This project is kindly supported by

v

Corky Cartwright, Mathias Ricken

for Concurrent P rograms {cork | mgricken}@rice.edu

Unit Testing

Unpredictable Behavior of
Concurrent Unit Tests

N o)

ATP

Schedule Generation Monitoring of Synchronization
» Atomic blocks » Generation Technique 1: Random delays » Generation Technique 2: Exhaustive search POi nts i n J ava P rog ra m S

— Delimited by synchronization points — Delays inserted between atomic blocks — Enumeration of all arrangements of
(see box on the far right) to change scheduling behavior atomic blocks covers all possible o _
» Thread switching is non-deterministic and machine-specific — Instructions in an atomic block — Large number of schedules modified program behaviors > Java _SY“Ch"O“'Zat'O“ points _
— Unit tests may pass on one run, fail on the next cannot directly affect another thread this way should ensure good coverage — Fewer arrangements of atomic blocks — Java.lang.Thread — Java.lang.System
if shared variables are guarded than of instructions — Synchronized methods & blocks — Access to volatile variables

— Garbage collection & finalization — Remote Method Invocation (RMI)
» Success of unit tests does not indicate correct concurrent behavior

C)

@ dCCESS > Vv @___

» Monitoring necessary for schedule generation and monitored replay
— Synchronization points delimit atomic blocks
— Different thread may get executed when synchronization point is reached

Atomic
Atomic
Shared Variable - D - D - Block A

Figure: If T1 holds the lock on V, T2 cannot access Figure: Random delays inserted between atomic blocks Sche cIuIe - A;:)mli(c
V at the same time. Hence, neither thread OC A

» Project Goal: Develop an open-source framework for reliable unit testing of
concurrent Java applications

Schedule 2

» Custom class loader
— Analyzes and modifies class files before they are loaded by the Java VM

I
:
I
:
I
:
I
:
I
:
'L

—

can directly influence the other through V Figure: Enumerating arrangements of atomic blocks

T — Inserts calls to monitor methods before and after synchronization points
Schedule-Based Unit Testing —
I - 5___{) ' Class -‘;—{_29
I : : : I » Custom class loader rewrites class files as Currently Atomic | Threads T1, —_— — L 0ad — =
» Execution using a fixed schedule Thread T1 executing r T2, T3 could » Modified class files will run on any Java VM Class File Oader Java VM
L2 o . they are loaded L) Block
I — Deterministic and machine-independent execution I - resume — Portable and open-source
| | |- vseoromcmomes ™= [- o
I » Execution using all different schedules I > en desn :n: f):;Leen:hII-ee:c?sailsteallg\tA?::II:o oc \ Schedule » Bytecode can be dynamically compiled by an L kestatic SunchronizedMonitor trvEnterBlock Method
N 1 : : - /4 - I ilnvoxestatlicC yncnronize onitor. trymntcter oC
Success of unit tests implies correct concurrent behavior resume, as dictated by the schedule Thread T3 dictates that embedded JIT compiler > | monitorenter Calls
T3 resumes — Faster than interpretation
invokestatic SynchronizedMonitor.enterBlock
» Unit testing not performance critical I Figure: Transfer of control at the end of an atomic block <. N N
— Overhead more acceptable in unit testing than in acceptance testing I

Detection of Unguarded Variable Access

I
:
I
:
I
:
I
:
I
:
'L

Figure: A class file is loaded by the Java VM. The class loader detects synchronization points

» Unguarded access to shared variables » Eraser algorithm detects if each variable is Variable X Locks held Variable Y Locks held and inserts calls to monitor methods
leads to non-deterministic behavior guarded by at least one lock during all accesses Access 1 Al o Access 1 Al |C
T t D = D I t — Schedule generation relies on guarded Access 2 C Access 2 C
— variable access
es rlve n eve O p m e n » Perform cumulative intersection of the locks ACCESS?’_—BC Access 3 _ .
held during accesses to a particular variable Intersection C Intersection
_ _ _ » Custom class loader dynamically rewrites . . o r_-_-____-_-
Unit Tests Our Experience with DrJava bytecode to monitor access to all shared > Xls guarded, intersection Is non-empty
variables » If intersection is empty, variable is not properly » Y is not properly guarded, intersection is empty
> Written before the application code > Unit tests used extensively guarded Fiqure: Cumulative int tion of locks held I
. 30% of code lines are unit tests — No single lock held during all accesses to S IS ITErEction o7 Ee e A Framework for Concurrent
— 60%0 of code paths are tested that particular variable

» Must pass before code can be
committed to the repository

Unit Testin
— Fewer bugs enter the repository > Production quality software Schedule Suite Validation Testing Distributed Programs 9

» Prevent old bugs from reappearing » Constantly changing development » Schedules depend on code base » Extend framework to distributed Java programs using RMI > OpenP-sotuLcle ext:nsmn (’_II;IJU“'I: > Va"dSt'_:'; oft_schedule_smtes;: rod
— Before a bug is fixed, a unit test team that includes sophomores — May need to be regenerated if code changes (Remote Method Invocation) — Fortable and accessible — Unit teésting remains automate
exhibiting that bug is added
> Unit tests proved effective with > Detect whether a code change affects synchronization behavior » Data cannot be shared except using RMI operations > Schelc)lu::e-ba_sc?dt_exectl_tlgr It > Partlgl e:(ecutlo_n of test S:':e b
» Catch bugs early in development single thread of control — Only regenerate schedules if necessary — Treat RMI operations as additional synchronization points — Deterministic, refiable resuits — Faster non-concurrent testing
» Current tools: JUnit, Ant » Major portion of Drlava is concurrent > Detect whether a code change affects a unit test » Challenge: Make all machines observe the dependencies in the > DEte\‘;t'IO“ I;If u:gl;lard_ed a_cci:ress " > Testlgg ?f ‘IL'ISt';'b“:e‘It_ng'f'ay;
— Existing tools not effective — Only execute unit test if necessary replayed schedule — Valuable debugging Information — Desirable Tor testing of Lrjava

--___-_-_-J

