
Test-First Java Concurrency for the Classroom
Mathias Ricken

Dept. of Computer Science
Rice University

Houston, TX 77005, USA
+1-713-348-3836

mgricken@rice.edu

Robert Cartwright
Dept. of Computer Science

Rice University
Houston, TX 77005, USA

+1-713-348-6042

cork@rice.edu

ABSTRACT
Concurrent programming is becoming more important due to the
growing dominance of multi-core processors and the prevalence
of graphical user interfaces (GUIs). To prepare students for the
concurrent future, instructors have begun to address concurrency
earlier in their curricula. Unfortunately, test-driven development,
which enables students and practitioners to quickly develop
reliable single-threaded programs, is not as effective in the
domain of concurrent programming. This paper describes how
ConcJUnit can simplify the task of writing unit tests for multi-
threaded programs, and provides examples that can be used to
introduce students to concurrent programming.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent programming.
D.2.5 [Software Engineering]: Testing and debugging – Testing
tools.
K.3.2 [Computers and Education]: Computer and information
science education – computer science education.

General Terms
Reliability, Languages.

Keywords
CS education, Java, JUnit, unit testing, concurrent programming,
tools, software engineering.

1. INTRODUCTION
In test-driven development, tests are written for a unit of code
before the code itself is written, and all tests must succeed before
a new revision can be committed to the code base, facilitating the
early detection and repair of program bugs [7]. This approach to
software development is steadily gaining popularity both in
computer science education [6] and industrial practice [1][13].

Unfortunately, unit testing is much less effective for programs
with multiple threads of control than for sequential (single-
threaded) programs. The importance of concurrent programming,
however, is rapidly growing as multi-core processors replace

older single core designs. To exploit the power of these new
processors, programs must run several computations in parallel.
Unless there is a breakthrough in processor design or language
implementation technology, writing and testing concurrent code
will become a skill that all software developers must master.
Several schools have already responded to this trend and
introduced concurrent programming concepts early in their
curricula [2][3].

Furthermore, multi-threading not only occurs in applications
designed to exploit multi-core CPUs. GUI frameworks like
AWT/Swing and SWT access components and react to user input
in a separate event thread. As a result, most applications with
GUIs already involve multi-threading.

Developers of large Java applications like DrJava [11] have
identified two obstacles to applying test-driven development to
concurrent programs: (i) the standard unit testing frameworks
make it easy to write bad tests and (ii) thread scheduling is non-
deterministic and machine-specific, implying that the outcome of
a test can change from one run to the next [12].

Test-driven design increases programmer confidence [14], which
is especially important in introductory programming courses. The
fact that tests with failed assertions may succeed is particularly
troubling, because it could give students a false sense of security.
It is therefore crucial to identify how concurrent unit tests may
report false successes and what can be done to address this issue.

Contributions In this paper, we present a course module
introducing concurrent Java programming, which is suitable for
inclusion at the beginning of a software engineering course that
only presumes the CS 1/2 sequence as prerequisite. In this
module:

1. We identify the shortcomings of the standard JUnit [8]
framework (and its competitors [15]) in the context of
concurrency and describe how an extension of JUnit called
ConcJUnit [9] remedies these problems (Section 2).

2. We present a series of small examples that elucidate common
problems in concurrent programming. First, we study a
trivial program that increments a counter from multiple
threads to stress the importance of atomicity when
performing operations on shared data (Section 3). Next, we
write and analyze a program that requires access to two
pieces of shared data, introducing the possibility of deadlock
(Section 4). To assess the students’ understanding of the
covered topics, we assign the implementation of a bounded
buffer and a readers-writer lock as homework (Section 5).

3. We discuss why concurrent programs remain difficult to test
because of nondeterministic thread scheduling (Section 6).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, WI, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03…$10.00.

2. IMPROVING TESTING FRAMEWORKS
All popular unit testing frameworks for Java including JUnit
behave pathologically with regard to concurrency: failed
assertions and uncaught exceptions in threads other than the main
thread are ignored and do not cause a test to fail. The unit test in
Figure 1, for instance, succeeds even though the child thread
unconditionally calls JUnit’s fail() method.

Inexperienced programmers unfamiliar with this pathology
typically write unit tests for multi-threaded units of code that
report success when assertions in auxiliary threads fail. Even
experienced programmers may fall prey to this problem when
they move code out of the main thread. The AWT/Swing and
SWT GUI frameworks, for example, mandate that GUI
components and the associated documents be accessed from the
event thread. A unit testing harness is supposed to provide a rigid
foundation for refactoring, but fails to do so if thread boundaries
are crossed.

The unit test in Figure 1 reveals another design flaw in JUnit:
even when a test creates an exception handler for a child thread,
there is no guarantee when the child thread fails that the test has
not already ended and falsely reported as a success. JUnit does not
warn if some child threads spawned in a test do not terminate on
time.

 A well-written test ensures that all child threads have ended
before the test outcome is determined. The most common ways to
achieve this property are (a) using Thread.join(), (b) using
Object.wait() and Object.notify(); or (c) by monitoring a
shared volatile variable in a busy-loop. While option (c) is
usually avoided for performance reasons, both (a) and (b) can be
efficiently used to control thread lifetimes. These two options,
shown1 in Figure 2 and Figure 3, are equivalent as long as the
child thread terminates immediately after the call to notify().

However, only the first option, using join(), ensures that the
other thread has truly terminated. To support robustness under
refactoring, a well-formed unit test should require that all child
threads are joined with the test’s main thread. This action can be
done directly, with the main thread invoking join() for all child
threads, or indirectly, through the transitive property of join(),
as long as all join operations together ensure that each child thread
terminates before the test ends [12].

2.1 Unit Testing with ConcJUnit
ConcJUnit is an open-source project designed as a replacement
for JUnit. Since it is backward-compatible with JUnit, replacing
the junit.jar file with the appropriate version of ConcJUnit
enables support for concurrent unit testing while preserving
existing testing behavior.

ConcJUnit installs a default exception handler for all child threads
spawned in a test, as well as for the AWT/Swing event thread.
The framework can therefore properly detect uncaught exceptions
and failed assertions in any thread. When run with ConcJUnit, the
test in Figure 1 fails as expected.

ConcJUnit also tracks all child threads and causes the test to fail if
any of them are still alive when the main thread terminates. To
help the developer determine which threads these are, ConcJUnit

1 join() and wait() may resume spuriously (§17.8.1 JLS [4]).

For brevity, the loop necessary to handle this has been omitted.

records the source location where each child thread is started and
reports this information for any thread that does not properly
terminate. For example, in Figure 1, ConcJUnit reports that the
thread started in line 8 did not terminate.
Furthermore, ConcJUnit analyzes the join operations that are
performed and issues a warning when a child thread terminates
but is not absorbed by a join. For instance, for the test in Figure 4,
ConcJUnit reports that the thread started in line 5 terminated, but
only because of the vagaries of thread scheduling.

The analysis of join operations is conservative and enforces the
policy that all child threads must be joined with the main thread.
As a result, ConcJUnit will emit a warning for some correctly
synchronized tests, such as the one in Figure 3 employing wait()
and notify(). At the programmer’s option, these warnings can

1. public void testException() {
2. Thread t = new Thread() {
3. public void run() {
4. // should cause failure but does not
5. fail();
6. }
7. };
8. t.start();
9. }

Figure 1: Test Should Fail But Does Not

1. public void testWithJoin() {
2. Thread t = new Thread() {
3. public void run() {
4. // ...
5. }
6. };
7. t.start();
8. t.join();
9. }

Figure 2: Lifetime Control Using Join

1. public void testWithJoin() {
2. final Object sign = new Object();
3. Thread t = new Thread() {
4. public void run() {
5. // ...
6. synchronized(sign) { sign.notify(); }
7. // no more code here
8. }
9. };
10. t.start();
11. synchronized(sign) { sign.wait(); }
12. }

Figure 3: Lifetime Control Using Wait/Nofity

1. public void testException() {
2. Thread t = new Thread() {
3. public void run() { /* no op */ }
4. };
5. t.start();
6. Thread.sleep(5000); // long wait
7. }

Figure 4: Child Thread Gets Lucky

be suppressed. In our experience, the conservative analysis is
helpful, because it catches improperly synchronized tests.
Moreover, it is easy to ensure that child threads terminate using
join operations.

Thread creation coordinates are helpful in analyzing uncaught
exceptions and failed assertions in child threads as well. If a unit
test fails in a child thread, ConcJUnit provides a stack trace of the
failed child thread, as well as the stack trace of all ancestor
threads up to the point where the child thread was started. In
Figure 5, for example, the failure occurs in a named helper class,
and it is not immediately obvious which thread failed, t1 or t2.
The extended stack trace with the thread creation context,
however, shows that the child thread was started in line 11;
therefore, the failure occurred in thread t2.

ConcJUnit has recently been integrated into the DrJava IDE,
making it easy for beginners to use. Given a testing framework
that is well equipped for multi-threaded programs, we
subsequently discuss some small examples with our students.

3. MULTI-THREADED COUNTER
We explain that concurrency, while helpful for many tasks,
improves performance when it is used to break down a
computation into smaller pieces, which are processed in parallel
by different CPU cores and then combined into a final value.
Communication between threads is required to coordinate the
assembly of the final value from the results produced by the
individual threads.

This communication is usually performed using shared data. To
illustrate this technique, we present a very simple example: a
computation that increments an integer counter 10 million times.
We initially write a single-threaded test program for this task. At
the end of the program, we assert that the counter has indeed
reached the expected value. The source code for this unit test is
given in Figure 6. After this test has been written, the students
develop the code for the actual counter, shown in Figure 7.

When multiple cores are available, it should be possible to
distribute the work of incrementing the counter. Figure 8 shows a
test program that spawns 10 helper threads, each incrementing the
counter a million times. The test waits for all helper threads to
finish (using the join() operation), and then asserts that the
integer variable contains the expected number. To the students’
surprise, this test fails because the actual value of the counter is
typically less than the expected value. More interestingly, the
actual value changes from one execution to the next.

To discover the cause of the failure, we ask the students to
describe in detail what operations the expression count++;
actually performs. They discover that, if one assumes addition can
only be performed in a CPU register, the previous line can be re-
written in pseudo-code as
 long register = count;
 register = register + 1;
 count = register;

 Shown this way, it becomes evident that the increment expression
is not atomic and may be interleaved with operations in other
threads. If thread A first reads the counter, but then gets
preempted by another thread B also incrementing the counter
before A can write the changed value back to memory, then the
work done by thread A is lost. Figure 9 shows one such
problematic interleaving.

1. public class MultiIncTest extends TestCase {
2. static final long N = 1000000;
3. static final int T = 10;
4. public void testMulti() throws Exception {
5. final Counter c = new Counter();
6. Thread[] ts = new Thread[T];
7. for(int i=0; i<T; ++i) {
8. ts[i]=new Thread() {
9. public void run() {
10. c.incNTimes(N);
11. }
12. });
13. ts[i].start();
14. }
15. for(Thread t: ts) t.join();
16. assertEquals(T*N, c.count);
17. }
18. }

Figure 8: Multi-threaded Counter

1. public class Counter {
2. public long count = 0;
3. public void incNTimes(long n) {
4. for(int i=0; i<n; ++i) { count++; }
5. }
6. }

Figure 7: Counter Implementation

1. public class SingleIncTest extends TestCase {
2. static final long N = 10000000;
3. public void testSingle() {
4. Counter c = new Counter();
5. c.incNTimes(N);
6. assertEquals(N, c.count);
7. }
8. }

Figure 6: Single-threaded Counter Test

1. class Helper extends Thread {
2. boolean toFail;
3. public Helper(boolean b) { toFail = b; }
4. public void run() { if (toFail) fail(); }
5. }
6.
7. public void testTCC() {
8. Thread t1 = new Helper(false);
9. Thread t2 = new Helper(true);
10. t1.start();
11. t2.start();
12. t1.join(); t2.join();
13. }

junit.framework.AssertionFailedError:
 at TCCTest.Helper.run(TCCTest.java:4)
 at ...parent called Thread.start()...
 at TCCTest.testTCC(TCCTest.java:11)

Figure 5: Thread Creation Context for Uncaught Exceptions

This is an example of a data race. A data race occurs when
(1) two threads access the same shared data, (2) at least one of the
accesses is a write access, and (3) the accesses are unsynchronized
(nothing prevents the order of the accesses from changing). The
accesses in our example are the read access of B1 and the write
access of A3: If A3 happens before B1, the program performs as
expected; however, if B1 occurs before A3, as shown in Figure 9,
then the increment performed by thread A is lost. The actual
interleaving is nondeterministic and changes from one run to the
next, which also explains why the final value of the counter
varies.

To eliminate this concurrency bug, we need to ensure that the
instructions A1; A2; A3 cannot be interleaved with the same
instructions in another thread. We do this by introducing a
synchronized block requiring a lock object to be acquired before
the increment operation may be performed. Threads compete for
ownership of the lock object, and only the thread owning it is
allowed into the synchronized block protected by the lock. The
instructions A1; A2; A3 in the synchronized block are not
atomic—thread A may be preempted by other threads—but once
thread A has ownership of the lock object, no other thread may
execute code protected by the same lock object.

Once the students allocate a lock object as a field of the Counter
class and enclose the increment operation in a synchronized block,
the unit test will pass.

private Object lock = new Object();
// ...
synchronized(lock) { count++; }

It is important to emphasize that the code needs to be protected by
the same runtime object for the synchronized block to be
effective; therefore, the lock object cannot be the value of a local
variable in the incNTimes()method, because a local variable will
be bound to a different object in each call.

4. MULTI-THREADED BANK
After the students have correctly synchronized the multi-threaded
counter, we present them with another problem: in a concurrent
simulation of a bank’s checking accounts, we would like to make
arbitrary transfers from one account to another. This implies
subtracting a value x from the balance of account A and adding it
to the balance of account B. We use the notation (A→B, x) for this
transfer.

One drastic approach would be to have one lock object protecting
the access to all accounts; however, this would eliminate
concurrent transfers and essentially serialize the program. We
would like to allow several transfers at the same time, as long as
they don’t involve the same accounts. For instance, it should be
allowed to execute the transfers (0→1, 10) and (2→3, 20)
concurrently, but the transfer (1→2, 15) should block until
accounts 1 and 2 are not in use anymore.

Most students will suggest one lock object per account acquired in
two nested synchronized blocks, as shown in Figure 10. It is
worthwhile to point out that Java locks are re-entrant, i.e. if a
thread has already acquired ownership of a lock, attempting to do
so again is a no-op; therefore, it is not problematic if from ==
to. When a student runs a unit test that issues random transfers
and checks that the total amount of money remains constant, it is
almost certain that the program will “hang” after a few seconds
without finishing all transfers.

Unfortunately, it is difficult to determine what exactly happened
without using additional tools such as a debugger. Adding a print
statement after line 11 to show the values of from and to is not
helpful because performing console output inadvertently
synchronizes competing threads, eliminating the “hanging”
problem in typical schedules. However, it is possible to run an
additional diagnostic thread, shown in Figure 11, in the
background and periodically print the current to and from values
of all the transfer threads. When the students analyze the
diagnostic output, they realize there is a cycle: For instance, one
thread has claimed lock object 0 and needs lock object 1, while
the other thread owns lock object 1 and requires lock object 0;
neither thread can proceed. This situation is called deadlock.

A1 long register1 = count; // register1==0
 B1 long register2 = count; // register2==0
A2 register1 = register1 + 1; // register1==1
A3 count = register1; // count==1
 B2 register2 = register2 + 1; // register2==1
 B3 count = register2; // count==1
 final result // count==1

Figure 9: Problematic Interleaving

1. final int NUM_ACCOUNTS = 5;
2. final int NUM_TRANSFERS = 1000000;
3. long[] accounts = new long[NUM_ACCOUNTS];
4. Object[] locks = new Object[NUM_ACCOUNTS];
5. Random r = new Random();
6. class TransferThread extends Thread {
7. public int from, to;
8. public void run() {
9. for(int i=0; i<NUM_TRANSFERS; ++i) {
10. from = r.nextInt(NUM_ACCOUNTS);
11. to = r.nextInt(NUM_ACCOUNTS);
12. synchronized(locks[to]) {
13. synchronized(locks[from]) {
14. int x = r.nextInt(100);
15. accounts[from] -= x;
16. accounts[to] += x;
17. }
18. }
19. }
20. }
21. }

Figure 10: Nested Synchronized Blocks

1. class CheckThread extends Thread {
2. public void run() {
3. while(true) {
4. Thread.sleep(5000);
5. for(TransferThread t: ts) {
6. System.out.println(t.from+"->"+t.to);
7. }
8. }
9. }
10. }

Output: 0->1
 1->0

Figure 11: Diagnostic Background Thread and Output

It is interesting to note that there would be no deadlock if the
second thread had also attempted to procure lock object 0 first. In
that case, the second thread would just have to wait until the lock
object is released again. The order in which the lock objects are
sought is critical. This observation leads students to the realization
that lock objects must be acquired according to the same global
order.

In our account transfer example, one way to ensure this is to
always acquire the lock with the lower account number first:

synchronized(locks[Math.min(to,from)]) {
 synchronized(locks[Math.max(to,from]) {

Any total order on lock objects will work.

5. HOMEWORK ASSIGNMENT
To assess the students’ understanding of the topics covered, we
assign the implementation of a bounded buffer and a readers-
writer lock as homework. We provide unit test suites for both,
allowing students to test their programs before they turn in their
assignments.

While we primarily grade for correctness, which among other
things involves checking that the implemented methods are
correctly synchronized, we also consider efficiency and fairness.
For example, a bounded buffer implementation should maximize
concurrency, yet avoid awakening more waiting producers or
consumers than can be accommodated. For the readers-writer
lock, readers and writers should be put in a queue to ensure that
readers cannot starve writers.

The assignment, along with the solutions, is available at [10].
Note that we also discuss synchronized methods, volatile and
final variables, and the Object.wait(), Object.notify()
and Thread.interrupt() methods before we assign this
homework. Brief notes are contained in the assignment.

6. NONDETERMINISTIC SCHEDULING
We also inform our students that ConcJUnit can only detect
problems in the schedule (the interleaving of operations on shared
data) [12] chosen by the JVM for each test. ConcJUnit does not
detect all defects that could occur; only those in the executed
schedule are found. Even when a ConcJUnit test passes without
failures or warnings, the same test could fail on the next run.
Conventional unit testing assumes the program behavior is
deterministic, a property that is lost for concurrent programs. The
ordering of competing accesses to shared data is non-deterministic
– even when those accesses are synchronized. The Java Memory
Model [5] does not even ensure that program execution
corresponds to a serial interleaving of its threads unless the
program is free of data races. The simplest strategy for avoiding
data races in Java is to mark all shared variables as final or
volatile. Both dynamic and static data race detectors have been
developed for Java [5], but this is still an active area of research.
We are not aware of any lightweight, practical race detection tools
suitable for use in the classroom or in routine software
development.
Since concurrent program execution is non-deterministic, a unit
testing framework should ideally run each test under all possible
schedules. Unfortunately, the number of possible schedules
increases exponentially with the size of the program. A practical

alternative to exhaustively running each test under all schedules
might be to run each test under a set of schedules generated using
heuristic methods. The design and construction of such a heuristic
tool is one of our primary research interests.

7. CONCLUSION
As mainstream processor designs become more explicitly parallel
and include more cores, concurrent programming will become
more prominent in both computer science education and industrial
practice. It is therefore essential to educate students about the
challenges involved in writing efficient and reliable concurrent
programs. Using ConcJUnit and the examples presented in this
paper, instructors can temper the conflict between test-driven
development and concurrent programming.

8. REFERENCES
[1] Bowers, A. N., Sangwan, R. S., and Neill, C. J. 2007. Adoption

of XP practices in the industry—A survey: Research Sections.
Softw. Process 12, 3 (May. 2007), 283-294.

[2] Ernst, D. J. and Stevenson, D. E. 2008. Concurrent CS:
preparing students for a multicore world. In Proceedings of
the 13th Annual Conference on innovation and Technology in
Computer Science Education (Madrid, Spain, June 30 - July
02, 2008). ITiCSE '08. ACM, New York, NY, 230-234.

[3] Fekete, A. D. 2009. Teaching about threading: where and
what?. SIGACT News 40, 1 (Feb. 2009), 51-57.

[4] Gosling, J., Joy, B., Steele, G. L. and Bracha, G. The Java
Language Specification. 3rd Ed. Addison-Wesley, Reading,
MA, USA, 2005.

[5] IBM. ConTest. http://www.alphaworks.ibm.com/tech/contest
[6] Jeffries, R. and Melnik, G. 2007. Guest Editors' Introduction:

TDD—The Art of Fearless Programming. IEEE Softw. 24, 3
(May. 2007), 24-30.

[7] Jeffries, R. http://www.xprogramming.com/
[8] JUnit Project. JUnit. http://junit.org/
[9] Rice JavaPLT. ConcJUnit. http://concutest.org/concjunit/
[10] Rice JavaPLT. Concurrent programming assignment and

solution. http://concutest.org/download/sigcse2010-java-
concurrency.zip

[11] Rice JavaPLT. DrJava Web Site, http://drjava.org/
[12] Ricken, M. and Cartwright, R. 2009. ConcJUnit: unit testing

for concurrent programs. In Proceedings of the 7th
international Conference on Principles and Practice of
Programming in Java (Calgary, Alberta, Canada, August 27 -
28, 2009). PPPJ '09. ACM, New York, NY, 129-132.

[13] Rumpe, B. and Schroeder, A. Quantitative Survey on Extreme
Programming Projects. In Proceedings of International
Conference on Extreme Programming and Flexible Processes
in Software Engineering (XP2002). (Alghero, Italy, May 2002)
95-100.

[14] Spacco, J. and Pugh, W. 2006. Helping students appreciate
test-driven development (TDD). In Companion To the 21st
ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications
(Portland, Oregon, USA, October 22 - 26, 2006). OOPSLA
'06. ACM, New York, NY, 907-913

[15] TestNG Project. TestNG. http://testng.org/

