
1 

A Framework for Testing 
Concurrent Programs 

PhD Proposal 
Mathias Ricken 
Rice University 

December 2, 2010 



2 

Brian Goetz, Java Concurrency in Practice, Addison-Wesley, 2006 

Concurrency in Practice 



3 

Concurrency Practiced Badly 

Concurrent programming is difficult and not well 
supported by today’s tools. This framework simplifies the 
task of developing and debugging concurrent programs. 



4 

Contributions 
1.  Improved JUnit Framework 
2. Execution with Random Delays 
3. Program Restrictions to Simplify Testing 
4. Additional Tools for Testing 

a. Invariant Checker 
b. Execution Logger 

5. Miscellaneous 



5 

Unit Tests… 
• Occur early 
•  Automate testing 
•  Keep the shared repository clean 
•  Serve as documentation 
•  Prevent bugs from reoccurring 
•  Allow safe refactoring 

• Unfortunately not effective with multiple 
threads of control 



6 

Improvements to JUnit 



7 

Existing Testing Frameworks 

•  JUnit, TestNG 

• Don’t detect test failures in child threads 
• Don’t ensure that child threads terminate 

•  Tests that should fail may succeed 



8 

ConcJUnit 
•  Replacement for JUnit 

–  Backward compatible, just replace junit.jar file 

1. Detects failures in all threads 

2. Warns if child threads or tasks in the event 
thread outlive main thread 

3. Warns if child threads are not joined 

MS 

MS PhD 

PhD 



9 

Both tests 
fail. 

Sample JUnit Tests 

public class Test extends TestCase { 
  public void testException() { 
    throw new RuntimeException("booh!"); 
  } 

  public void testAssertion() { 
    assertEquals(0, 1); 

  } 

} 
if (0!=1) 
  throw new AssertionFailedError(); 

Both tests 
fail. 



10 

JUnit Test with Child Thread 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 

        throw new RuntimeException("booh!"); 
      } 

    }.start(); 

  } 

} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 

}.start(); 

throw new RuntimeException("booh!"); 

Main 
thread 

Child 
thread 

Main 
thread 

Child 
thread 

spawns 

uncaught! 

end of 
test 

success! 



11 

Changes to JUnit 
•  Check for living child threads after test ends 

Reasoning: 
•  Uncaught exceptions in all threads must cause 

failure 
•  If the test is declared a success before all child 

threads have ended, failures may go unnoticed 
•  Therefore, all child threads must terminate 

before test ends 



12 

Check for Living Threads 

public class Test extends TestCase { 
  public void testException() { 
    new Thread() { 
      public void run() { 

        throw new RuntimeException("booh!"); 
      } 

    }.start(); 

  } 

} 

new Thread() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 

}.start(); 

throw new RuntimeException("booh!"); 

Test 
thread 

Child 
thread 

uncaught! end of test 

failure!  

invokes 
group’s 
handler 

Main 
thread 

check for living 
child threads 

check group’s 
handler 



13 

Changes to JUnit (2) 
•  Check if any child threads were not joined 

Reasoning: 
•  All child threads must terminate before test ends 
•  Without join() operation, a test may get “lucky” 
•  Require all child threads to be joined 



14 

Fork/Join Model 
•  Parent thread joins with each of its child 

threads 

• May be too limited for a general-purpose 
programming language 

Child 
thread 1 

Child 
thread 2 

Main 
thread 



15 

Other Join Model Examples 
• Chain of child threads guaranteed to 

outlive parent 
• Main thread joins with last thread of chain 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

Child 
thread 3 



16 

Generalize to Join Graph 
•  Threads as nodes; edges to joined thread 
•  Test is well-formed as long as all threads 

are reachable from main thread 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

Child 
thread 3 

MT 

CT1 

CT2 

CT3 



17 

Child 
thread 1 

Child 
thread 2 

Main 
thread 

MT 

CT1 

CT2 

Unreachable Nodes 
•  An unreachable node has not been joined 

– Child thread may outlive the test 



18 

ConcJUnit Evaluation 
•  JFreeChart 

– All tests passed; tests are not concurrent 
• DrJava: 900 unit tests 

– Passed: 880 
– No join:     1 
– Lucky:    18 
– Timeout:     1 
– Runtime overhead: ~1 percent 



19 

ConcJUnit Limitations 
• Only checks chosen schedule 

– A different schedule may still fail 

•  Example: 

 Thread t = new Thread(…); 
if (nondeterministic()) t.join(); 

*2 



20 

Execution with Random Delays 



21 

Why Is This Necessary? 
• Nondeterminism 

– Tests may execute under different 
schedules, yielding different results 

– Example: nondeterministic join (see above) 
– Example: data race (multithreaded counter) 

int counter = 0; 
// in M threads concurrently 

for(int i=0; i<N; ++i) { ++counter; } 
// after join: counter == M*N? 



22 

Race-Free ≠ Deterministic 
• Race-free programs can still be 

nondeterministic 
final Object lock = new Object(); 
final Queue q = new ArrayList(); 

// in one thread 

... synchronized(lock) { q.add(0); } ... 
// in other thread 

... synchronized(lock) { q.add(1); } ... 

// after join: q = (0, 1) or (1, 0)? 



23 

Nondeterminism = Error? 
• Depends on the computation 

– If the queue (see previous example) was to 
contain {0, 1} in any order, then no error 

– If the queue was to contain (0, 1) in order, 
then error 

•  A unit test should be deterministic (with 
respect to thread scheduling) 
– Schedule should be considered an input 

parameter 
• Run test under all possible schedules? 

*3 



24 

Intractability 
• Comprehensive testing is intractable 
• Number of schedules (N) 

– t: # of threads, s: # of slices per thread 

• Can we still find many of the problems? 
*4 



25 

Previous Work: ConTest 
ConTest (Edelstein 2002) 
•  Programs seeded with calls to sleep, 
yield, or priority methods at 
synchronization events 

•  At runtime, random or coverage-based  
decision to execute seeded instructions 

• sleep performed best 
•  Problem: predates Java Memory Model 

(JMM), does not treat volatile fields 
correctly 



26 

Previous Work: rsTest 
rsTest (Stoller 2002) 
•  Similar to ConTest, but fewer seeds 

– Better classification of shared objects 
•  “Probabilistic completeness” 

– Non-zero probability rsTest will exhibit a 
defect, even if the scheduler on the test 
system normally prohibits it from occurring 

•  Problem: also predates the JMM, does 
not treat volatile fields correctly 



27 

Goal for Concutest 
•  Execution with random delays 

– Similar to ConTest 
– Cover all events relevant to 

synchronization, as specified by the JMM, 
i.e. particularly volatile fields 



28 

Synchronization Points 
• Thread.start (before) 
• Thread.exit (after) 
• Thread.join (before and after) 
• Object.notify/notifyAll (before) 
• Object.wait (before and after) 
• MONITORENTER (before) 
• MONITOREXIT (before) 
•  Synchronized methods changed to blocks 
•  Access to volatile fields (before) 



29 

Examples 
• Multithreaded counter 

– If counter is volatile 
• Multithreaded queue 
•  Early notify 
• Missing wait-notify synchronization 

(assume another thread completed) 

• Need more examples 



30 

Benchmarks 
•  Still to do 



31 

Program Restrictions 
to Simplify Testing 



32 

ConcJUnit 
• Child threads must be joined 

– Only way to ensure that all errors are 
detected 

•  Slight inconvenience 
– Keep track of child threads when they are 

created 

• ConcJUnit provides utilities for this 



33 

Shared Variables 
•  Shared variables must be either 

– consistently protected by a lock, or 
– volatile, or 
– final 

•  This can be checked using a race 
detector (e.g. Chord, Naik 2006; 
FastTrack, Flanagan 2009) 



34 

Volatile Variables 
•  Specify which volatile variables should 

be instrumented with random delays 
a.  Manually (e.g. “in all user classes” or “in 

classes in package xyz”) 
b.  Use static “may happen in parallel” (MHP)  

analysis (e.g. Soot MHP, Li 2005) 



35 

Additional Tools for Testing 



36 

Additional Tools for Testing 
1.  Annotations for Invariant Checking 

• Runtime warning if invariants for a method are 
not maintained 

• Annotations now support subtyping 

2.  Annotations for Execution Logging 

MS PhD 

PhD 



37 

Additional Tools for Testing: 
Annotations for Invariant Checking 



38 

Concurrency Invariants 
• Methods have to be called in event thread 

– TableModel, TreeModel 
• Method may not be called in event thread 

– invokeAndWait() 
• Must acquire readers/writers lock before 

methods are called 
– AbstractDocument 
– DrJava’s documents 

•  Invariants difficult to determine 



39 

Invariant Annotations 
•  Add invariants as annotations 

@NotEventThread 
public static void 
  invokeAndWait(Runnable r) { ... } 

•  Process class files 
– Find uses of annotations 
– Insert code to check invariants at method 

beginning 



40 

Advantages of Annotations 
•  Java language constructs 

– Syntax checked by compiler 
•  Easy to apply to part of the program 

– e.g. when compared to a type system change 
•  Light-weight 

– Negligible runtime impact if not debugging 
(only slightly bigger class files) 

– <1% when debugging 
•  Automatic Checking 



41 

Limitations of Java Annotations 

•  Java does not allow the same 
annotation class to occur multiple times 

@OnlyThreadWithName("foo") 

@OnlyThreadWithName("bar") // error 

void testMethod() { … } 

• Conjunctions, disjunctions and 
negations? 



42 

Subtyping for Annotations 
•  Let annotation extend a supertype? 
public @interface Invariant { } 
public @interface OnlyThreadWithName 
  extends Invariant { String name(); } 
public @interface And extends Invariant { 
  Invariant[] terms(); 

} 

•  Subtyping not allowed for annotations 
– Extended Annotations Java Compiler 

(xajavac) 



43 

Invariant Annotation Library 
• @EventThread 
• @ThreadWithName 
• @SynchronizedThis 
• @Not, @And, @Or  
•  etc. 

•  Subtyping reduced implementation size 
by a factor of 3 while making invariants 
more expressive 



44 

Additional Tools for Testing: 
Annotations for Execution Logging 



45 

Need for Execution Logging 
•  Tests need to check if code was 

executed 
•  Implementation options when no 

variable can be checked 
– Add flag to application code 
– Add flag to test code, add call from 

application code to test code 
•  Application and test code become 

tightly coupled 



46 

Logging Annotations 
•  Annotate test with methods that need to 

be logged 

@Log(@TheMethod(c=Foo.class, m="bar")) 

void testMethod() { … } 

•  Process class files 
– Find methods mentioned in annotations 
– Insert code to increment counter at method 

beginning 



47 

Logging Annotations (2) 
• Decouples application code from test 
•  Annotations with subtyping useful for 

logging too 

@Log(@And({ 

         @TheMethod(c=Foo.class, m="bar", 

                    subClasses=true), 

         @InFile("SomeFile.java") 

})) 

void testMethod() { … } 



48 

Log Benchmarks Setup 
• Different implementations 

– Naïve 
– Non-blocking 
– Per-thread 
– Fields 
– Local fields 

• Different numbers of threads (1-16) 



49 

Log Benchmarks Setup (2) 
•  Three different benchmarks 

– Tight loop 
– Outer loop 
– DrJava 

• subclasses of GlobalModelTestCase 

•  Expressed as factor of execution time 
with hand-written logging or no logging 
– 1.0 = no change 



50 

Execution Log Benchmarks 



51 

Execution Log Benchmarks 



52 

Log Benchmark Results 
•  “Local fields” performs best 

• Compared to hand-written logging 
– No slowdown 

• Compared to no logging 
– 10% to 50% slowdown in tight loop 
– ~1% slowdown in outer loop 
– No measurable slowdown in DrJava 



53 

Summary 



54 

Summary 
1.  Improved JUnit Framework 

•  Detects errors in all threads 
• Warns if child threads are still alive 

and errors could be missed 
• Warns if child threads ended on time, 

but not because they were joined 
•  Low overhead (~1%) 

 Much more robust unit tests 



55 

Summary (2) 
2. Execution with Random Delays 
•  Detects many types of concurrency 

defects 
•  Updated for the Java Memory Model 

(JMM) 

 Higher probability of finding defects 
usually obscured by scheduler 



56 

Summary (3) 
3. Program Restrictions to Simplify Testing 
•  Child threads in tests must be joined 
•  Shared variables must be consistently 

locked, volatile, or final 
•  Volatile variables to be instrumented 

must be listed 

 Restrictions are not prohibitive 



57 

Summary (4) 
4. Additional Tools for Testing 

•  Invariant Checker encodes and 
checks method invariants 

•  Execution Logger decouples tests 
and application code 

•  Low overhead (~1%) 

 Simpler to write good tests 



58 

Summary (5) 
5. Miscellaneous 

•  Subtyping for annotations useful, 
compatible with existing Java 

•  DrJava integration makes better 
tools available to beginners 

This framework simplifies the task of developing and 
debugging concurrent programs. 



59 

Still To Do 
•  Execution with random delays 

– More examples 
– Benchmark 
– Evaluate choice of delay lengths 

• Write, write, write 



60 

Acknowledgements 
I thank the following people for their support. 

•  My advisor 
– Corky Cartwright 

•  My committee members 
– Walid Taha 
– David Scott 
– Bill Scherer (MS) 

•  NSF, Texas ATP, Rice School of Engineering 
– For providing partial funding 



61 

Notes 



62 

public class Test extends TestCase { 
  public void testException() { 
    Thread t = new Thread(new Runnable() { 
      public void run() { 

        throw new RuntimeException("booh!"); 
      } 

    }); 

    t.start(); 

    while(t.isAlive()) { 
      try { t.join(); } 
      catch(InterruptedException ie) { } 
    } 

} } 

Thread t = new Thread(new Runnable() { 
  public void run() { 
    throw new RuntimeException("booh!"); 
  } 

}); 

t.start(); 

while(t.isAlive()) { 
  try { t.join(); } 
  catch(InterruptedException ie) { } 
} 

throw new RuntimeException("booh!"); 

Loop since 
join() may 
end spuriously 

Notes (1) 
1.  Only add edge if joined thread is really 

dead; do not add if join ended spuriously. ← 



63 

Notes (2) 
2.  Also cannot detect uncaught exceptions in a 

program’s uncaught exception handler 
(JLS limitation) ← 

3.  There are exceptions when a test may not 
have to be deterministic, but it should be 
probabilistic. Example: Data for some model 
is generated using a random number 
generator. ← 



64 

Notes (3) 
3. Number of schedules, derived ← 

Product of s-combinations: 
For thread 1: choose s out of ts time slices 
For thread 2: choose s out of ts-s time slices 
… 
For thread t-1: choose s out of 2s time slices 
For thread t-1: choose s out of s time slices 

Writing s-combinations 
using factorial 

Cancel out terms in denominator and next numerator 

Left with (ts)! in numerator and t numerators with s! 



65 

Image Attribution 
1.  Image on Concurrency in Practice: 

Adapted from Brian Goetz et al. 2006, Addison 
Wesley 

2.  Image on Concurrency Practiced Badly: 
Caption Fridays 


