This project is kindly supported by

&

Corky Cartwright, Mathias Ricken
{cork | mgricken}@rice.edu

Unit Testing

F__-_-_-__ﬁ

Unpredictable Behavior of
Concurrent Unit Tests

for Concurrent Programs

r_-_____-_-q

Schedule Generation Monitoring of Synchronization
» Atomic blocks » Generation Technique 1: Random delays » Generation Technique 2: Exhaustive search POi nts i n J ava P rog ra m S

N o)

ATP

— Delimited by synchronization points — Delays inserted between atomic blocks — Enumeration of all arrangements of
(see box on the far right) to change scheduling behavior atomic blocks covers all possible >) oot -
]]] — Instructions in an atomic block — Large number of schedules modified program behaviors ava Synchronization points _
Unit Tests Our Experience with Drlava cannot directly affect another thread this way should ensure good coverage — Fewer arrangements of atomic blocks — Java.lang.Thread — Java.lang.System
_ o _ _ if shared variables are guarded than of instructions — Synchronized methods & blocks — Access to volatile variables
Written before the application code > Unit tests used extensively —» Garbage collection & finalization — Remote Method Invocation (RMI)
— 30% of code lines are unit tests _
— 60%0 of code paths are tested Th T1 Schedule 1
Must pass before code can be e PR . read @ cheduic - X Block » Monitoring necessary for schedule generation and monitored replay
committed to the repository = V @' i @ — Synchronization points delimit atomic blocks
\ J/

— Fewer bugs enter the repository Production quality software — Different thread may get executed when synchronization point is reached

— Also allows for deadlock detection

Atomic
mread 2 (Foa] @ (s © [leenc] -

Schedule 2
Shared Variable c e_u c

Prevent old bugs from reappearing Constantly changing development Figure: If T1 holds the lock on 'V, T2 cannot access Figure: Random delays inserted between atomic blocks Schedule n Aé%rg'(c
— Before a bug is fixed, a unit test team that includes sophomores V at the same time. Hence, neither thread — — » Custom class loader

can directly influence the other through V Figure: Enumerating arrangements of atomic blocks

Monitored Replay

exhibiting that bug is added — Analyzes and modifies class files before they are loaded by the Java VM

]] . — Inserts calls to monitor methods before and after synchronization points
Unit tests proved effective with y P

Catch bugs early in development single thread of control

. |
Current tools: JUnit, Ant Major portion of Drlava is concurrent _ _ Currently Aor Threads T1, : :
— Existing tools not effective > fl:leStZTecII;‘:dsekc)lader rewrites class files as Thread T1 executing / T2, T3 could » Modified class files will run on any Java VM | Class File Loader :
y 1 7 resume — Portable and open-source : :
- ne - Thread T2 L : 7 . |
Existing Tools Not Effective for Concurrent Programs > When the currently executed atomic block _ _ | Test.class |
d f the threads is allowed t Schedule > Bytecode can be dynamically compiled by an | :
€nas, one Od' tet ;elaa IS:hIS a I?“clle | O Thread T3 - dictates that embedded JIT compiler | invokestatic SynchronizedMonitor.tryEnterBlock |

resume, as dictate e schedule . : -
Thread switching is non-deterministic and machine-specific Hme; Y . T3 resumes — Faster than interpretation | K Iflonl]torin:?r o eh e wedMand & Bl ok N :
N . - - - | ilnvoxKxestatctlcC yncnronlize onitcor.entcer ocC l
Unit tests may pass on one run, fail on the next Figure: Transfer of control at the end of an atomic block : |
|
| |

Success of unit tests does not indicate correct concurrent behavior

Detection of Unguarded Variable Access

Major portion of DrJava is concurrent
— Existing tools not effective

. |
» Unguarded access to shared variables > Eraser algorithm detects if each variable is Variable X Locks held Variable Y Locks held | edule Generation = |
leads to non-deterministic behavior guarded by at least one lock during all accesses Access 1 Al e Access 1 Al |c : User :
Project Goal: Develop an open-source framework for reliable, portable, — Schedule generation relies on guarded Access 2 C Access 2 C ' Interf = onitored Replay |
automated unit testing of concurrent Java applications variable access o _ Access 3 BIC Access 3 B | Nnterface |
» Perform cumulative intersection of the locks e ——— _ | adlock Detection - :
held during accesses to a particular variable Intersection C Intersection | |
» Custom class loader dynamically rewrites > X is quarded, intersection is non-empty

) A A 5::;‘;;":? to monitor access to all shared » If intersection is empty, variable is not properly > Y is not properly guarded, intersection is empty points and inserts bytecode to interface with an event buffer. Using JPDA, the Master

guarded - cumulative int ton of locks held Java VM periodically reads from (schedule generation, deadlock detection) or writes

igure: Cumulative intersection of locks he
R s — No single lock held during all accesses to ° to that bufter (scheduled replay).
that particular variable

» Two virtual machines
— Slave VM cannot crash master VM
— Master VM cannot accidentally
influence slave VM

: - ' ' :
: _ Schedule-Based Unit Testing : Schedule Suite Validation Testing Distributed Programs

I » Execution using a fixed schedule I

| Figure: A class file is loaded by the Slave Java VM. The class loader detects synchronization

IR . . < : » Schedules depend on code base > Extend framework to distributed Java programs using RMI
Deterministic and machine-independent execution — May need to be regenerated if code changes (Remote Method Invocation) » Buffered communication
— Reduces communication overhead

» Execution using all different schedules L . : : compared to naive JPDA use

_, Success of unit tests implies correct concurrent behavior > Detect whether a code change affects synchronization behavior > Data cannot be shared except using RMI operations _ R —» No buffering:

— Only regenerate schedules if necessary — Treat RMI operations as additional synchronization points oo 1004 o048 4008 8192 | 16384 256 blocks ~ 20.4 seconds
Number of synchronized blocks N 1024 element buffer:

» Unit testing not performance critical : _ . .. No Buffer Buffer=64 Buffer=512 Buffer=1024 256 blocks ~ 0.5 seconds

— Overhead more acceptable in unit testing than in acceptance testing > De_t)e(c)tn\llvh::gcetll‘tae t::::te tg;:??ﬁ:gi::s a unit test > f:algegges'cr:::;" machines observe the dependencies in the - | — New compact representation

- e e T TSR

