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Unit Tests

►  Written before the application code

►  Must pass before code can be
  committed to the repository
   → Fewer bugs enter the repository

►  Prevent old bugs from reappearing
   → Before a bug is fixed, a unit test
     exhibiting that bug is added

►  Catch bugs early in development

►  Current tools: JUnit, Ant

Our Experience with DrJava

►  Unit tests used extensively
   → 30% of code lines are unit tests
   → 60% of code paths are tested

►  Production quality software

►  Constantly changing development
  team that includes sophomores

►  Unit tests proved effective with
  single thread of control

►  Major portion of DrJava is concurrent
   → Existing tools not effective

Test-Driven Development

Unpredictable Behavior ofUnpredictable Behavior of
Concurrent Unit TestsConcurrent Unit Tests

►  Thread switching is non-deterministic and machine-specific
   → Unit tests may pass on one run, fail on the next

►  Success of unit tests does not indicate correct concurrent behavior

►  Project Goal:  Develop an open-source framework for reliable unit testing of
          concurrent Java applications

Schedule-Based Unit TestingSchedule-Based Unit Testing
►  Execution using a fixed schedule
   → Deterministic and machine-independent execution

►  Execution using all different schedules
   → Success of unit tests implies correct concurrent behavior

►  Unit testing not performance critical
   → Overhead more acceptable in unit testing than in acceptance testing

A Framework for ConcurrentA Framework for Concurrent
Unit TestingUnit Testing

►  Open-source extension of JUnit
   → Portable and accessible

►  Schedule-based execution
   → Deterministic, reliable results

►  Detection of unguarded access
   → Valuable debugging information

►  Validation of schedule suites
   → Unit testing remains automated

►  Partial execution of test suite
   → Faster non-concurrent testing

►  Testing of distributed programs
   → Desirable for testing of DrJava

Monitoring of SynchronizationMonitoring of Synchronization
Points in Java ProgramsPoints in Java Programs

►  Java synchronization points
   → java.lang.Thread           → java.lang.System
   → Synchronized methods & blocks   → Access to volatile variables
   → Garbage collection & finalization   → Remote Method Invocation (RMI)

►  Monitoring necessary for schedule generation and monitored replay
   → Synchronization points delimit atomic blocks 
   → Different thread may get executed when synchronization point is reached

►  Custom class loader
   → Analyzes and modifies class files before they are loaded by the Java VM
   → Inserts calls to monitor methods before and after synchronization points
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Figure: A class file is loaded by the Java VM. The class loader detects synchronization points
    and inserts calls to monitor methods

► Extend framework to distributed Java programs using RMI
  (Remote Method Invocation)

► Data cannot be shared except using RMI operations
   → Treat RMI operations as additional synchronization points

► Challenge: Make all machines observe the dependencies in the
  replayed schedule

►  Schedules depend on code base
   → May need to be regenerated if code changes

►  Detect whether a code change affects synchronization behavior
   → Only regenerate schedules if necessary

►  Detect whether a code change affects a unit test
   → Only execute unit test if necessary

Schedule Suite Validation Testing Distributed Programs

Detection of Unguarded Variable AccessDetection of Unguarded Variable Access
►  Unguarded access to shared variables
  leads to non-deterministic behavior
   → Schedule generation relies on guarded
     variable access

►  Custom class loader dynamically rewrites
  bytecode to monitor access to all shared
  variables

►  Eraser algorithm detects if each variable is
  guarded by at least one lock during all accesses

►  Perform cumulative intersection of the locks
  held during accesses to a particular variable

►  If intersection is empty, variable is not properly
   guarded
   → No single lock held during all accesses to
     that particular variable

Figure: Cumulative intersection of locks held

► X is guarded, intersection is non-empty
► Y is not properly guarded, intersection is empty
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Schedule GenerationSchedule Generation
►  Atomic blocks
   → Delimited by synchronization points
     (see box on the far right)
   → Instructions in an atomic block
     cannot directly affect another thread
     if shared variables are guarded
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Figure: If T1 holds the lock on V, T2 cannot access
    V at the same time. Hence, neither thread
    can directly influence the other through V
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►  Generation Technique 2: Exhaustive search
   → Enumeration of all arrangements of
     atomic blocks covers all possible
     program behaviors
   → Fewer arrangements of atomic blocks
     than of instructions

Figure: Enumerating arrangements of atomic blocks
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►  Generation Technique 1: Random delays
   → Delays inserted between atomic blocks
     to change scheduling behavior
   → Large number of schedules modified
     this way should ensure good coverage

Figure: Random delays inserted between atomic blocks
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Monitored ReplayMonitored Replay
►  Custom class loader rewrites class files as
  they are loaded

►  When the currently executed atomic block
  ends, one of the threads is allowed to
  resume, as dictated by the schedule

►  Modified class files will run on any Java VM
   → Portable and open-source

►  Bytecode can be dynamically compiled by an
  embedded JIT compiler
   → Faster than interpretation

Figure: Transfer of control at the end of an atomic block
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