
Practical Tools for Testing Concurrent Programs Corky Cartwright, Mathias Ricken
{cork|mgricken}@rice.edu

Lightweight Checking of Concurrency Invariants Using Java AnnotationsLightweight Checking of Concurrency Invariants Using Java Annotations

Unpredictable Behavior of Unpredictable Behavior of
Concurrent Unit TestsConcurrent Unit Tests

Practical Tools for ConcurrencyPractical Tools for Concurrency

Unit Tests Are Effective...

► Help find and prevent bugs in sequential code

► Tests must pass before code changes are committed
 → Fewer bugs enter the repository

► Tests exhibiting fixed bugs are added to test suite
 → Prevent old bugs from reappearing

► Current tools: JUnit, TestNG, Ant

... But Not for Concurrent Programs

► Thread switching is non-deterministic and machine-specific

► Success of a unit test does not imply correct behavior
 under all possible schedules

► Most programs are concurrent
 → GUI: separate thread for display
 → Multi-core: programs must be concurrent to benefit

► Current tools not effective or easy to use on large projects

(1) A concurrency-aware extension of JUnit

(2) Lightweight dynamic and static checking
 of concurrency invariants using Java
 annotations

(3) Execution with short delays inserted at
 critical places to test different execution
 schedules

(4) Recording of program execution and
 replaying according to a predetermined
 schedule

Inserting Delays and Scheduled ReplayInserting Delays and Scheduled ReplayConcurrency-Aware Unit Testing FrameworkConcurrency-Aware Unit Testing Framework
Current Frameworks JUnit, TestNG Are Broken!

► JUnit, TestNG, etc. were not designed with concurrency in mind
 → The criteria for success and failure are incorrect for concurrent programs
 → The design promotes writing tests that succeed by default even when they should fail

► Writing good concurrent unit tests is as hard as writing good concurrent programs

► Problem 1: Exceptions are not automatically
 detected and considered a test failure.
 → The program fails in an auxiliary thread,
 but the unit test nonetheless succeeds,
 even long after the other thread has failed.

► Solution: Use a default exception handler

► Problem 2: The test does not have to wait for
 all auxiliary threads to terminate.
 → The program fails in an auxiliary thread,
 but the primary thread completes the unit
 test so quickly, that failure goes unnoticed.

► Solution: Wait for all spawned auxiliary threads

This project is kindly supported by

ATPATP
TEXAS

Figure: Random delays inserted between atomic blocks

Atomic
Block

Atomic
Block

Thread T1 Atomic Block Atomic Block

Atomic
BlockThread T2

Figure: Transfer of control at the end of an atomic block

Thread T1 Atomic
Block

Thread T3 Atomic
Block

Atomic
Block

Currently
executing

Thread T2 Atomic
Block

Threads T1,
T2, T3 could

resume

Schedule
dictates that
T3 resumes

Primary
Thread Success!Lengthy calculation....

spawns
AuxiliaryAuxiliary
ThreadThread Failure!Failure!

Problem:
Ignored

Exception!

Primary
Thread Success!

spawns
Problem:

Late Exception!
AuxiliaryAuxiliary
ThreadThread Failure!Failure!

► Custom class loader rewrites class files as
 they are loaded

► Modified class files will run on any Java VM
 → Portable and open-source

► Bytecode can be dynamically compiled by an
 embedded JIT compiler
 → Faster than interpretation

► When an atomic block ends, a delay may be
 inserted, forcing the program into a
 different schedule

► Same technique can be used for
 record and reply by schedule

► At the end of an atomic block,
 all threads are put on hald, and
 only the scheduled one resumes

► Difficult to implemenent a Java
 scheduler in the same Java VM
 → Scheduler itself may create
 and destroy values, influencing
 garbage collection and schedule

Java Annotations to Specify Invariants
► Declare which classes and methods should not be or may only be
 executed by certain threads

► Simple to introduce into existing large projects
 → Just annotate parts of the projects, no need for a complete rewrite

► Dynamic checks to maintain invariants are automatically inserted
 → Some checks are also performed statically

A Way to Specify API Threading Discipline
► Maintaining a threading discipline is problematic for current APIs
 → APIs are often extensible, so API designers do not have full control
 → Invariants are written as comments or white papers at best

► Annotations record violations: They are not just comments anymore!

► Utility can apply annotations to existing libraries using external XML
 specification files
 → No need to access source code or even recompile
 → XML files written for a library can be reused and openly shared
 → We have started writing a specification file for the Java Swing API

DrJava Case Study
► DrJava recently exhibited a number of concurrency-related problems
 → We believe we have diligently fixed most problems by manually

► To test the utility and to make future development of DrJava easier,
 we annotated a current version and several old versions of DrJava

► The most recent version had a lower percentage of thread checks failing
 → Had the annotations not been done after the fact, they probably would
 have identified even more problems
 → Still identified several potential bugs in the current version

Augmenting Type Systems Using Annotations
► By introducing annotations describing permitted threading behavior, we
 have in effect augmented Java’s type system.
 → Subtyping problems: C <: D according to Java, but not by our checking

► Formulation of the utility’s subtyping relation based on Featherweight Java

► Annotations can be used to augment Java’s type system to get additional
 guarantees; material for future research.

Unit Tests
Could Not Run
Unit Test Failures
Unit Tests Passed

0

100

200

300

400

500

600

700

800

900

1000

90 0
36 0

610 881

Mar’04 Sep’06

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Thread Checks and Failures

965
4161
18.83

3796
30616
11.03

Mar’04 Sep’06

Violations
Passed Checks
% Violations

