
1 

A Framework for Testing 
Concurrent Programs 

PhD Thesis Defense 
Mathias Ricken 
Rice University 

January 10, 2011 



2 

Brian Goetz, Java Concurrency in Practice, Addison-Wesley, 2006 

Concurrency in Practice 



3 

Concurrency Practiced Badly 

Concurrent programming is difficult and not well 
supported by today’s tools. This framework simplifies 

the task of developing and debugging concurrent 
programs. 



4 

Contributions 
1.  Improved JUnit Framework 
2.  Execution with Random Delays 
3.  Additional Tools for Testing 

a. Invariant Checker 
b. Execution Logger 

4.  Miscellaneous 



5 

Unit Tests… 
•  Occur early 
•  Automate testing 
•  Keep the shared repository clean 
•  Serve as documentation 
•  Prevent bugs from reoccurring 
•  Allow safe refactoring 

•  Unfortunately not effective with multiple 
threads of control 



6 

Improvements to JUnit 



7 

Existing Testing Frameworks 

•  JUnit, TestNG 

•  Don’t detect test failures in child threads 
•  Don’t ensure that child threads terminate 

•  Tests that should fail may succeed 



8 

ConcJUnit 
•  Replacement for JUnit 

–  Backward compatible, just replace junit.jar file 
 
1. Detects failures in all threads 

2. Warns if child threads or tasks in the event 
thread outlive main thread 

3. Warns if child threads are not joined 



9 

ConcJUnit Evaluation 
•  JFreeChart 

– All tests passed; tests are not concurrent 
•  DrJava: 900 unit tests 

– Passed:  880 
– No join:      1 
– Lucky:    18 
– Timeout:      1 
– Runtime overhead: ~1 percent 



10 

ConcJUnit Limitations 
•  Only checks chosen schedule 

– A different schedule may still fail 

•  Example: 
 
 Thread t = new Thread(…); 
if (nondeterministic()) t.join(); 

*2 



11 

Execution with Random Delays 



12 

Why Is This Necessary? 
•  Nondeterminism 

– Tests may execute under different 
schedules, yielding different results 

– Example: nondeterministic join (see above) 
– Example: data race (multithreaded counter) 
 

int counter = 0; 
// in M threads concurrently 
for(int i=0; i<N; ++i) { ++counter; } 
// after join: counter == M*N? 



13 

Race-Free ≠ Deterministic 
•  Race-free programs can still be 

nondeterministic 
final Object lock = new Object(); 
final Queue q = new ArrayList(); 
 

// in one thread 

... synchronized(lock) { q.add(0); } ... 
// in other thread 

... synchronized(lock) { q.add(1); } ... 
 

// after join: q = (0, 1) or (1, 0)? 



14 

Non-Determinism = Error? 
•  Depends on the computation 

–  If the queue (see previous example) was to 
contain {0, 1} in any order, then no error 

–  If the queue was to contain (0, 1) in order, 
then error 

•  A unit test should be deterministic 
– Schedule should be considered an input 

parameter 
•  Run test under all possible schedules? 

*3 



15 

Intractability 
•  Comprehensive testing is intractable 
•  Number of schedules (N) 

–  t: # of threads, s: # of slices per thread 

•  Can we still find many of the problems? 
*4 



16 

Previous Work 
ConTest (Edelstein 2002) 
•  Programs seeded with calls to sleep, 
yield, or priority methods 
– At shared memory accesses 
– At synchronization events 

•  At runtime, random or coverage-based  
decision to execute seeded instructions 

• sleep performed best 
•  Problem: predates Java Memory Model 

(JMM), ignores volatile fields 



17 

Previous Work (2) 
ConTest (Edelstein 2002) 
•  Also included a record-and-replay 

feature 
•  Problems 

– Recording perturbs actual execution 
– No guarantee that replay will execute 

under same schedule, particularly on 
multicore systems 

– Did not focus on record-and-replay in my 
work 



18 

Previous Work (3) 
rsTest (Stoller 2002) 
•  Similar to ConTest, but fewer seeds 

– Better classification of shared objects 
•  “Probabilistic completeness” 

– Non-zero probability rsTest will exhibit a 
defect, even if the scheduler on the test 
system normally prohibits it from occurring 



19 

Previous Work (4) 
rsTest (Stoller 2002) 
•  Problem: also predates the JMM, 

ignores volatile fields 
•  Assumes an “as-if-serial” execution 

– Probabilistic completeness does not hold 
with JMM and programs with data races 



20 

Goal for Concutest 
•  Execution with random delays 

– Similar to ConTest 
– Cover all events relevant to 

synchronization, as specified by the JMM, 
i.e. particularly volatile fields 



21 

Synchronization Points 
•  Thread.start (before or after) 
•  Thread.exit (after) 
•  Thread.join (before and after) 
•  Object.notify/notifyAll (before) 
•  Object.wait (before) 
•  MONITORENTER (before) 
•  MONITOREXIT (before) 
•  Synchronized methods changed to blocks 
•  Access to volatile fields (before) 



22 

Examples 
•  Often inspired by tests used in ConTest 

and rsTest papers 

•  Allows a qualitative comparison 
•  No quantitative comparison 

– ConTest and rsTest not available 
– Not enough information on tests to 

accurately re-implement them 



23 

ConTest Examples (1) 
1.  Race: Threads race to set a flag first 

ConTest:  0% of runs without 
   20% of runs with sleep 
   0.3% of runs with yield 

 
My results: 
(quad core)  0% without, 33% sleep 
(dual core)  0% without, 27% sleep 



24 

ConTest Examples (2) 
2.  Atomicity: Threads read and write 

shared data, operations not atomic 
 
ConTest:  0% without, 80% sleep 
 
My results: 
(quad core)  6% without, 99% sleep 
(dual core)  0% without, 99% sleep 



25 

ConTest Examples (3) 
3.  Uninitialized data: Threads may run 

after notify, before data is initialized 

ConTest:  0% without, 35% sleep/yield 
   (“about 700x in 2000 tests”) 

 
My results: 
(quad core)  0% without, 97% sleep 
(dual core)  0% without, 93% sleep 



26 

rsTest Examples (1) 
4.  NASA Remote Agent: Deadlock if 

context switch after conditional, before 
wait 

rsTest:  0% without, 100% (?) sleep 
   “Observed after 0.5 seconds” 

My results: 
(quad core)  7% without, 99% sleep 
(dual core)  0% without, 99% sleep 



27 

rsTest Examples (2) 
5.  Atomicity: Threads read and write 

shared data, operations not atomic 
 
rsTest:  0% without, 100% (?) sleep/yield 

   “many times in each  run” 
 
My results: 
(quad core)  6% without, 99% sleep 
(dual core)  0% without, 99% sleep 



28 

Analysis 
•  Concutest seems to perform just as well 

as ConTest and rsTest 

•  In my results, bugs are sometimes 
observed without sleeps/yields 
– Tested on dual core/quad core 
– Enhanced visibility of bugs, compared to 

single core? 



29 

Program Restrictions 
•  Some restrictions are useful 

– Minor inconvenience for programmer 
•  e.g. must join child threads in some way 

– Major benefits for testing framework 
•  e.g. don’t need to simulate child threads 

outliving the test 
•  Reduces number of possible schedules 



30 

Restrictions: ConcJUnit 
•  Child threads must be joined 

– Only way to ensure that all errors are 
detected 

•  Slight inconvenience 
– Keep track of child threads when they are 

created 

•  ConcJUnit provides utilities for this 



31 

Restrictions: Shared Data 
•  Shared variables must be either 

– consistently protected by a lock, or 
– volatile, or 
–  final 

•  This can be checked using a race 
detector (e.g. FastTrack, Flanagan 
2009) 



32 

Restrictions: Volatile 
•  Specify which volatile variables should 

be instrumented with random delays 
a.  Manually 
b.  Use static “may happen in parallel” 

(MHP) analysis (e.g. Soot MHP, Li 2005) 
  



33 

Restrictions: Volatile (2) 
•  In most cases, we only need to focus on 

volatile variables in the application 
program 
–  Test libraries separately 
–  Then assume libraries are correct 
–  Encode invariants and check for violations 

(see Invariant Checker contribution) 
•  Listing volatile variables to be 

instrumented is possible and not 
prohibitive 



34 

Additional Tools for Testing 



35 

Additional Tools for Testing 
1.  Annotations for Invariant Checking 

•  Runtime warning if invariants for a method are 
not maintained 

•  ~1% slowdown during testing, no slowdown 
during normal execution 

2.  Annotations for Execution Logging 
•  Tests properly decoupled from application code 
•  No slowdown compared to hand-written 

logging 



36 

Summary 



37 

Summary 
1.  Improved JUnit Framework 
•  Detects errors in all threads 
•  Warns if child threads are still alive and 

errors could be missed 
•  Warns if child threads ended on time, 

but not because they were joined 
•  Low overhead (~1%) 

à Much more robust unit tests 



38 

Summary (2) 
2.  Execution with Random Delays 
•  Detects many types of concurrency 

defects 
•  Updated for the Java Memory Model 

(JMM) 

à  Higher probability of finding defects 
usually obscured by scheduler 

à  Programmer restrictions not prohibitive 



39 

Summary (3) 
4.  Additional Tools for Testing 
•  Invariant Checker encodes and checks 

method invariants 
•  Execution Logger decouples tests and 

application code 
•  Low overhead (~1%) 

à Simpler to write good tests 



40 

Summary (4) 
5.  Miscellaneous 
•  Subtyping for annotations useful, 

compatible with existing Java 
•  DrJava integration makes better tools 

available to beginners 

This framework simplifies the task of developing and 
debugging concurrent programs. 



41 

Acknowledgements 
I thank the following people for their support. 
 
•  My advisor 

–  Corky Cartwright 

•  My committee members 
–  Walid Taha 
–  David Scott 
–  Bill Scherer (MS) 

•  NSF, Texas ATP, Rice School of Engineering 
–  For providing partial funding 



42 

Conclusion 

Concutest is open source and 
available for Windows, Linux and Mac 
 
http://www.concutest.org/ 

This framework simplifies the task of developing and 
debugging concurrent programs. 



43 

More Information on 
Additional Tools  



44 

Additional Tools for Testing: 
Annotations for Invariant Checking 

 



45 

Concurrency Invariants 
•  Methods have to be called in event thread 

– TableModel, TreeModel 
•  Method may not be called in event thread 

– invokeAndWait() 
•  Must acquire readers/writers lock before 

methods are called 
– AbstractDocument 
– DrJava’s documents 



46 

Invariants Difficult to Determine 

•  May be found in 
– Javadoc comments 
– Only in internal comments 
– Whitepapers 

•  Often not documented at all 
•  Errors not immediately evident 
•  Impossible to check automatically 



47 

Invariant Annotations 
•  Add invariants as annotations 

 
@NotEventThread 
public static void 
  invokeAndWait(Runnable r) { ... } 

•  Process class files 
– Find uses of annotations 
–  Insert code to check invariants at method 

beginning 



48 

Advantages of Annotations 
•  Java language constructs 

– Syntax checked by compiler 
•  Easy to apply to part of the program 

– e.g. when compared to a type system change 
•  Light-weight 

– Negligible runtime impact if not debugging 
(only slightly bigger class files) 

– <1% when debugging 
•  Automatic Checking 



49 

Additional Tools for Testing: 
Annotations for Execution Logging 



50 

Need for Execution Logging 
•  Tests need to check if code was 

executed 
•  Implementation when no variable can 

be checked 
– Add flag to application code 
– Add flag to test code, add call from 

application code to test code 
•  Application and test code become 

tightly coupled 



51 

Logging Annotations 
•  Annotate test with methods that need to 

be logged 

@Log(@TheMethod(c=Foo.class, m="bar")) 

void testMethod() { … } 
 

•  Process class files 
– Find methods mentioned in annotations 
–  Insert code to increment counter at method 

beginning 
 

 



52 

Logging Annotations (2) 
•  Decouples application code from test 
•  Annotations with subtyping useful for 

logging too 

@Log(@And({ 

         @TheMethod(c=Foo.class, m="bar", 

                    subClasses=true), 
         @InFile("SomeFile.java") 

})) 
void testMethod() { … } 



53 

Log Benchmarks Setup 
•  Different implementation strategies 
•  Different numbers of threads (1-16) 
•  Three different benchmarks 

– Tight loop 
– Outer loop 
– DrJava 

•  subclasses of GlobalModelTestCase 

•  Expressed as factor of execution time 
with hand-written logging or no logging 
– 1.0 = no change 



54 

Log Benchmarks Setup (2) 
•  Tight loop 
 
for(i=0; i<N; ++i) { loggedMethod(); } 
@LogThis void loggedMethod() {/*no op*/ } 
 

•  Outer loop 
 

for(i=0; i<N; ++i) { loggedMethod(); } 
@LogThis void loggedMethod() { 
  for(j=0; i<M; ++j) { gaussianBlur(); } 
} 



55 

Execution Log Benchmarks 



56 

Execution Log Benchmarks 



57 

Log Benchmark Results 
•  “Local fields” performs best 

– Generates code identical to hand-written 

•  Compared to hand-written logging 
– No slowdown 

•  Compared to no logging 
– 10% to 50% slowdown in tight loop 
– ~1% slowdown in outer loop 
– No slowdown in DrJava 



58 

Extra Slides 



59 

Both tests 
fail. 

Sample JUnit Tests 

public class Test extends TestCase { 
  public void testException() { 
    throw new RuntimeException("booh!"); 
  } 
  public void testAssertion() { 
    assertEquals(0, 1); 
  } 
} 

if (0!=1) 
  throw new AssertionFailedError(); 

} Both tests 
fail. 



60 

JUnit Test with Child Thread 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }.start(); 
  } 
} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}.start(); 

throw new RuntimeException("booh!"); 

Main 
thread 

Child 
thread 

Main 
thread 

Child 
thread 

spawns 

uncaught! 

end of 
test 

success! 



61 

JUnit Test with Child Thread 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }.start(); 
  } 
} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}.start(); 

throw new RuntimeException("booh!"); 

Uncaught exception, 
test should fail but 

does not! 

•  By default, no uncaught exception handler 
installed for child threads 



62 

Changes to JUnit (1 of 3) 
•  Thread group with exception handler 
‒  JUnit test runs in a separate thread, not main thread 
‒  Child threads are created in same thread group 
‒  When test ends, check if handler was invoked 

Reasoning: 
•  Uncaught exceptions in all threads must cause 

failure 
 



63 

JUnit Test with Child Thread 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }.start(); 
  } 
} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}.start(); 

throw new RuntimeException("booh!"); 

Test 
thread 

Child 
thread 

uncaught! 

end of test 
Main 
thread 

spawns and joins resumes 

check 
group’s 
handler 

invokes 
group’s 
handler 

failure!  



64 

Child Thread Outlives Parent 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }.start(); 
  } 
} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}.start(); 

throw new RuntimeException("booh!"); 

Test 
thread 

Child 
thread 

uncaught! end of test 

success!  

invokes 
group’s 
handler 

Main 
thread 

check group’s 
handler 

Too late! 



65 

Changes to JUnit (2 of 3) 
•  Check for living child threads after test ends 
 
Reasoning: 
•  Uncaught exceptions in all threads must cause 

failure 
•  If the test is declared a success before all child 

threads have ended, failures may go unnoticed 
•  Therefore, all child threads must terminate 

before test ends 



66 

Check for Living Threads 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }.start(); 
  } 
} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}.start(); 

throw new RuntimeException("booh!"); 

Test 
thread 

Child 
thread 

uncaught! end of test 

failure!  

invokes 
group’

s 
handler 

Main 
thread 

check for living 
child threads 

check group’s 
handler 



67 

Correctly Written Test 

public class Test extends TestCase { 
  public void testException() { 
    Thread t = new Thread() { 
      public void run() { /* child thread */ } 
    }; 
    t.start(); 
    t.join(); 
  } 
} 

Thread t = new Thread() { 
  public void run() { /* child thread */ } 
}; 
t.start(); 
t.join(); // wait until child thread has ended 

/* child thread */ 

Test 
thread 

Child 
thread 

end of 
test 

success!  Main 
thread 

check for living 
child threads 

check group’s 
handler 

*4 



68 

Changes to JUnit (3 of 3) 
•  Check if any child threads were not joined 
 
Reasoning: 
•  All child threads must terminate before test ends 
•  Without join() operation, a test may get “lucky” 
•  Require all child threads to be joined 



69 

Fork/Join Model 
•  Parent thread joins with each of its child 

threads 

•  May be too limited for a general-purpose 
programming language 

Child 
thread 1 

Child 
thread 2 

Main 
thread 



70 

Other Join Model Examples 
•  Chain of child threads guaranteed to 

outlive parent 
•  Main thread joins with last thread of chain 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

Child 
thread 3 



71 

Generalize to Join Graph 
•  Threads as nodes; edges to joined thread 
•  Test is well-formed as long as all threads 

are reachable from main thread 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

Child 
thread 3 

MT 

CT1 

CT2 

CT3 



72 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

MT 

CT1 

CT2 

Unreachable Nodes 
•  An unreachable node has not been joined 

– Child thread may outlive the test 



73 

child 
Thread 

main 
Thread 

MT 

CT 

Graph Construction: start() 
// in mainThread 
childThread.start(); 

 

•  Add node for childThread 



74 

// in mainThread 
childThread.join(); 

 

• When leaving join(), add edge from 
mainThread to childThread 

child 
Thread 

main 
Thread 

MT 

CT 

Graph Construction: join() 

*1 



75 

Modifying the Java Runtime 
•  Changing Thread.start()and join() 

– Need to modify Java Runtime Library 
– Utility to process user’s rt.jar file 
– Put new jar file on boot classpath: 
-Xbootclasspath/p:newrt.jar 

•  Still works without modified Thread class 
– Just does not emit “lucky” warnings 



76 

Implementation 
•  Thread methods can be modified 

–  Insert calls directly into Thread.class file 

class Thread { 
  public void start() { 
    RandomDelay.threadStartDelay(); 
    // ... 

  } 
} 



77 

Implementation (2) 
•  Object methods may not be modified 

– New methods can be inserted 
– Replace calls with calls to wrapper methods 
 
class Object { 
  public void waitWrapper() { 
    RandomDelay.objectWaitDelay(); 

    wait(); // call original 
  } 

} 
foo.waitWrapper(); // used to be foo.wait
(); 



78 

Implementation (3) 
•  MONITORENTER/MONITOREXIT 

–  Insert calls before the instructions 
•  Synchronized methods 

– Convert to unsynchronized method with 
synchronized block 

– Add exception handler to mimic automatic 
release of lock 

•  Access to volatiles 
–  Improvement using JSR/RET (JSR/RET 

deprecated) 



79 

Implementation (4) 
•  Access to volatile fields 

– Examine all GETFIELD/PUTFIELD/GETSTATIC/
PUTSTATIC instructions 

–  If referenced field is volatile, insert call 
before instruction  

–  Improvement using JSR/RET to reduce 
number of method calls and code bloat 
• JSR/RET deprecated 
•  Examine how try-finally will be compiled by 

future Java compilers 
•  Not implemented yet 



80 

Interactions between Delays 
• wait/notify 

– Delayed wait may cause a notify to be 
lost 

– Delayed wait/delayed notify may 
cancel each other out  

• MONITORENTER 
– Delayed MONITORENTER in one thread 

may give other thread preference 
– Delayed MONITORENTER in all threads may 

cancel out 
•  etc. 



81 

Minimize Cancellations 
•  Strategies to minimize destructive 

interference 
–  In one run, delay only wait; in the next run, 

delay only notify 
–  In one run, delay only MONITORENTER in 

threads with even ID number; in the next 
run, delay in threads with odd ID 

– etc. 
•  Cancellation effects and delay lengths 

need more investigation 



82 

Benchmarks 
•  Performance impact still needs to be 

measured 
•  Right balance probably application-

specific 
– More delays? 
– Faster execution? 



83 

Restrictions: Volatile (3) 
•  Soot MHP does not scale well (beyond 

toy examples) 
–  A simpler “may be accessed in 

Runnable” (=child thread or event thread)  
analysis may be sufficient 

•  Did not implement and test this 
–  Wanted to show that execution with 

random delays is effective, rather than 
improve an existing analysis 



84 

Limitations of Java Annotations 

•  Java does not allow the same 
annotation class to occur multiple times 

@OnlyThreadWithName("foo") 

@OnlyThreadWithName("bar") // error 

void testMethod() { … } 
 

•  Conjunctions, disjunctions and 
negations? 



85 

Subtyping for Annotations 
•  Let annotation extend a supertype? 
public @interface Invariant { } 
public @interface OnlyThreadWithName 
  extends Invariant { String name(); } 
public @interface And extends Invariant { 
  Invariant[] terms(); 

} 

 
•  Subtyping not allowed for annotations 

– Extended Annotations Java Compiler 
(xajavac) 



86 

Invariant Annotation Library 
•  @EventThread 
•  @ThreadWithName 
•  @DistinctArguments, @SameArguments 
•  @SynchronizedThis 
•  @SynchronizedArgument 
•  @Not, @And, @Or , etc. 
 
•  Subtyping reduced implementation size 

by a factor of 3 while making invariants 
more expressive 



87 

Java API Annotations 
•  Started to annotate Java API 

– 30 whole classes, 44 individual methods 
•  Community project at 

community.concutest.org 
– Suggest annotations and vote for them 
– Browse by class or annotation type 

•  Annotations can be extracted as XML 
– Share annotations 
– Add checks without needing source code 



88 

Logging Annotations 
•  Annotate test with methods that need to 

be logged 

@Log(@TheMethod(c=Foo.class, m="bar")) 

void testMethod() { … } 
 
 // "method literals" would be nice... 
@Log(@TheMethod(Foo.bar.method)) 
void testMethod() { … } 
 



89 

Log Implementations 
•  Naïve 

– Single synchronized map (methodsàcounts) 

•  Non-blocking 
– Single non-blocking (unsynchronized) map

(methodsàcounts) 
– Cliff Click’s Highly Scalable Java 



90 

Log Implementations (2) 
•  Per-thread 

– Non-blocking map (threadsà…) of 
unsynchronized maps (methodsàcounts) 

•  First, look up by current thread 
•  Then, look up by method  

–  Inner map can be unsynchronized because 
they are thread-specific 

– Outer map is non-blocking because 
modifications are rare (only for new thread) 



91 

Log Implementations (3) 
•  Fields 

– Primitive long field for each logged 
method in the log class 

–  Increment synchronized using log class 

void foo() { 
  synchronized(Log.class) { ++Log.fooCount; } 
  // ... 
} 



92 

Log Implementations (4) 
•  Local Fields 

– Primitive long field for each logged method 
in the class in which the method occurs 

–  Increment synchronized by containing class 
– Equivalent to hand-written logging  

public static volatile long fooCount = 0; 
void foo() { 
  synchronized(MyClass.class) { ++fooCount; } 
  // ... 
} 



93 

Log Implementation Notes  
•  “Naïve” easiest to implement 

•  “Fields” adds all fields to the log class 
– Easy to read 

•  “Local fields” most difficult to implement 
– Adds fields to all classes with logged 

methods 
– Fields are spread out, more difficult to read 

all counts to produce complete picture 



94 

Execution Log Benchmarks 



95 

Execution Log Benchmarks 



96 

Execution Log Benchmarks 



97 

Execution Log Benchmarks 



98 

Miscellaneous Contributions 



99 

Miscellaneous Contributions 
•  xajavac 

– Java Compiler with Extended Annotations 
(subtyping and multiple annotations) 

•  DrJava integration: make better tools 
available to beginners 
– ConcJUnit 
– xajavac  
–  Invariant Checker and Execution Logger 

will be integrated soon 
 



100 

Notes 



101 

public class Test extends TestCase { 
  public void testException() { 
    Thread t = new Thread(new Runnable() { 
      public void run() { 
        throw new RuntimeException("booh!"); 
      } 
    }); 
    t.start(); 
    while(t.isAlive()) { 
      try { t.join(); } 
      catch(InterruptedException ie) { } 
    } 
} } 

Thread t = new Thread(new Runnable() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 
}); 
t.start(); 
while(t.isAlive()) { 
  try { t.join(); } 
  catch(InterruptedException ie) { } 
} 

throw new RuntimeException("booh!"); 

Loop since 
join() may 
end spuriously 

 

Notes (1) 
1.  Only add edge if joined thread is really 

dead; do not add if join ended spuriously. ← 



102 

Notes (2) 
2.  Also cannot detect uncaught exceptions in a 

program’s uncaught exception handler 
(JLS limitation) ← 

3.  There are exceptions when a test may not 
have to be deterministic, but it should be 
probabilistic. Example: Data for some model 
is generated using a random number 
generator. ← 



103 

Notes (3) 
3.  Number of schedules, derived ← 

Product of s-combinations: 
For thread 1: choose s out of ts time slices 
For thread 2: choose s out of ts-s time slices 
… 
For thread t-1: choose s out of 2s time slices 
For thread t-1: choose s out of s time slices 

Writing s-combinations 
using factorial 

Cancel out terms in denominator and next numerator 

Left with (ts)! in numerator and t numerators with s! 



104 

Image Attribution 
1.  Image on Concurrency in Practice: 

Adapted from 
Brian Goetz et al. 2006, Addison Wesley 

2.  Image on Concurrency Practiced Badly: 
Caption Fridays 


