inserted between atomic blocks

Thread T1 Atomic Block Atomic Block

Atomic
Block

Atomic
Block

Atomic
BlockThread T2

Monitored ReplayMonitored Replay
► Custom class loader rewrites class files as
 they are loaded

► When the currently executed atomic block
 ends, one of the threads is allowed to
 resume, as dictated by the schedule

► Modified class files will run on any Java VM
 → Portable and open-source

► Bytecode can be dynamically compiled by an
 embedded JIT compiler
 → Faster than interpretation

Figure: Transfer of control at the end of an atomic block

Thread T1 Atomic
Block

Thread T3 Atomic
Block

Atomic
Block

Currently
executing

Thread T2 Atomic
Block

Threads T1,
T2, T3 could

resume

Schedule
dictates that
T3 resumes

ATPATP
TEXAS

