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RECURSIVE PROGRAMS AS DEFINITIONS
IN FIRST ORDER LOGIC*

ROBERT CARTWRIGHTY

Abstract. Despite the reputed limitations of first order logic, it is easy to state and prove almost all
interesting properties of recursive programs within a simple first order theory, by using an approach we call
“first order programming logic”. Unlike higher order logics based on fixed-point induction, first order
programming logic is founded on deductive principles that are familiar to most programmers. Informal
structural induction arguments (such as termination proofs for LISP append, McCarthy’s 91-function, and
Ackermann’s function) have direct formalizations within the system.

The essential elements of first order programming logic are:

(1) The data domain D must be a finitely generated set that explicitly includes the “‘undefined”” object

L (representing nontermination) as well as ordinary data objects.

(2) Recursive programs over D are treated as logical definitions augmenting a first order theory of

the data domain.

(3) The interpretation of a recursive program is the least fixed-point of the functional corresponding

to the program.
Since the data domain D is a finitely generated set, the first order axiomatization of D includes a structural
induction axiom scheme. This axiom scheme serves as the fundamental “proof rule” of first order program-
ming logic.

The major limitation of first order programming logic is that every fixed-point of the functional
corresponding to a recursive program is an acceptable interpretation for the program. The logic fails to
capture the notion of least fixed-point. To overcome this limitation, we present a simple, effective procedure
for transforming an arbitrary recursive program into an equivalent recursive program that has a unique
fixed-point, yet retains the logical structure of the original. Given this transformation technique, it is our
experience that first order programming logic is sufficiently powerful to prove almost any property of
practical interest about the functions computed by recursive programs.

Key words. programming logic, recursive programs, recursive definitions, rewrite rules, semantics,
verification, program transformations

1. Introduction. It is a widely accepted part of computer science folklore that
first order logic is too limited a formalism for stating and proving the interesting
properties of recursive programs. Hitchcock and Park [16], for example, claim that
the termination (totality) of a recursively defined function on a data domain D cannot
be expressed by a sentence in a first order theory' of D augmented by the recursive
definition. As a result of this criticism, most researchers developing programming logics
for recursive programs have rejected first order logic in favor of more complex higher
order systems, e.g., Milner [19], [20], [21], Park [23], deBakker [11], Gordon et al.
[15], Scott and deBakker [25], Scott [26], deBakker and deRoever [12]. Nevertheless,
we will show that a properly chosen, axiomatizable first order theory is a natural
programming logic for recursive programs. In fact, we will present evidence which
suggests that first order logic may be a more appropriate formalism for reasoning
about specific recursive programs than higher order logics.
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! A brief synopsis of the important definitions from mathematical logic (such as theory) appears in the
next section.
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2. Logical preliminaries. As a foundation for the remainder of the paper, we
briefly summarize the important definitions and notational conventions of first order
logic. Readers who are unfamiliar with the fundamental concepts of first order predicate
calculus are encouraged to consult Enderton’s excellent introductory text [14].

In first order programming logic, recursive definitions are expressed within a
conventional first order logical language L with equality determined by a countable set
of function symbols G, a countable set of predicate symbols R, and an associated
“arity” function #:GU R > Nat (where Nat denotes the set of natural numbers)
specifying the arity # p (required number of arguments) for each function and predicate
symbol p. Nullary function symbols serve as constants. The function and predicate
symbols are the names of the primitive operations of the data domain. The first order
language L determined by G, R, and # contains two classes of strings: a set of terms
constructed from variables and function symbols G, and a set of formulas constructed
from predicate symbols {=} U R applied to terms (forming atomic formulas) and from
logical connectives {V, A, v, —} applied to simpler formulas. Each function and
predicate symbol p is constrained to take exactly # p arguments.

A context free grammar defining the (context free) syntax of terms and formulas
appears below.

(term) - (constant)|(variable) | (function-symbol) ({termlist))
(termlist) - (term) |{term), (termlist)

(atomic-formula) - (predicate-symbol) ((termlist)) |{term) = (term)
(formula) - (atomic-formula)| V(variable)(formula) | ~(formula)|
({formula) A (formula)) | ((formula) v (formula})

An occurrence of a variable v in a formula « is bound if the occurrence is contained
within a subformula of the form Vo8 or 3vB. An occurrence of a variable is free iff
it is not bound. Terms and formulas containing no occurrences of free variables are
called variable-free terms and sentences, respectively. Let a(x) denote a formula
possibly containing the variable x and let ¢ denote an arbitrary term. Then a(¢) denotes
the formula obtained from «(x) by replacing every free occurrence of x by .

The additional logical connectives {®, =, =, 3, 3!} are defined as abbreviations
for combinations of primitive connectives as follows

(a®B) abbreviates ((aA—B8)v(TaAB))
(a2B) abbreviates (—av )

(a=B) abbreviates ((@a2B)A (B> a))

Jva abbreviates —Vva

Alva(v)  abbreviates Jv(a(v) AVu(a(u)>u=1v))

where a and B denote arbitrary formulas and v denotes an arbitrary variable.

A formula with elided parentheses abbreviates the fully parenthesized formula
generated by giving unary connectives precedence over binary ones, ranking binary
connectives in order of decreasing precedence: {A}>{v,®}>{>} > {=}, and associat-
ing adjacent applications of connectives of equal precedence to the right. For the sake
of clarity, we will occasionally substitute square brackets {[, ]} for parentheses within
formulas. In place of a sentence, a formula a abbreviates the sentence Voa where
is a list of the free variables of a. Similarly, the forms Vx:pa and ¢:p, where p is a
unary predicate symbol, abbreviate the formulas Vx[p(x) © «] and p(t), respectively.

Let S denote a (possibly empty) set of function and predicate symbols (with
associated arities) not in the language L. Then LU S denotes the first order language
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determined by the function and predicate symbols of L augmented by S; LUS is
called an expansion of L.

Although logicians occasionally treat first order logic as a purely syntactic system
(the subject of proof theory), we are interested in what terms and formulas mean. The
meaning of a first order language L is formalized as follows. A structure M compatible
with L is a triple ((M|, Mg, Mg) where |M| (called the universe) is a set of (data)
values; Mg is a function mapping each function symbol g € G into a # g-ary function
on |M|; and Mg is a function mapping each predicate symbol re R into a #r-ary
predicate on |M|—a function mapping |M|*" into the set Tr of truth values
{TRUE, FALSE}. The universe |M| must be disjoint from Tr. Given a structure M
compatible with L and a state s (often called an interpretation function) mapping the
variables of L into |M|, every term in L denotes an object in [M| and every formula
denotes a truth value. The meaning of terms and formulas of L is defined by structural
induction in the obvious way; for a rigorous definition, consult Enderton’s text.

Let H be a subset of the function symbols of the first order language L. A structure
M compatible with the language L is called an H-term structure iff the universe |M|
consists of equivalence classes of variable-free terms in L constructed solely from the
function symbols in H. A structure compatible with L is finitely generated ift there
exists a finite subset H of the function symbols of L such that M is isomorphic to an
H-term structure.

Let M be a structure compatible with the language L and let S denote a set of
functions and predicates over |[M| interpreting a set S of function and predicate symbols
not in L. Then MU S denotes the structure consisting of M augmented by the functions
and predicates S; MUS is called an expansion of M.

In mathematical logic, it is often important to make a clear distinction between
a function symbol and its interpretation. To cope with this issue, we will use the
following notation. Function symbols appear in ordinary type and stand for themselves.
In contexts involving a single structure M, a function or predicate symbol p written
in boldface (p) denotes M¢(p) or Mg(p), the interpretation of p in M. In more general
contexts, M[p] denotes the interpretation of the symbol p in the structure M. Similarly,
M[a][s] denotes the meaning of the formula or term a in M under the state s. If «
is a variable-free term or a sentence, then its meaning in a structure is independent
of the particular choice of state s. In this case, the abbreviated notation M[{«] denotes
the meaning of & in M.

Let T be a set of sentences in the first order language L. A model of T is a
structure M compatible with L such that every sentence of T is TRUE in M. We say
that a structure M satisfies T or alternatively, that T is an axiomatization of M, iff M
is a model of T. The set of sentences T forms a theory iff it satisfies the following two
properties:

(i) Semantic consistency: there exists a model of T.

(ii) Closure under logical implication: every sentence that is TRUE in all models

of T is a member of T.

Given a structure M compatible with L, the set of sentences in L that are TRUE in
M (denoted Th M) obviously forms a theory; it is called the theory of M. Given an
arbitrary set A of sentences of L, the theory generated by A is the set of sentences
that are logically implied by A. A theory T is axiomatizable iff there exists a recursive
set of sentences A< T such that A generates T. In this case, the set of sentences A
is called an effective axiomatization of T.

A theory T typically has an intended model called the standard model. Any model
that is not isomorphic to the standard model is called a nonstandard model. Two
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structures compatible with the same language L are elementarily distinct iff there exists
a sentence S in L such that S is true in one structure but not in the other. A theory
is incomplete iff it has elementarily distinct models; otherwise, it is complete. For any
structure M, Th M is obviously complete.

Given a recursively enumerable set of axioms A, there is a mechanical procedure
for enumerating all of the sentences that are logically implied by A. A first order
deductive system I is a finite set of syntactic rules (often formulated as productions in
a phrase structure grammar) that generates a set of sentences from A. A proof of a
sentence a from A in the deductive system I' is simply its derivation in I" from A. A
deductive system I is sound iff every sentence derivable from an axiom set A is logically
implied by A. A deductive system I' is complete iff every sentence in the theory
generated by A is derivable (provable) in I' from A. A remarkable property of first
order logic is the existence of sound, complete deductive systems for arbitrary axiom
sets A. Higher order logics generally do not share this property.

There are many different ways to formulate a sound, complete deductive system
for first order logic. Two approaches that are well known to computer scientists are
resolution and Gentzen natural deduction [17]. Of course, every first order deductive
system that is sound and complete derives exactly the same set of sentences. In this
paper, we will leave the choice of deductive system unspecified, since we are not
interested in the syntactic details of formal proofs. In our examples, we will present
proofs in informal (yet rigorous) terms that readily translate into formal proofs in a
Gentzen natural deduction system.

Let A and B be two structures compatible with the languages L, and Lp,
respectively, where L, < Lg (i.e., Lp is an expansion of L,). B is an extension of A
iff |B|=2|A| and every operation (function or predicate) of A is the restriction of the
corresponding operation of B to |A|. If |B| is identical to |A|, then B is obviously an
expansion of A. Otherwise, | B| properly contains |A|, and B is called a proper extension
of A.

Let S={s;,---,s,} be a finite set of function and predicate symbols not in the
language L,. A definition for S over the structure A is a collection of sentences A in
the language L, U S such that A can be expanded—Dby adding interpretations for the
new function and predicate symbols in S—to a model for A. An unambiguous definition
for S over A is a definition that determines a unique expansion of A.

A formula a(xy,---,x.) in L, defines the k-ary predicate v in A iff «
contains no free variables other than x;,---,x; and for all states s over |A|,
Ala(xy, -+, x)s]=r(s(xy), - - -, s(xi)). Similarly, a formula a(x;, -+, X, y) in L,
defines the k-ary function g in A iff a contains no free variables other than x,, - -, x;
and for all states s over |A|, Ala(xy,: -+, X, y)[s]1=TRUE iff g(s(x,), - - -, s(x)) =
s(y). A set S={sy, - -, 8.} of predicates and functions interpreting the symbols S is
definable in A iff there exist formulas a4, - * *, a, defining sy, - - -, 8, respectively.

Let T be a semantically consistent set of sentences in the language L, and let A
be a model of T. A definition for S augmenting T is a collection of sentences A in the
language L, U S such that every model of T can be expanded—by adding interpreta-
tions for the new function and predicate symbols in S—to a model for TUA. An
unambiguous definition for S augmenting T is a definition that determines a unique
expansion in every model of T. Note that a definition for S over a model of T is not
necessarily a definition augmenting 7. Similarly, an unambiguous definition for S over
a model of T is not necessarily an unambiguous definition augmenting T.

AsetS={sy," - -,s,} of predicates and functions over |A| interpreting the symbols
S is implicitly definable in the theory generated by T iff there an unambiguous definition
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A for S augmenting T such that S is interpretation of S determined by A in the
structure A. The set S is explicitly definable in T iff there exists a set of formulas
ay, ', a, in Ly, defining sy, - -+, 8, respectively, in A. One of the most important
results in the theory of definitions, Beth’s Definability Theorem [2], asserts that a set
S of functions and predicates over |A| is implicitly definable in T iff it is explicitly
definable in T. Hence, we are justified in dropping the modifiers ‘““implicitly” and
“explicitly” when discussing the issue of definability in a theory.

In first order programming logic, we formalize data domains as structures in first
order logic. In this context, a recursive program is simply a particular form of logical
definition over the data domain. Before proceeding with the development of the formal
theory, we will first examine and refute a widely accepted argument asserting that first
order logic is incapable of expressing and proving that functions defined in recursive
programs are total.

3. Hitchcock and Park’s critique of first order logic. As motivation for developing
a higher order logic for reasoning about recursive programs, Hitchcock and Park [16]
claim that first order logic is too weak to express and prove that the functions defined
in a recursive program are total. As justification, they consider the following recursive
program over the natural numbers:

(1) zero (n) =IF n =0 THEN 0 ELSE zero (n—1)

where IF-THEN-ELSE is interpreted as a logical connective (as in reference [17]).
This program (1) can be expressed within the usual language of first order number
theory (eliminating the special IF-THEN-ELSE connective) by the sentence:

(2) Vn[(n=0>zero (n)=0) A (n#0>zero (n)=zero(n—1))].

While they concede that it is very easy to prove informally by induction that the zero
function is total on the natural numbers they claim that no sentence provable in a first
order theory of the natural numbers augmented by (2) can state that zero is total. To
justify this claim, they propose the following argument.

Let N denote the structure consisting of the natural numbers, the constants (0-ary
functions) {0, 1}, the binary functions {+, X, —} and the binary predicates {=, <}. By
the upward Lowenheim-Skolem theorem, the theory (set of true sentences) of N has
a nonstandard model N that is a proper extension of N. The additional objects in the
universe |N| are “nonstandard” natural numbers that are greater than all standard
integers (the elements of the universe |N|). Hitchcock and Park assert that the recursive
definition for zero obviously does not terminate for all elements of |N/|, since the
nonstandard numbers in this model have infinitely many predecessors. Given this
assertion, no sentence 6 provable in a first order theory for N can state zero is total
since # must be true in N.

The flaw in Hitchcock and Park’s analysis is their assumption that the interpretation
of the function symbol zero in a nonstandard model must be obtained by applying
standard computation (reduction) rules to (1). In the theory of program schemes [15],
where the concept of program execution is embedded in the formalism (just as the
meaning of logical connectives such as A and v is embedded in first order logic), this
point of view makes sense. But in first order logic, there is no notion of execution
constraining the interpretation of recursively defined functions. Recursive definitions
are simply equations that introduce new function symbols; they do not necessarily
have a computational interpretation. In fact, they may have no interpretation at all
(see example (4) below). In first order programming logic, we prevent potential
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inconsistencies by restricting logical theories to a form that guarantees that arbitrary
recursive definitions have computational interpretations in the standard model.

We can gain additional insight into the difference between first order logic and
the theory of program schemes by examining Hitchcock and Park’s example in more
detail. Let A be the standard first order Peano axiomatization for the natural numbers
including an axiom scheme expressing the induction principle (such an axiomatization
appears in Appendix I). Given A and the recursive definition of zero, we can easily
prove the sentence

(3) Vn[zero (n) =0]

by induction on n’. Both the base case and induction step are trivial consequences of
(2). Consequently, the function zero defined by (2) is identically zero in every model
of A—including N. Furthermore, since the models of A do not contain an object
(usually denoted L) representing a divergent computation,® all of them must, by
definition, interpret every function symbol by a (total) function on the universe of the
model (the set of standard or nonstandard natural numbers). Hence, no recursion
equation augmenting A can define a nontotal function in any model of A. For the
same reason, some recursion equations such as

@ f»=fx)+1

define no function at all because they are inconsistent with the original theory.

The situation is more interesting if we start with an axiomatization of the structure
N* consisting of N augmented by the undefined object L, instead of an axiomatization
for N. In this case, the interpretation for a function symbol f may be partial in the
sense that it maps some elements of the data domain into L. Note that L is an ordinary
constant which is forced by the axiomatization to behave like a ‘“‘divergent” or
“undefined” data object. It is not a new logical primitive.

Within the first-order language for N*, we can assert that f is total on |[N| by
simply stating

Vxl""7xn[(x1;£-L)A“'A(xn¢-L):)f(x1""7xn)7£-L]‘

Let A* be an axiomatization (including an induction axiom scheme) for N* analogous
to Peano’s axioms (in first order form) for N. A suitable formulation of A" appears
in Appendix I. Given A™ and the recursive definition (2), we can easily establish that
the zero function is total on |N| by proving the sentence

Vn[n# 1L >zero(n)# 1].

The proof (which appears in Appendix II) is a direct translation of the informal
structural induction proof that Hitchcock and Park cite in their paper. Consequently,
we are forced to conclude that a careful analysis of Hitchcock and Park’s example
actually supports the thesis that the totality of recursively defined functions can be
naturally expressed and proven within first order logic. We will rigorously establish
this result in the next section.

4. Basic concepts of first order programming logic. As we suggested in the
previous section, the undefined object L plays a crucial role in first order programming

2 Note that adding new function symbols to L implicitly augments A by additional instances of the
induction axiom scheme (containing the new symbols).

3 No object in any model of A—including those within nonstandard integers—has the same properties
as the divergent object L. For instance, successor (L) =1, yet in any model of A, Vx successor (x) # x.
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logic, just as it does in higher order logics such as LCF [15], [19], [20], [21]. If we fail
to include the undefined object L in the data domain, recursive definitions like

f(x)=f(x)+1

on the natural numbers N are inconsistent with the axiomatization of the domain; the
interpretation of f must be a (total) function on the natural numbers, yet no such
function exists.

Consequently, first order programming logic imposes certain constraints on the
data domain (and hence on any corresponding theory). In particular, the program data
domain must be continuous. The following collection of definitions defines this property
and several related concepts.

DEFINITION. A complete partial ordering = on a set S is a binary relation over S
such that:

(i) < isa partial ordering on S (a reflexive, antisymmetric, and transitive relation
on S).
(ii) The set S contains a least element L (under the partial ordering <).
(iii) Every chain (denumerable sequence ordered by <) xo= x; = x,<--- has a
least upper bound.
A set S with a corresponding complete partial ordering < is called a complete partial
order (abbreviated cpo); the partial ordering < is called the approximation ordering
for S.

DEerINITION. Given cpo’s A and B, a function f: A > B is continuous iff the image
of an arbitrary chain X =x,< x, = x,< - in A is a chain in B and the image of the
least upper bound of X is the least upper bound of the chain image.

There are two standard methods for building composite cpo’s from simpler ones.
First, given the cpo’s A;,- -, A,, under the approximation orderings S, -, S,
respectively, the Cartesian product A, XX A, forms a cpo under the ordering <
defined by

rcy= A [xsiyl

1=i=n
Second, given the cpo A under < 4 and the cpo B under <p, the set of continuous
functions mapping A into B forms a cpo under the ordering < defined by

g h=VYiec Alg(%) < sh()].

DEeFINITION. A structure D including the constant L is continuous under the binary
relation < on |D| iff | D| forms a complete partial order under < and every function
f:|D|*/ > |D| in D is continuous.

DerINITION. Given a continuous data domain D compatible with the language
L determined by the function symbols G and the predicate symbols R, a recursive
program P over |D| has the form:

{fl(-fl) =1, f2(-f2) =t 7fn(xn) = tn}
where n>0; the set F of function symbols {f;, f>,- - -, f,} is disjoint from GU R;

Xy, Xy, + -+, X, are lists of variables; and ¢, t,, - - - , #, are terms in the language L, U F
such that each term ¢ contains no variables other than those in X%. The intended
meaning of the n-tuple of function symbols [ fi, - - -, f,,] introduced in the program P

is the least fixed-point of the functional
P=Af17' c ’fn'[Axl Tl AX, tn]

corresponding to P.
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By Kleene’s recursion theorem (most broadly formulated by Tarski [27]), P must
have a least fixed-point [f,, - - -, f,], because it is a continuous mapping from the
cpo(|D|*/1>|D|) % - - X (|D|*» - | D)) into itself. A proof that P is continuous can be
found in either Cadiou [5] or Vuillemin [28].

Although continuity ensures that recursive programs are well-defined, it does not
guarantee that they can be implemented on a machine. For this reason, program data
domains typically satisfy several additional constraints which we lump together under
the label arithmeticity. The most important difference between an arithmetic domain
and a continuous domain is that the former must be finitely generated. First order
programming logic critically depends on this property, because it presumes that the
domain obeys the principle of structural induction. The remaining properties that
distinguish arithmetic domains from continuous ones (items (i) and (iii) in the definition
below) are not essential; they are included solely to simplify the exposition.

DEFINITION. A structure D is flat iff it is continuous under the binary relation <
defined by the identity

acb=[a=bva=1].

DEFINITION. A continuous function f:A;X---XA, >B is strict iff
f(xy, -+, x,) =L when any argument x; = L.

DEerInNITION. Let D be a data domain (structure) compatible with the language
L, determined by the function symbols G and the predicate symbols R. D is an
arithmetic domain ift it satisfies the following three properties:

(i) D is flat.

(i) D is finitely generated. Hence, every element d € |D| has at least one name
consisting of a variable-free term « such that D[ a]= d. Note that the finite generation
property implies that D obeys induction on the structure of names (often called
“structural induction” or ‘‘generator induction”). We can formulate this principle as
follows. Let Gen={g;, - - -, gx} denote a minimal subset of G (the function symbols
of L) that generates |D|. Generator induction asserts that for every unary predicate
©(x) over D,

(*) [1 /\ . be Y x#gi[‘P(xl) A A‘p(x#g,-) D‘P(gi(xh T x#g,»))]] oVx (P(JC)
=i=

In the literature on programming languages, the generator symbols Gen are often
called constructors. Note that a minimal set of generators Gen for a domain D is not
necessarily unique.

(iii) The set of functions G includes the constants {true, false} and the special
function if-then-else which partitions |D| into three nonempty disjoint subsets Di,,c,
D1, D, such that

truec D,

false € Dy,

1leD,

if pthen o else B =« if pe Dy,
if p then « else 8 = B if p€ Dy,
ifpthenaelse = 1lifpeD,.

All functions in G other than if-then-else must be strict.

With the exception of the induction principle (*) appearing in property (ii), the
preceding list of conditions on D can be formally expressed by a finite set of sentences
in the language Lj. The induction principle (*) cannot be expressed in L, because it
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asserts that induction holds for all unary predicates—an uncountable set with many
members that cannot be defined within L, We will explore this issue in depth in § 7.

Fortunately, confining our attention to arithmetic data domains does not sig-
nificantly limit the applicability of first order programming logic. With the exception
of domains including an extensional treatment of higher order data objects (such as
functions), the data domain of any plausible recursive programming language has a
natural formalization as an arithmetic structure. At the end of this section, we will
discuss how to extend an arbitrary, finitely generated domain D excluding L to form
an arithmetic domain D’ with universe |D|U{L}.

Before we state and prove the fundamental theorem of first order programming
logic, we must resolve a subtle issue concerning the status of induction in arithmetic
domains that are augmented by definitions. Formalizing induction in first order logic
requires an axiom scheme: a template with a free formula parameter. The scheme
represents the infinite recursive set of sentences consisting of all possible instantiations
of the template. Let D be a structure that is finitely generated by the function symbols
Gen={g, " -+, g&/}. Obviously, the corresponding induction principle (*) holds in D.
In a first order axiomatization Ap for D, we typically include the following axiom
scheme formalizing the induction principle (*)

(**) [ A Vxl,-“,x#gi[so(xl)A---Atp(x#gi)Dcp(gl(xl,---,x#gi))]] SVxe(x)
1=isk

where ¢(x) is an arbitrary formula in L, defining a unary predicate. The scheme
asserts that structural induction holds for every definable unary predicate in the domain.
Any structure satisfying the structural induction scheme (**) is called an inductive
domain with generator set Gen. The only difference between an inductive domain and
a finitely generated domain is that induction may fail in an inductive domain for
predicates that are not definable.

When we augment a finitely generated domain D by a definition A introducing
new function and predicate symbols S, how should we interpret the induction scheme?
Does the formula parameter in the scheme range over formulas in the augmented
language or formulas in the original language? Assuming that we are interested in
constructing the strongest possible theory for the expanded structure, the answer to
the question is clear. Since the universe of the expanded structure is identical to the
universe of the original domain, the induction scheme must hold for all predicates that
are definable in the expanded structure (using the augmented language). Consequently,
we follow the convention that a definition A over a finitely generated domain D
implicitly includes all of the new instances of the structural induction scheme (**) for
D corresponding to the language extension. In this context, Ap UA denotes the set
of axioms containing Ap, A, and all new instances of the induction scheme (**). For
reasons that will become clear when we discuss nonstandard models, we follow exactly
the same convention for definitions over inductive domains: a definition A over an
inductive domain D implicitly includes all new instances of the induction scheme (**)
for D. To emphasize this convention, we will use the term arithmetic definition to refer
to any definition that implicitly includes new instances of the corresponding induction
scheme.

THEOREM (fundamental theorem). Let P be a recursive program

{fl(xl) = tl: f2(x.2) = t2, e ’fn(in) = tn}

over an arithmetic domain D, and let F denote the least fixed-point of the functional of
P. Then P is an arithmetic definition over D satisfying the model DUF.
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Proof. By Kleene’s recursion theorem [27], the functional for P has a least
fixed-point F=[f;, - - -, f,]. Hence,

1</i\<n =A% t],
where t; denotes the interpretation of ¢; given that the primitive function symbols in
t; are interpreted by the corresponding functions in D and the function symbols
fi,* -+, fo.areinterpreted by fy, - - -, f,, respectively. This fact can be restated in the form

1</.~\<n D[ f(%)[s]=D1[s]s],
where D7 denotes the structure DUF, and s is an arbitrary state over |D7|. Since the
universe |D7| is identical to the universe | D], the induction principle (*) holds for all
unary predicates ¢(x) over |Di| including those defined by formulas in LU
{fi, +,f.}. Hence, Dt is a model for PU (**) extending D. O

This theorem formally establishes that we can interpret recursive programs as
definitions in first order logic. Consequently, given a recursive program P over an
arithmetic domain D, we can prove properties of P by applying ordinary first order
deduction to a suitable first order axiomatization Ap of D (including the structural
induction scheme (**) for D) augmented by the equations in P (which are simply first
order formulas). Using this approach, we can prove almost any property of practical
importance about P, including totality. Most proofs strongly rely on structural induction.

A minor impediment to the practical application of first order programming logic
is the fact that most axiomatizations appearing in the literature (e.g., the first order
formulation of Peano’s axioms) specify domains that exclude the special object L. In
structures that are not specifically intended to serve as domains for computation, an
object representing a divergent computation is superfluous.

Fortunately, it is easy to transform a first order axiomatization Ap for a finitely
generated data domain D that excludes L into an axiomatization A}, for a correspond-
ing arithmetic domain D’ that includes L. Although the syntactic details of the
transformation are beyond the scope of this paper, the main features warrant discussion.
The transformation breaks down into three parts.

First, to satisfy the continuity property required by Kleene’s theorem, the transfor-
mation designates two distinct elements of |D| as the constants {true, false}, adds the
undefined object L to |D|, and replaces the computable predicates of D (those that
can appear in program text) of the data domain by corresponding strict boolean
functions.

Second, the transformation extends each primitive function g in D to its strict
analog over DU {L}. Specifically, for each axiom in the original set Ap, the transforma-
tion generates a corresponding axiom with restrictive hypotheses that prevent variables
from assuming the value L. The transformation also generates new axioms asserting
that each function g is strict.

Third, to accommodate nontrivial recursive definitions, the transformation adds
the standard ternary conditional function if-then-else to the collection of primitive
functions. While if-then-else is not strict (since if true then x else L = x), it is continuous.
Without if-then-else, every recursive function definition (that actually utilizes recur-
sion) diverges for all inputs, because all the other primitive functions are strict.

The new data domain D’ retains the structure of the original one, yet it is clearly
an arithmetic domain. Appendix I presents a sample axiomatization for a data domain
(the natural numbers) that does not include L and transforms it into one for an
arithmetic domain that does.
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5. A sample proof. As an illustration of the utility of first order programming
logic, consider the following simple example. Let flat and flatl be recursively defined
functions over the domain of LISP S-expressions defined by the following equations:

flat (x) =flatl (x, NIL)
flatl (x, y) =if atom x then cons (x, y) else flatl (car x, flatl (cdr x, y)).

The function flat returns a linear “‘in-order” list of the atoms appearing in the
S-expression x. For example

flat[(A-B)]  =(AB),
flat[(A- (B- A))]=(A BA),
flat[(A)] =(A),

flat[((A- C) - B)]=(A CB).

We want to prove that flatl (x, y) terminates for arbitrary S-expressions x and y
(obviously implying flat (x) is total for all S-expressions x). In the theory of S-
expressions augmented by {1}, we can formally state and prove this property in the
following way, given that Sexpr (x) abbreviates the formula x # L.

THEOREM. Vx, y:Sexpr [flatl (x, y): Sexpr].

Proof. We prove the theorem by structural induction on x.

Basis: x is an atom.
Simplifying flatl (x, y) yields cons (x, y) which must be an S-expression since x and y
are S-expressions.

Induction step: x has the form cons (hd, tI) where hd:Sexpr and tl: Sexpr.
Given the hypotheses

(a) Vy:Sexpr[flatl (hd, y):Sexpr], and
(b) Vy:Sexpr[flatl (tl, y):Sexpr],

we must show

Vy:Sexpr [flatl (cons (hd, tl), y) : Sexpr].
Since hd, tl, and y are S-expressions,

flat1 (cons (hd, tl), y) =flatl (hd, flat1 (tl, y)).

By induction hypothesis (a), flatl (tl, y) is an S-expression. Given this fact, we
immediately deduce by induction hypothesis (b) that flatl (hd, flat (tl, y)) is an
S-expression. 0O

Some additional examples appear in Appendix II.

6. Computations in first order programming logic. Although we have shown that
recursive programs can be interpreted as definitions over an arithmetic data domain,
we have not yet established that there is a plausible definition of computation that is
consistent with our logical interpretation. Since conventional first order logic does not
include any notion of computation (proof is the closest analogue), we must invent one
specifically for first order programming logic. Fortunately, there is a simple syntactic
definition of the concept based on ‘“‘term rewriting systems’’ that makes sense in the
context of first order logic. The critical idea is that computation is a uniform (possibly
nonterminating) procedure for transforming a variable-free term into its meaning* in
the standard model using ordinary first order deduction.

#More precisely, into a “canonical” term denoting its meaning.
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Term rewriting systems for recursive programs have been extensively investigated
by Cadiou [4], Vuillemin [28],[29], Rosen [24], Downey and Sethi[13], and O’Donnell
[22], but not in the context of first order theories of program data. The following
formulation of first order computation is a distillation and adaptation of the work of
Cadiou [5] and Vuillemin [28], [29] recast in the terminology of first order logic.

DEFINITION. A structure D with function set G is effective iff it satisfies the
following two conditions:

(i) Every element d € |D| has a unique canonical name can (d) that is a variable-
free term denoting d in the first order language L, excluding if-then-else. For simplicity,
we require that can (L) be L. In addition, the set of canonical names must be a recursive
subset of the set of all variable-free terms in Lp.

(ii) The graph of every function g in G is recursive, given that we denote objects
of the universe |D| by their canonical names.

All data domains in conventional programming languages satisfy these constraints.

DEFINITION. Let P be an arbitrary recursive program over an effective, arithmetic
domain D defining the function symbols F={f;,- - -, f,}, and let Ly be the language
Ly UF. A set ® of productions (or rewrite rules) over Lp is a set of ordered pairs u - v
where u and v are variable-free terms of Lp. Let Y denote the set of left-hand sides
of ®: {ulu~ ve ®}. ® is effective iff the following three conditions hold.

(i) Every left-hand side in Y corresponds to a unique production in ®.

(ii) Y is a recursive subset of Lp.

(iii) Every noncanonical variable-free term ¢ in Lp contains a subterm in Y.

DEerINITION. Let @ be an effective set of productions in the language Lp. Given
an arbitrary variable-free term ¢ in Lp, the ®-reduction of t is the countable (finite or
infinite) sequence of variable-free terms 7=1ty,- - -, t, ' - - such that t,=t¢, each term
t; has a successor if and only if it is noncanonical, and each successor term f.; is
generated from its predecessor ¢ by locating the left-most subterm that matches a
left-hand side of some production « in ® and replacing it by the right-hand side of
a. The result of a reduction 7 is the meaning in D of the last term ¢’ of 7 (D[¢']) if 7
is finite and L otherwise.

Remark. A reduction 7 is finite iff the last term in 7 is a canonical name.

6.1. Call-by-name computation. The reduction scheme that directly corresponds
with the logical meaning of recursive programs (as defined in § 4) is called call-by-name
computation.

DEerFINITION. Let Lp be the first order language corresponding to an effective,
arithmetic domain D augmented by a recursive program P defining the function symbols
F={fy, -, f.}. The call-by-name production set ®p for P is the set DU U D,
where @, @, and ®;; are defined as follows.

(i) @ is the set of productions

{g(¢) > v|g € G-{if-then-else}; ¢ is a # g-tuple of canonical names;
v is the canonical name for g(¢)}
where G denotes the set of primitive functions of D. Since D is an effective domain,

® is a recursive set.
(ii) @y is the set of productions

{if ¢t then u else v->u|tecan (Dy,.); 4, v are variable-free terms in Lp}U
{if ¢ then u else v-> v|tecan (Dyye); U, v are variable-free terms in Lp}U
{if t then u else v~ L|tecan(D,); u, v are variable-free terms in Lp}

where can (S) stands for {y,|7v. is the canonical name for an element d e S}. o
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specifies how to reduce conditional expressions where the first argument (the Boolean
test) is in canonical form. It is clearly recursive.
(iii) @ is the set of productions

{fi(@)~ t,(@)|f(X)=t(X)e P; i@ is a #f--tuple of variable-free terms in Lp}

specifying how to expand an arbitrary function application.

LEMMA. ®p is effective.

Proof. Immediate from the definition of ®, and the fact that D is effective. The
proofs of conditions (i) and (ii) are trivial. Condition (iii) is a routine induction on the
structure of terms. 0O

DEFINITION. The call-by-name computation (with respect to the program P) for
a variable-free term ¢ in Lp is the ®p-reduction of ¢

The following theorem establishes that call-by-name computation transforms
variable-free terms in Lp into their meanings in the structure DUF.

THEOREM. Let D be an effective, arithmetic domain, and let P be an arbitrary
recursive program over D defining function symbols F. For every variable-free term t in
Lp, the result of the call-by-name computation for t with respect to P is identical to
DUF [t] where F denotes the least fixed-point of the functional P for P.

Proof. See reference [9]. It is a straightforward but tedious induction on an
appropriate measure of the complexity of the term ¢. 0O

6.2. Call-by-value computation. Up to this point, we have confined our attention
to program semantics consistent with call-by-name computation. However, most prac-
tical programming languages (e.g., LISP, PASCAL, C) employ call-by-value computa-
tion which has slightly different semantics. Call-by-value computation is identical to
call-by-name computation, except for the productions concerning the expansion of
program functions F.

DEerINITION. Let Lp be the first order language corresponding to an effective,
arithmetic domain D augmented by a recursive program P defining the function symbols
F={fi,- -+, f.}. The call-by-value production set ®p_for P is the set &5 U P UD;
where ®; and ®; are defined exactly as they are in call-by-name computation, and
®f is defined as the set of productions

{fi(e)~> ()| f(X)=t;(X) € P; C is a #f-tuple of
canonical terms excluding can (1)}.

LEMMA. ®p is effective.

Proof. Immediate from the definition of effective production set. [

DErFINITION. The call-by-value computation (with respect to program P) for a
variable-free term ¢ in Lp is the ®p -reduction of .

The main consequence of this change is that an application of a program function
fi is not expanded until all the arguments are reduced to canonical form. Fortunately,
there is a simple semantic relationship between call-by-value and call-by-name compu-
tations. In fact, it is trivial to transform a program P into a slightly different program
P,—<called the strict transform of P—such that the call-by-name meaning of P, is
identical to the call-by-value meaning of P.

DerINITION. Let P be an arbitrary recursive program

{fl(xl) =l 9fn(xn) = tn}
over an arithmetic domain D. The strict transform P, corresponding to P is the program

{fi(x) =if 8(x,) then ¢, else L, - -, f.(X,) =if 8(X,) then ¢, else L}
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where § is the primitive “‘is-defined” function® such that:

true if LZX,
L otherwise.

6(fi)={

Given this transformation, the call-by-value functional P for P is simply the (call-by-
name) functional for P,:

Afi, oo, for [AXy-if 8(X;) then ¢; else L, -+, A%, if §(X,) then ¢, else L].

The following theorem establishes that call-by-value computation transforms
variable-free terms ¢ in Lp into meanings in the expansion of D determined by the
functional P,.

THEOREM. Let D be an effective, arithmetic domain, and let P be an arbitrary
recursive program over D defining the function symbols F. For every variable-free term
t in Lp, the result of the call-by-value computation for t is identical to DUF [t] where
F denotes the least fixed-point of the call-by-value functional P for P.

Proof. A proof of this theorem, an induction on the complexity of ¢, appears in
[9]; proofs of similar theorems appear in [4] and [26]. O

To avoid confusion between the call-by-name and call-by-value interpretations
for recursive programs, we will use the following terminology. Unless we specifically
use the qualifier ““call-by-value”, the intended meaning of a program P defining the
function symbols F is the least fixed-point of the (call-by-name) functional P for
P—the call-by-name interpretation for F. In contrast, the intended meaning of a
call-by-value program P is the least fixed-point of the call-by-value functional P, for
P—the call-by-value interpretation for F.

6.3. Proving properties of call-by-value programs. Since it is trivial to translate
call-by-value recursive programs into equivalent (call-by-name) recursive programs,
first order programming logic obviously accommodates call-by-value semantics. Given
a first order axiomatization Ap, for the domain D and a call-by-value recursive program
P over D, we augment Ap by the recursion equations P, and the definition of the
function &

[x# L>8(x)=true]a é(L)=1.

A logically equivalent but conceptually simpler approach is to directly augment Ap
by a set of axioms P,, characterizing P; it eliminates the function 8 and the construction
of the strict transform P,. In the direct approach, each function definition

filx)=4
in the original program P, generates two axioms

xi¢J_A-"Ax#,ci#J.Dﬁ()Zi)=ti,
x,'=J.V"'Vx#fl.=J_Df,'(.f,')=.L

defining f in P,,. Note that P,, and P, are logically equivalent sets of formulas. A
proof that the expanded domain DUF, where F denotes the least fixed-point of the
call-by-value functional P, is a model for the augmented axiomatization Ap U P,
appears in reference [7].

Call-by-value programs are an attractive alternative to call-by-name programs
because they are easier to implement and programmers seem more comfortable with

% Technically, & is a countable family of functions 3,,, m=1, 2, - - where 8, is the m-ary version of
the “is-defined” function. It should be obvious from context which instance of 8 is required.
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their semantics. In addition, we will show in § 8 and Appendices III and IV that the
complete recursive program corresponding to an arbitrary call-by-value program is
easier to describe and understand than the equivalent construction for a call-by-name
program.

7. Metamathematics of first order programming logic. Although the fundamental
theorem of first order programming logic clearly establishes that recursive programs
are arithmetic definitions over an arithmetic domain D, it ignores two important issues.
First, can recursive programs be ambiguous (as definitions over the domain D)? Second,
do recursive programs have a plausible interpretation in nonstandard models (of a
first order theory for D)?

The answer to the first question is significant. In fact, it motivates one of the major
technical results of this paper: the complete recursive program construction. Assume
that we are given a recursive program P over the domain D defining the function
symbols F={f;,- -, f,}. If we augment D by any fixed-point F of the functional P
for P, the expanded structure DUF is a model for PU (**). Interpreting P as an
arithmetic definition for F over D captures the fact that F is a fixed-point of P, but
not the fact that it is the least fixed-point.

What are the implications of this form of incompleteness? If every function in the
least fixed-point of the functional for P is total, the problem does not arise because
the least fixed-point is the only fixed-point. On the other hand, if some function in
the least fixed-point is partial, there may or may not be additional fixed-points. In the
former case, we cannot prove any property of the least fixed-point that does not hold
for all fixed-points. For example, we cannot prove anything interesting about the
function f defined by

(5) f(x)=f(x)

since any interpretation for f over the domain satisfies (5), not just the everywhere
undefined function.
In contrast, the program

(6)  fx)=f(x)+1,

which determines exactly the same function £, is unambiguous. Consequently, given
program (6), we can easily prove that

Vxf(x)=1

in first order programming logic.

There are several possible solutions to this problem. John McCarthy [18] has
suggested adding a “minimization” axiom scheme ¢p (containing a free function
parameter for each function symbol) to the definition of a program P. The scheme ¢p
asserts that F approximates every definable set of functions F’ satisfying the equations
P (P, if P is a call-by-value program). In this paper, we will develop a more direct
approach to the problem: a method for mechanically translating an arbitrary recursive
program into an equivalent recursive program with a unique fixed-point.

DErFINITION. A (call-by-name or call-by-value) recursive program P over the
domain D is complete iff the corresponding functional has a unique fixed-point.

In the next section of this paper, we will prove that every recursive program can
be effectively transformed into an equivalent complete recursive program. As a result,
we can reason about recursive programs that define partial functions by first transform-
ing the programs into equivalent complete programs. Fortunately, the transformation
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process leaves the logical structure of the original program intact—so that the program-
mer can understand it.

The answer to the second metamathematical question raised at the beginning of
this section is even more interesting than the first one, although its practical significance
is less apparent. The behavior of recursive programs in nonstandard structures does
not concern programmers interested in proving properties of recursive programs over
the standard arithmetic domains supported by language processors. Regardless of the
meaning of recursive programs in nonstandard models, first order programming logic
provides a sound, yet intuitively appealing formal system for deducing the properties
of recursive programs. On the other hand, as computer scientists interested in the
deductive and expressive power of various logics, we can gain insight into the relative
strength of first order programming logic by settling the question of how to interpret
recursive programs over nonstandard structures.

Before we can make precise statements about nonstandard models, we need to
introduce some additional terminology.

DEerINITION. Assume that we are given an arithmetic domain D generated by the
finite set of function symbols Gen. A set T sentences in the language L, compatible
with D is an arithmetically complete axiomatization of D iff

(i) D is a model of T.

(ii) T logically implies all the sentences expressing the arithmetic properties of
D (listed in the definition of arithmetic domain in § 4) except the structural
induction principle (*) (which cannot be expressed within a first order theory).

(iii) T logically implies that the structural induction axiom scheme (**) for D

(stated in § 4), holds for every formula ¢(x) in Lp.

(iv) For every pair of variable-free terms u and v in Lp, either the sentence u = v

or the sentence u # v is derivable from T.°

Remark. The axiomatization of N* in Appendix I is arithmetically complete.
Given an arithmetic domain D, it is a straightforward but tedious (and error-prone)
exercise to devise an effective, arithmetically complete axiomatization for D. Note that
Th D is an arithmetically complete axiomatization for D. Unfortunately, Godel’s
incompleteness theorem implies that for nontrivial domains D, Th D is not recursively
enumerable.

An arithmetically complete axiomatization T for an arithmetic domain D has
many distinct (nonisomorphic) models. The nonstandard models (models other than
D) are not necessarily arithmetic, since induction may fail for unary predicates that
are not definable. On the other hand, they are inductive, because they satisfy the
structural induction scheme (**) for D.

DEFINITION. A structure D'is weakly arithmetic iff it is a model of an arithmetically
complete set of sentences T.

The only difference between an arithmetic and a weakly arithmetic model of T
is that induction may fail in a weakly arithmetic model for predicates that are not
definable in T. Obviously, the nonstandard models corresponding to an arithmetic
domain D are weakly arithmetic. Given a recursive program P defining the function
symbols F over the arithmetic domain D, we can interpret P as a definition over an
arbitrary nonstandard model D’ if we can find an interpretation F’ for F such that
D’'UF' is a model for PU (**).

S Although none of the theorems that we prove in this paper depend on this property, it ensures that
an arithmetically complete axiomatization has a unique (up to isomorphism) arithmetic model. In addition,
it guarantees that arithmetically complete axiomatizations for nontrivial arithmetic domains support elemen-
tary syntax (see below).
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At first glance, the proof of the fundamental theorem appears to generalize without
modification to nonstandard models, because it does not explicitly rely on the fact that
the domain D is arithmetic rather than weakly arithmetic. Let P be a recursive program
over an arithmetic domain D defining the function symbols F, let D’ be a nonstandard
model corresponding to D, and let P’ denote the functional for P over D'. Then the
least fixed-point F' of P’ obviously satisfies the equations P, implying that D' UF’ is a
model for P. Hence, the only remaining step in confirming that the proof generalizes
to nonstandard models is to show that the induction scheme (**) holds for definable
predicates in the extended language L, U F—a property that appears plausible, if not
obvious.

Nevertheless, there is a simple counterexample to this conjecture. Consider the
following program defined over a nonstandard model N’ of the natural numbers
augmented by L (axiomatized as in Appendix I):

(7 zero(n) =if n equal O then 0 else zero(n—1).

This program is essentially identical to the one that Hitchcock and Park [16] used to
argue that first order logic was incapable of expressing and proving that the function
defined by (7) is total. The least fixed-point of the corresponding functional is the
function zero defined by:

zero(x) = {

0 if x is a standard natural number,
1 otherwise (x is L or nonstandard).

Yet, we have already established the fact in refuting Hitchcock and Park’s argument
(8 3 and Appendix II) that we can prove (using structural induction) that the zero
function defined in equation (7) is identically zero everywhere except at L.

Clearly, our naive approach to generalizing the proof of the fundamental theorem
to nonstandard models will not work. Our assumption that a recursive program P over
a weakly arithmetic structure D’ can be interpreted as a definition introducing a set
of functions F’ that

(i) forms the least fixed-point of the functional for P, and

(ii) obeys the structural induction principle (**)
leads to a contradiction. Where did we go wrong?

Ironically, we made essentially the same mistake as Hitchcock and Park: we
assumed that a recursive program over a nonstandard structure should be interpreted
as the least fixed-point of the corresponding functional. In the preceding example, the
least fixed-point of the functional for equation (7) over N is not definable in N. For
this reason, it need not obey the structural induction principle.

In order to generalize the fundamental theorem to nonstandard models, we must
develop a more sophisticated interpretation for recursive programs than the least
fixed-point of the corresponding functional. Since first order programming logic formal-
izes recursive programs as arithmetic definitions over the data domain, we must find
an interpretation for recursive programs over nonstandard models that satisfies the
structural induction principle. From the preceding example, it is obvious that the least
fixed-point interpretation does not. What is a reasonable alternative? For induction
to hold, the interpretation must be definable in the original domain D. Hence, we
must limit our attention to definable fixed-points of the functional for a recursive
program—abandoning our reliance on the familiar least fixed-point construction from
Kleene’s recursion theorem. In its place, we must develop a new approach to construct-
ing fixed-points of functionals that always determines definable functions.

7 A model containing an element with infinitely many predecessors.
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A detailed, systematic development of the subject of definable fixed-points is
beyond the scope of this paper (the interested reader is encouraged to consult reference
[10]). However, the correct formulation of the generalized fundamental theorem rests
on a single lemma which is easy to explain and to justify. The critical lemma is a
generalization of Kleene’s recursion theorem; it asserts that every continuous functional
over an appropriate domain D has a least definable-fixed-point. The lemma applies
to weakly arithmetic domains that support what John McCarthy calls elementary syntax.
Fortunately, nonstandard models of nontrivial, arithmetically complete theories possess
this property.

Elementary syntax is a definition that introduces functions for encoding finite
sequences over the universe as individual elements of the universe. We formalize the
notion as follows.

DEFINITION. An arithmetically complete axiomatization T supports elementary
syntax iff there exists an unambiguous definition Elem augmenting T introducing a
set of functions and predicates Seq including the constant 0; unary functions last,
mkseq, length, and suc; the binary function o (append); and unary predicates seq and
nat satisfying the following sentences:

(a) suc(L)=1

(b) Vx[x:nat (x=0®3!y[x =suc (y) A y:nat])]

(c) ¢(0)AVx:nat[e(x)> e(suc(x))]>Vx:nat ¢(x)

for every formula ¢(x) in L, U Seq

(d) mkseq (L)=1

(e) Vx[x:seq=3'd(d # L A[mkseq (d) =x®D3!y:seq x =mkseq (d) ° y])]

(F) Vx,y z:seq[xeo(yez)=(x°y)ez]

(8) Vx,y[x=Lvy=L1l>x0y=1]

(h) Vd[last (mkseq (d)) =d]

() Vy:seqVd[d# L >last (mkseq (d)°y)=last (y)]

(j) Vd[d# L >length (mkseq (d))=suc (0)]

(k) Vy:seqVd[d# L >length (mkseq (d) > y) =suc (length (y))]

(1) Vy[e(mkseq (y))]aVx:seq[e(x)>Vy ¢(mkseq (y)e° x)]>Vx:seq ¢(x)

for every formula ¢(x) in L U Seq.

Remark. Elem implicitly determines a representation function embedding the
finite, nonempty sequences over |D| in |D|. In the sequel, we will denote the element
of | D| representing the sequence [sy, - - -, 8] by {(s1,°* *, Sc)-

DEFINITION. A weakly arithmetic domain D’ supports elementary syntax iff there
exists a corresponding arithmetically complete axiomatization Ap that supports
elementary syntax.

Given this terminology, we can succinctly state the lemma as follows.

LEMMA (generalized recursion theorem). For every recursive program P over a
weakly arithmetic domain D' supporting elementary syntax, the corresponding functional
P’ has a least definable-fixed-point.

Proof. A detailed proof of this lemma appears [10]; we will only sketch the main
ideas. Let D and T be the arithmetic domain and the arithmetically complete axiomatiz-
ation, respectively, corresponding to D’. By Kleene’s least fixed-point theorem for
continuous functionals, the functional P for P in D has a least fixed-point [f;, - - -, f,].
It is a straightforward, but tedious exercise to construct formulas (called program
formulas) ¢,(%1, y), -+, ¥u(%, ¥) in LpUSeq such that D[¢;(%,, y)][s] is TRUE iff
f:(s(%;)) = s(y). The key idea underlying the construction of the program formulas is
that for each pair (4, b) in the graph of a program defined function f;, there exists a
set of finite graphs G; < Graph (f;), - - -, G, = Graph (f,), such that:
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(i) (a, b)e G,

(ii) The collection of graphs Gy, - -, G, is computationally closed under P: for
each pair (i, v) in a graph G;, every reduction of a function application f, ()
in the (call-by-name) computation reducing f;(&Z) to v (according to the
definition presented in § 6) has the property that (i, f,(f)) appears in G,.

Since a finite graph {(d,, b;), " - -, (@, bn)} can be represented by the sequence

({a,), by,* -+ ,{@n), b,), the formula ;(%, y) can be expressed in the form

agb ttt, gn(ClosP (gl’ Tt gn) A member ((xi>> Y, gl))

where each g; is a sequence (@), by, - *,{G@m), bm), Closp (g1, -, gn) is a formula
expressing the fact that g,,- - -, g, represent a set of finite graphs that are computa-
tionally closed under P, and member ({X), y, g) is a formula expressing the fact that
((X), y) is an element of the graph represented by the sequence g. Roughly speaking,
the formula Closp is generated from the text of P by replacing all references to program
function symbols f; by corresponding references to finite graphs g;.

In the standard model D, the formulas ¢,(%;, ¥),* - *, ¢¥.(X,, y) characterize the
least fixed-point of P. What do they mean in the weakly arithmetic model D’'?
From T, we can prove that the n-tuple of functions [fj,---,f;] determined by
Y1(Xp ¥),*+, Ya(Xy, y) satisfies the definition P. Moreover, given another collection
of formulas ¢;(%;, y),* -, ¢.(X,, ¥) determining an n-tuple of functions [fj, - - -, f,]
over |D'| that satisfies the definition P, we can prove that [f;, - - -, f,] approximates
(£, -, 'fﬁ,]. Hence, the n-tuple of functions determined by ¢,(%,, ¥), - -, (X, ¥)
must be the least definable-fixed-point of P'. 0O

Given the generalized recursion theorem, the following generalization of the
fundamental theorem is a simple consequence.

THEOREM (generalized fundamental theorem). Let P be a recursive program

{i) =1, /(%) =12, -+, fulZa) =1}

over a weakly arithmetic domain D' supporting elementary syntax, and let F' denote
the least definable fixed-point of the functional for P. Then P is an arithmetic definition
over D' satisfying the model D' UF'.

Proof. By the generalized recursion theorem, the functional P’ over D’ for P has
a least definable fixed-point [f3, - - -, f,]. Hence, the relationship

A Bi=A%-
1=i=n

holds where t; denotes the interpretation of t; given that the primitive function symbols
in t; are interpreted by the corresponding functions in D’ and the function symbols
fi,* -+, f, are interpreted by fy, - - -, f,,, respectively. We can restate this fact as follows

A DHAE)s)=D'8)s]
where D't denotes the structure D’ UF’ and s is an arbitrary state over |D’f|. By the
same construction used in the proof of the generalized recursion theorem, every formula
over D't can be translated into an equivalent formula over D’. Consequently, the
induction principle (**) holds for all formulas over D', implying D't is a model for
PU (**) extending D’. O

8. Construction of complete recursive programs. In this section, we will show
how to construct a complete recursive program P* equivalent to a given call-by-value
program P. We will also verify that the constructed program P* actually is complete



Downloaded 08/29/14 to 128.42.230.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

RECURSIVE PROGRAMS AS DEFINITIONS IN FIRST ORDER LOGIC 393

and equivalent to P. We relegate the analogous construction and proof for call-by-name
programs to Appendix III, since they are similar but somewhat more complex.
The intuitive idea underlying the construction is to define for each function f in

the original call-by-value program a corresponding function f* such that f*(x,, - - -, x,,)
constructs the computation sequence for the call-by-value evaluation of f(x,- -, x,,).
In fact, constructing the actual computation sequence really is not necessary; the values
of the elements in the sequence, except for the final one (the value of f(x;,: -, x,,)),

are irrelevant. It is the expanding structure of the sequence that is significant, because
it prevents an arbitrary fixed-point solution from filling in points where the computed
(least) fixed-point diverges.

For example, consider the trivial program

(8) f(x)=if x equal O then O else f(g(x))

over the domain of LISP S-expressions where g is any unary function with fixed-points
(i.e., g(y) =y for some S-expression y). The corresponding functional obviously has
multiple fixed-points, although the intended meaning of the definition is the least
fixed-point f. If we define f* by the program

(9) f*(x) =if x equal O then cons (0, NIL) else cons (g(x), f*(g(x))),

then f* constructs a sequence containing the argument for each call on f in the
call-by-value evaluation of f(x), assuming that f(x) terminates. If f(x) does not
terminate (e.g., g(x) = x), then every fixed-point f* of the functional for definition (9)
must be undefined (L) at x. Otherwise, £*(x) has length greater than any integer which
contradicts the fact that every sequence in the data domain is finite.® Given (9), we
can redefine f by the recursion equation

(10)  f(x)=last (f*(x))

where last is the standard LISP function that extracts the final element in a list. Now,
by substituting the definition consisting of equations (9) and (10) for the original
program (8), we can force f to mean f. We generalize this idea to arbitrary recursive
programs as follows.

DEerFiniTION. Let P be a call-by-value recursive program defining the function
symbols F over the arithmetic domain D supporting elementary syntax. Let Ly and
Ly« denote the first order languages L, U F and Ly U Seq, respectively, and let D*
denote domain D U Seq. Let ¢ be an arbitrary term in the language Lp. The call-by-value
computation sequence term t* (in the extended language Lp«=Lp«U{f¥, -+, f¥})
corresponding to ¢ is inductively defined as follows:

(i) If ¢ is a constant or a variable x,

t* =mkseq (x).
(ii) If ¢ has the form g(uy,- - -, u,,) where g € G —{if-then-else},
*=u¥o---oul, omkseq (g(last (u¥),- - -, last (u%,))).
(iil) If ¢ has the form fi(uy,* - -, Uyy),
t*=ufo--oufy o ff(last (uf),- - -, last (u¥y)).
8 Although this argument is cast in terms of standard S-expressions, it generalizes to arbitrary models
of a simple first order theory of S-expressions. Given the usual recursive definition for length, the sentence

Vy:list 3n :integer [length (y) <n] is a theorem of the theory. Hence it must hold for arbitrary models—
including those with infinite objects.
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(iv) If ¢ has the form if u, then u, else u,,
t*=uf o (if last (u¥) then uf else u¥).

The call-by-value complete recursive program P* equivalent to P is the call-by-value
program

{ff@E)=d, -, fr(x) =15}
over D*,

A similar construction generates the complete recursive program equivalent to
an arbitrary call-by-name recursive program,; it appears in Appendix IV. The following
theorem, called the fixed-point normalization theorem, shows that the complete recursive
program construction preserves the meaning of the original program and produces a
program that is in fact complete.

THEOREM (fixed point normalization theorem). Let P be a call-by-value recursive
program over an arithmetic data domain D supporting elementary syntax and let
[£1,° - -, £,] denote the least fixed-point of the call-by-value functional P, for P. The
complete recursive program P* equivalent to P has the following properties:

(i) P* is complete, i.e. the corresponding call-by-value functional P* has a unique
fixed-point [£F, - - -, £}].

(i) Fori=1,---,n, last(f#(d)) =£(d)) for all % f-tuples d over|D)|.

Proof. See Appendix III. O

The corresponding theorem for call-by-name programs and a sketch of its proof
appear in Appendix IV.

The fixed-point normalization theorem has an important corollary relating com-
plete recursive programs to first order theories. In informal terms, the corollary asserts
that a complete recursive program over an arithmetic domain D is an unambiguous,
arithmetic definition augmenting a suitable first order theory for D (a theory closely
resembling Peano arithmetic®).

COROLLARY. Let Ap, be an arithmetically complete first order axiomatization for
the arithmetic domain D. Then for every call-by-value program P over D, the equivalent
complete recursive program P* (expressed in the form P%,) is an unambiguous, arithmetic
definition augmenting Ap U Elem.

Proof. The key idea underlying the proof of the corollary is to generalize the
fixed-point normalization theorem to cover programs defined over weakly arithmetic
(not just arithmetic) domains. Since all the models of A U Elem are weakly arithmetic,
the generalized normalization theorem implies that P determines a unique expansion
of every model of ApU Elem—immediately establishing the corollary. 0O

The only obstacle to extending the fixed-point normalization theorem to weakly
arithmetic domains is the same complication that we encountered in generalizing the
fundamental theorem of first order programming logic in § 7: the least fixed-point of
the functional corresponding to a recursive program may not be definable. We overcame
this problem in § 7 by substituting the notion of least definable fixed-point for the
standard notion of least fixed-point. The same strategy works here.

THEOREM (generalized fixed point normalization theorem). Let P be a call-by-
value recursive program over a weakly arithmetic data domain D supporting elementary
syntax and let [f,, - - ,f,] denote the least definable fixed-point of the call-by-value
functional P, for P. The call-by-value complete recursive program P* equivalent to P
has the following properties:

° The first order theory generated by Peano’s axioms for the natural numbers.
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(i) P* is complete, i.e. the corresponding call-by-value functional P* has a unique
definable-fixed-point [ff, - - -, £¥].

(ii) Fori=1,- -+, n,last (£(d))=£(d)) for all + f-tuples d over |D)|.

Proof. The proof of the generalized fixed-point normalization theorem is essen-
tially identical to the proof of the original one, except that it must invoke the generalized
recursion theorem described in § 7 instead of Kleene’s recursion theorem—substituting
the notion of least definable-fixed-point for least fixed-point. O

We will use the term extended first order programming logic for P to refer to
conventional first order programming logic for P augmented by Elem (the definition
of functions Seq), the axioms defining the equivalent complete program P*, and the
axioms asserting that each function f; is identical to last - f;*.

9. Simplifying complete recursive programs. If we carefully examine the proof
of the fixed-point normalization theorem, it is clear that we can simplify the structure
of the constructed program without affecting the proof of the theorem. It is easy to
verify that the same proof works if we substitute the following definition of computation
sequence term for the original one.

DEFINITION. Let ¢ be arbitrary term in the language Ly,. The simplified computation
sequence term t* corresponding to ¢ is given by the inductive definition:

(i) If t is a constant or a variable x,

t* =mkseq (x).

(ii) If ¢ has the form g(uy, - - -, u,,) where g € G —{if-then-else},
t*=u¥ o---ouj omkseq (g(last (uf), -, last (u%,))),
where u;, - - -, u;, are all the arguments containing invocations of some pro-
gram function f;
(iil) If ¢ has the form fi(uy, -« *, Uyp),
t*=u¥ o ouf off(last (uf), -, last (uk;)),
where u;,---,u; are all the arguments containing invocations of some

program function f;, except when this list is empty. In this case, k=1 and u}
is mkseq (true).
(iv) If t has the form if u, then u, else u,,
t*=if last (ud) then u?¥ else u¥,
when u§ does not contain invocations of some program function f;. Otherwise,
t* =uf o (if last (ud) then uf else u¥).
In subsequent examples, we will always use this construction since it produces
simpler translations.

10. Sample proofs involving complete recursive programs. To illustrate how
complete programs can be used to prove theorems about partial functions, we present
two examples.

10.1. Example 1. A divergent function. Let f be the partial function on the
natural numbers defined by the recursive program

11 f)=f(x+1).

We want to prove the following theorem.
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THEOREM. Vx[f(x)=1].

Proof. Although the intended meaning of f (the least fixed-point of the functional
for the program (11)) is everywhere undefined, we cannot establish this property using
conventional first order programming logic since f is total in many other models. On
the other hand, in extended first order programming logic, we can prove the theorem
by using the equivalent complete program

f*(x)=mkseq (x+1) o f¥(x+1)
and the axiom
Vx f(x) =last (f*(x))

relating it to the original program (11). Since last is strict, the theorem is an immediate
consequence of the following lemma. 0O

LemMA. Vx[f*(x)=1].

Proof. We prove the lemma by structural induction on the (possibly 1) sequence
f*(x).

Basis: f(x)=1.
In this case, the theorem is true by assumption.

Induction step: f*(x)# L.
By induction, we may assume that the lemma holds for all x, such that f*(x,) is
a proper tail of f*(x). Since xe N, f*(x) expands into the expression mkseq (x)©
f*(x+1). Instantiating the induction hypothesis for xo=x+1 yields f*(x+1)=1,
implying f*(x)=1. 0O

10.2. Example 2. Equivalence of two program schemes. A more interesting
example is the proof that the following two iterative program schemes are equivalent.

Program A Program B

{ {
x < f(x); repeat x < f(x) until p(x);
while —ip(x) do x « f(x); return (x)
return (x)

} }

Expressed as recursive programs, program A and program B have the following form:

progA (x) < whileA (f(x))
whileA (x) «<if p(x) then x else whileA (f(x))

progB (x) < repeatB (x)
repeatB (x) «if p(f(x)) then f(x) else repeatB (f(x)).
We wish to prove the following formal theorem.
THEOREM. Vx[progA (x)=progB (x)].
Proof. By simplification, the theorem trivially reduces to the statement

(12) Vx[whileA (f(x)) =repeatB (x)].

If f(x) is not total, this statement is not provable in conventional first order program-
ming logic, because the recursive definitions of whileA and repeatB may have
extraneous fixed-points. However, in extended first order programming logic, the proof
is straightforward. Given the equivalent complete programs

whileA* (x) «<if p(x) then mkseq (x) else cons (x, whileA* (f(x)))
repeatB* (x) < if p(f(x)) then mkseq (f(x)) else cons (x, repeatB* (f(x)))
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and the axioms (from extended first order programming logic)

cons (x, y) =mkseq (x) o y

last (mkseq (x)) =x

x # 1 Dlast (cons (x, y)) =last (y)
whileA (x) =last (whileA* (x))
repeatB (x) =last (repeatB* (x))

relating the complete program to the original one, statement (12) reduces to the
sentence:

(13) Vx[last (whileA* (f(x)) =last (repeatB* (x))].

As in higher order logics based on fixed-point induction (e.g., Edinburgh LCF),
the proof of (13) breaks down into two parts:

(13a) Vx[last (whileA* (f(x)) < last (repeatB* (x))]
(13b) Vx[last (repeatB* (x)) = whileA* (f(x))]
where a c B intuitively means “a approximates B (as defined in § 8) and formally
abbreviates the formula
a=lva=8.

The proof of (13a) proceeds as follows.

First, we can assume that last (whileA* (f(x))) # L; otherwise, (13a) trivially
holds. Given this assumption and the fact that last is strict (which follows immediately

from the definition of last), we can apply structural induction on whileA* (f(x)). As
the induction hypothesis we assume that

last (whileA* (f(x'))) < last (repeatB* (x'))

for all x' such that whileA* (f(x')) is a proper subtail of whileA* (f(x)). By the
definition of whileA*,

whileA* (f(x)) =if p(f(x)) then mkseq ( f(x)) else cons (f(x), whileA* (f(f(x)))).

A three-way case analysis on the value of p(f(x)) completes the proof of (13a).
Case (a). p(f(x))e D,.

In this case, whileA* (f(x)) = L, which is a contradiction.
Case (b). p(f(x)) € Dye-

By simplification,
last (whileA* (f(x))) = f(x) and last (repeatB* (x)) = f(x)

establishing (13a).

Case (C) P(f(x)) € Dfalse'
Obviously,

whileA* (f(x)) =cons (f(x), whileA* (f(f(x))))
and
repeatB* (x) = cons (f(x), repeatB* (f(x)))

implying that whileA™ (f(f(x))) is shorter than whileA* (f(x)). Consequently, the
induction hypothesis holds for x" = f(x), yielding the following chain of simplifications:
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last (whileA* (f(x))) =last (cons (f(x), whileA* (f(f(x)))))
=last (whileA* (f(f(x))))
< last (repeatB* (f(x))) (by induction)
=last (repeatB* (x)),

which proves (13a).

Since the proof of (13b) is nearly identical, it is omitted. 0O

An interesting property of proofs based on complete recursive programs is their
similarity to the corresponding proofs based on fixed-point induction in higher order
logics. Although fixed-point induction is an awkward rule for reasoning about total
functions, it appears well suited to proving many properties of partial functions.

11. Advantages of first order programming logic. Although first order program-
ming logic is narrower in scope than higher order logics (since it does not accommodate
functions that take functions as arguments), it is a powerful, yet natural formalism for
proving properties of recursive programs. The primary advantage of first order pro-
gramming logic is that it relies on the familiar principle of structural inductien, the
most important proof technique in discrete mathematics. In first order programming
logic, programmers can develop proofs that are direct formalizations of familiar
informal structural induction arguments. In contrast, higher order logics for recursive
programs (e.g. Edinburgh LCF [15]) typically rely on fixed-point induction, a rule that
is more obscure and difficult to use.

A particularly troublesome aspect of fixed-point induction is that it is valid only
for admissible formulas.'® Edinburgh LCF [15], for example, restricts the application
of fixed-point induction to formulas that pass a complex syntactic test ensuring admissi-
bility. Unfortunately, it is often difficult to predict whether a particular formula will
pass the test. Moreover, the test does not necessarily produce consistent results on
logically equivalent formulas.

As an illustration, consider the sample proof presented in § 5: the termination of
the recursive program flat. The proof using first order programming logic is a direct
translation of the obvious informal proof. In contrast, a proof of the same theorem in
Edinburgh LCF (or similar higher order logic) must introduce a retraction characteriz-
ing the domain of S-expressions and simulate structural induction by performing
fixed-point induction on the retraction. In the fixed-point induction step, the program-
mer (or theorem prover) must check that the formula is admissible (by applying the
syntactic test) before applying the rule.

For the reasons cited above, we believe that first order programming logic—rather
than a higher order logic—is the appropriate formal system for proving properties of
recursive programs. Both Boyer and Moore [3], [4] and Cartwright [6], [7] have
successfully applied first order programming logic to prove the correctness of sophisti-
cated LISP programs with relative ease. On the other hand, the practical utility of
extended first order programming logic for reasoning about non-total functions (such
as interpreters) has yet to be determined. Moreover, it is not obvious that the particular
complete recursive program construction presented in this paper is the best way to
translate an arbitrary program into an equivalent complete program. There are many
different equivalence preserving program transformations that generate complete
programs. The few examples that we have done manually are encouraging, but we

10 The formula «[f] in the language L U{f} is admissible with respect to f over the continuous domain
D iff for every ascending chainfocf; - - -cf, < - - over D, DUf[a[f]] is TRUE for all functions f in the
chain implies that DU f [a[ f]] is TRUE for f defined as lub {f,|k = 0}.
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cannot reach a firm conclusion until we build a machine implementation and experiment
with various schemes for translating arbitrary programs into complete ones.

12. Related and future research. A group of Hungarian logicians—Andreka,
Nemeti, and Sain—have independently developed a programming logic [1] with meta-
mathematical properties similar to first order programming logic, although the prag-
matic details are completely different. Their logic formalizes flowchart programs as
predicate definitions within a first order theory of the data domain excluding 1. Given
a flowchart program P, they generate a formula 7p(x, y) that is true (in the standard
model of the data domain) iff y is the output produced by applying program P to
input x. In contrast to first order programming logic, the notion of computation
embedded in their logic applies to all models of the data domain theory.'' We are
confident that an analogous result holds for first order programming logic; we intend
to formulate and prove it in a subsequent paper.

As a formal system for reasoning about recursive programs, the major limitation
of first order programming logic as formulated in this paper is that it does not
accommodate “‘higher order” data domains—structures that are not flat. In practice,
this restriction may not be very important since higher order objects can always be
modeled by intensional descriptions (e.g., computable functions as program text).
Nevertheless, we believe that an important direction for future research is to extend
first order programming logic to ‘‘higher-order’” domains. With this objective in mind,
we are exploring the implications of allowing lazy (nonstrict) constructors (e.g., lazy
cons in LISP) in the data domain.

Appendix 1. Sample first order axiomatizations. A conventional first order
axiomatization A for the structure N, the natural numbers with functions {0, suc, +, X},
is:

(1) Vx[x=0®3!yx =suc (y)].

(2) Vy[0+y=y]

(3) Vx, y[suc (x)+y=suc(x+y)]

(4) Vx, y[0xy=0].

(5) Vx, y[suc (x)xy=y+(xXxy)]

(6) (a(0) AVx[a(x)> a(suc(x))]) > Vxa(x) for every formula a(x).

The corresponding axiomatization A" for the arithmetic domain N*, consisting of the
universe [N|U{L} and functions {0, true, false, suc, equal, +, X, if-then-else}, is:

(1) Vx:N[x=0®3!y: Nx=suc(y)].
(2) Vy:N[O+y=y]l
(3) Vx,y:N[suc(x)+y=suc(x+y)]
(4) Vx,y:N[0xy=0].
(5) Vx,y:N[suc(x)Xy=y+(xxy)]
(6) a(0)aVx:N[a(x)>a(suc(x))]>Vx:Na(x) for every formula a(x).
(7) O:N.
(8) Vx:N[suc(x):N].
(9) suc(L)=L1.

(10) Vy[L+y=Llay+L=1]

(11) Vx[xxl=1lalxx=1]

(12) true =suc (0) A false =0.

"1 Presumably, their notion of nonstandard computation is closely related to the concept of least
definable-fixed-points presented in this paper.
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(13) Vx, y: N[(x=y>(x equal y)=true) r (x #y > (x equal y)=false)].
(14) Vx[(L equal x)=_L A (x equal L)=1].

(15) Vy, z[if false then y else z = z].

(16) Vx:N Vy, z[if suc (x) then y else z=y].

(17) Vy, z [if L then y else z=1].

where x: N abbreviates the formula x # L.

Appendix II. Sample proofs in first order programming logic.

Example 1. Termination of the countdown function. Let the function zero over
the natural numbers N augmented by {1} be defined by the (call-by-name) recursive
program:

zero (n) =if n equal 0 then else zero (n—1),
which is logically equivalent (on |N|) to the definition for zero in § 3:
Va[(rn=0>zero (n)=0) A (n# 0> zero (n) =zero (n—1))].

We will prove a theorem asserting that the function zero equals 0 for all natural
numbers.
THEOREM. Vn[n # L >zero (n)=0].
Proof. The proof proceeds by induction on n.
Basis: n=0.
This case is trivial by simplification: zero (n) =if 0 equal 0 then 0 else zero (n—1) =0.
Induction step: n>0.
We assume by hypothesis that the theorem holds for all n’ <n. Since n>0

zero (n) =if n equal 0 then 0 else zero (n—1) =zero (n—1)

which is O by hypothesis.

Example 2. Termination of an Ackermann function. Let the function ack over
the natural numbers N augmented by {L} be defined by the call-by-value recursive
program:

ack (x, y) =if x equal O then suc (y)
else if y equal O then ack (pred (x), 1)
else ack (pred (x), ack (x, pred (y))).

We will prove that ack is total.
THEOREM. Vx, y[x# LAay# L>ack (x,y)# L]
Proof. The proof proceeds by induction on the pair [x, y].
Basis: x=0.
By assumption, y # L. Hence, ack (x, y) =suc (y) # L.
Induction step: x> 0.
By hypothesis, we assume the theorem holds for all [x’, y'] such that either x’ <x or
x'=x and y' <y. Since y# L by assumption,

ack (x, y) =if y equal O then ack (pred (x), 1)
else ack (pred (x), ack (x, pred (y)))

Case (a). y=0.
In this case, ack (x, y) =ack (pred (x), 1) which by hypothesis is a natural number (not
1).

Case (b). y>0.
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In this case,
ack (x, y) =ack (pred (x), ack (x, pred (y))).

By hypothesis, ack (x, pred (y)) is a natural number implying (by the induction
hypothesis) that ack (pred (x), ack (x, pred (y))) is a natural number. 0O

Example 3. McCarthy’s 91-function. Let the function f91 over the integers
augmented by {1} be defined by the (call-by-name) recursive program

£91(n) =if n>100 then n—10
else f91(f91(n+11)).

We will prove the following theorem implying f91 is total over the integers.
THEOREM. Vn[n# L > f91(n)=if n>100 then n—10 else 91].
Proof. The proof proceeds by induction on 101© n where the binary operator ©
(monus) is defined by the equation

x©y=if (x—y)>0 then x—y else 0.

Basis: 101©n=0.
Clearly, n> 100, implying f91(n) = n—10, which is exactly what the theorem asserts.
Induction step: 101©n> 0.
By hypothesis, we assume the theorem holds for »n’ such that 101© s’ <1010 <n,
i.e. n'> n. By the definition of f91,

f91(n) =f91(f91(n+11)) = f91(if n+11>100 then n+1 else 91)

(by induction since n+11> n).
By assumption, n = 100. Consequently, there are two cases we must consider.
Case (a). n+11>100.

Obviously, 100 = n> 89, implying

f91(n)=f91(n+1)=if n+1>100 then n—9 else 91 =91 (since n =100).
Case (b). n+11=100.
By assumption, n = 89, implying

f91(n)=£91(91) =if 91 <100 then 91—-10 else 91
(by induction since 91>n)=91. 0O

Appendix III. Proof of call-by-value fixed point normalization theorem.

THEOREM. Let P be a call-by-value recursive program over an arithmetic data
domain D and let F (abbreviating [f,,- - - ,f,]) denote the least fixed-point of the
call-by-value functional P, for P. The complete recursive program P* corresponding to
P has the following properties:

(i) P* is complete, i.e. the corresponding call-by-value functional P’ as a unique

fixed-point [ff, - -, £¥].

(i) Fori=1,---,n, last(f}(d)) =£.(d) for all % f,-tuples d over |D|.

Proof. By definition, F is the least upper bound of the chain of approximating
n-tuples of functions

FOcFVc...cFPc...

where F® =[f{*, - - - £ is inductively defined Vk =0 by
FO=[A% L, -, A%, L]
FU=p (F9).
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Let D™ denote the structure D UF™. In informal terms, D’ is D augmented by the
call-by-value evaluation of P to depth k. Similarly, let D**' denote the structure
D*UF*® where F*¥) is the depth k approximation for P* analogous to F**),

In the course of this proof, we will frequently employ the following lemma without
explicitly citing it.

LemMA 0. For every term t in Lp, every state s over |D|, and all k=0,
D**[seq (t*)][s]=TRUE, i.e., t* denotes a sequence code in D*.

Proof of Lemma 0. A routine induction on the structure of £ Omitted. 0O

Property (ii) of the main theorem is an immediate consequence of the following
lemma.

LEMMA 1. For every term t in Lp, every state s over |D|, and all k=0, D®[¢][s]=
D*®[last (£*)][s].

Proof of Lemma 1. The proof proceeds by induction on the pair [k, t]. By
hypothesis, we may assume that the lemma holds for all [g, u] where either g <k and
u is arbitrary, or ¢ =k and u is a proper subterm of t.

Case (a). tis a constant or a variable x. Then #* has the form mkseq(x) implying
D*®[last (1*)][s]=D*®[x][s]=D®[¢][s] for arbitrary k =0.

Case (b). t has the form g(uy," -+, U4z), 8€ GUSeq. Then

t*=u¥o---ou¥, omkseq (g(last (uf), - -,last (u%,))).

By hypothesis, D**[last (u})][s]=D"[w][s], for all s,i=1,---,#g. If for some
i, D[y ][s]= L, then D**[last (u*)]= L, implying D®'[t][s]=D**[last (r*)][s]= L,
since g, o, and last are all strict functions. On the other hand, if D*[,][s]# L for all
i, we conclude by the induction hypothesis and the definition of last that D*®[u¥ [ s]#
1 for all i, implying
D*“last (¢*)][s]=D*“g(last (u}), - - -, last (u%))][s]
=D™[g(uy,- -+, usg)l[s] (by induction)
=DY[t]s].
Case (c). t has the form f;(u,, * *, uyz). If k=0, the proof is trivial. For positive
k, the proof breaks down into two cases. First, if D(k)[uj][s]= 1 for some j, then the

lemma holds by exactly the same reasoning as in case 2. On the other hand, given
D*®[u¥][s]# L for all j, we deduce that

D*®[1ast (£*)][s]=D*®[last (ff (last (u}), - - -, last (uk;)))][s]
=D*®last (f} (£))1[s*]

where s* is a state binding each variable x; to D**[last (u¥)][s]=D"[u;]s], j=
1,- -+, #f. Since no x; is bound to L, we can expand f¥ (%) to produce

D*[last (£*)][s*]=D** Vllast (£¥)][s*]
=D* V[][s*] (by induction)
=D £(D)]s*]
=D®[t]s].

Case (d). t has the form if u, then u, else u,. By definition t* = uf o (if last (ug)
then u¥ else u¥). If D®[u,][s]= L, then by induction D**[last (u¥)]= L, implying
D*®[last (r*)][s]= L and D[¢][s]= L. On the other hand, if D*'[u,][s]# L, then it
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denotes either “true” or “false””. If D[ u,][s]is a “true” element of D then D[ ¢][s] =
D"®[u,][s]. By induction,
D“fuo][s]=D*“[last (uF)][s]
implying
D*[*][s]=D*“flast (u})][s]
=D®[u,][s] (by induction)
=D"“[¢]s].

An analogous argument proves the “false” case. 0 (Lemma 1)
We prove property (ii) of the theorem as follows. By Lemma 1,

DYLfi(x1, -+ -, %) 18]

=D**[last (mkseq (x;) o - - - o mkseq (x4) ° f¥
(last (mkseq (x,)), - - - , last (mkseq (x.£,))))](s]

for all k=0, all states s over |D|. Simplifying the right-hand side of the preceding
equation yields

DO fi(xy, -+, x40 )Ls1=D*®llast (fF (x1, - -+, x47,))1Ls]

for all states s over |D|. Since D and D* are both flat domains, the functions f; and
£} have the following property. For any # f;-tuple d over | D| there exists p = 0 such that

£7(d) =1,(d)
and
£;7(d) =15(d).
Let s, be a state mapping % into d. Then
£.(d) =17 (d) =DP[ f,(%)][s4]
=D*P[last (fF(%))][s.] =last (£ (d)) =last (£}(d))

proving property (ii).

To prove property (i), we must introduce some new definitions. Let H be an
n-tuple of strict functions [hy, - - - , h,] over D corresponding to the n-tuple of function
symbols [f¥, - -, f]. We define D{*’ for all k =0 as the structure corresponding to
L% that is identical to D** except that D interprets [f¥, - -, f¥] by F%* where
F is inductively defined by

0)
Fﬂlfl( )_Hy

Fi D =P (FEY).
Informally £;* is the function computed by applying call-by-value evaluation to the
recursion equation for f; where invocations of f;, j=1, - - -, n,at depth k are interpreted
by the function h; instead of ordinary evaluation. If all the functions h; in H are
everywhere undefined, then F3* =F*®,

Property (i) is a simple consequence of the following lemma.

LeEMMA 2. Lettbe anytermin Lp. Let H be an n-tuple of strict functions[hy, - - - , h, ]
corresponding to [ f¥, - - -, f]. Then for any k =0 and any state s over |D|, D*[t*][s]= L
implies either D[t*][s]= L, or length (D °[t*][s]) = k.



Downloaded 08/29/14 to 128.42.230.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

404 ROBERT CARTWRIGHT

Proof of Lemma 2. In the course of the proof, we will use the following lemmas
which are easily proven by structural induction on &

LEMMA 2a. For any term t in Lps, D*®[t][s]# L implies D*®[¢][s]=D%*[¢][s].

LEmMA 2b. For any term t in Lpx not containing any recursive function symbol f¥,
D[t s]=D*®[t][s] for arbitrary state s.

Proof of Lemmas 2a and 2b. Omitted. 0O
To prove lemma 2, we apply induction on the pair [k, t].

Basis: k=0. In this case, the lemma is a trivial consequence of the definition of
length and the fact that the meaning of any computation sequence term t* under any
state s in the structure D* is either L or a sequence code.

Induction step: k>0. We perform a case split on the structure of &

Case (a). t is a constant or variable x. Then t* = mkseq (x), implying by Lemma
2b that D[] s]=D**®[+*][s] which is L by assumption.

Case (b). t has the form g(uy,---,u,,) where ge G. In this case, t*=
uf o out, omkseq (g(last (u¥), -, last (u%,))). If D*¥[u}][s]=1, then by
induction, either D} *[u¥][s]=L or length (D} *“[u}][s]) = k, implying the lemma
holds (since e is strict). On the other hand, if D(")[u}“ 1s1# L for all j, then by Lemma
2a, DFP[u¥[s1=D*®[u]s] for all j. Consequently,

D[ s1=DE[uf o« - - o u¥, o mkseq (g(last (uf), - - -, last (u%,)))s]
=D*®[uf o+ ouk, omkseq (g(last (u}), - -, last (u¥,)))s]
=D*®[*][s].

implying the lemma holds.

Case (c). t has the form f;(uy, * - -, uyp). If D*©[u¥][s]= L for some j, the proof
is identical to the analogous section of the previous case. On the other hand, when
D*®[u¥][s]# L for all j,

DHO[*s]=D*®Luf[s]o- - - o D**ut,]
[s]e 5 (tast (D*[ut [s)), - - -, last (D*©[u}, Ls])
=D*Ouf]s]o - - - D*Puf, s]o DEVLFF (£)]s*]
=D*O[yF][s]o - - - o D*Fuk  J[s]o DE VL6 I[s*]

where s* maps x; into last (D**[u*][s]), j=1,--,#f. By induction, either
D% Ve [s*]= L or length (D" [} ][s*]) = k— 1. Hence the lemma clearly holds
(since length(u¥) =1 for all j).

Case (d). t has the form if u, then u, else u,. If D**[uk][s]= L, the proof is
identical to the analogous section of case (b). On the other hand, when D[ uo][s]#
L, D®[u,][s] is either a “true” element of |D| or a “false” one. In the former
case, D*P[[s]=D*“[u*]s] and DE[t*[s]=D¥*“[u¥]s]. By induction,
D*®[u¥][s]= L, simplying either D¥*[u¥]= L or length (D% *[u}]) = k. Hence the
lemma holds in this case. An analogous argument holds for the “false” case. 0O
(Lemma 2)

Given Lemma 2, we prove that property (i) holds by the following argument. Let
H=[h,, - ,h,] be any fixed-point of the call-by-value function P, for the complete
recursive program P*, i.e., for all i

DHOLf¥ (7)1s)=D e s].
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By induction on [k, t] we can easily show for all k=0, all terms ¢ in Lp~, and all states
s that

D[ Is1=DE[*1s].

Now assume H is not the least fixed-point of P, i.e., £*(d)= L but h;(d) # L for
some i and some # f-tuple d over |D|. Then,

VkzO[DEVLfF (£)]sa]=DFHLfF (%) Lsa]=hi(d)]

where s, binds %; to d. By Lemma 2, the length of h;(d) is greater than any number
k, contradicting the fact that

Jk[length (D} O[fF (%)1(sa))=k]. O

Appendix IV. Call-by-name complete recursive programs. The call-by-value
recursive program construction described in § 8 exploited the idea of defining a new
function f¥ for each function f; in the original program such that f¥ constructs the
call-by-value computation sequence for f,. We will utilize essentially the same idea to
construct complete call-by-name programs.

Unfortunately, call-by-name computation sequences have a more complex struc-
ture than their call-by-value counterparts. The chief complication is that the collection
of arguments in recursive call f;(7) that are actually evaluated depends on the particular
arguments f. To accommodate this complication, we adopt the convention that the
new functions f¥ in the complete recursive program take computation sequences
corresponding to the arguments of f as inputs instead of the arguments themselves.
Hence, the original functions fi, - - -, f, are related to the new functions f¥, -, f¥
by the equations

filxy, =<+, x4 ) =last (ff (mkseq (x,), - - - ,mkseq (x,))),i=1,---,n

instead of

fj(xl’- .~,x#ﬁ)=last(f*(x1,...,x#ﬂ))’i=1,...,n,

which hold for call-by-value complete recursive programs.

This convention gives the body of each new function f¥ control over the process
incorporating particular argument evaluations into the output computation sequence.
If a particular argument is never evaluated, its computation sequence is discarded.
Recall that in the call-by-value construction, the computation sequences for the
arguments of a function call are unconditionally inserted in the computation sequence
by the calling expression.

We construct the call-by-name complete recursive program P* corresponding to
P as follows.

DEFINITION. Let D, Lp, P, Lp, F, D'®, and D* (including Seq) be defined as in
§ 8 except that P is a call-by-name program and, consequently, F is the least fixed-point
of the (call-by-name) functional P for P over D. Let ¢ be an arbitrary term in the
language Lp. The call-by-name computation sequence term t* (in the extended language
Lp+) corresponding to ¢ is inductively defined by:

(i) If ¢t is a variable v,
t*=v
(ii) If ¢ is a constant symbol c,

t* =mkseq (c).
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(iti) If ¢ has the form g(u,,- - -, u,,) where ge G,
t*=uf o ouk, omkseq (g(last (uf), - -, last (u%,))).
(iv) If ¢ has the form fi(uy, - - -, uyy),
t* =mkseq (true) o fF (u¥, - -, u¥;).
(v) If ¢ has the form if u, then u, else u,,
t*=u¥ o (if last (u¥) then uf else u3).

The complete recursive program P* corresponding to P is the (call-by-name) program

{ff(xl)=t>lk" o ,f;l:(fn)=t;§}
over D*.

THEOREM (call by-name fixed point normalization theorem). Let P be a call-by-
name recursive program over an arithmetic data domain D supporing elementary syntax
and let [f;, - ,f,] denote the least fixed-point of the corresponding (call-by-name)
functional P. The complete recursive program P* corresponding to P has the following
properties:

(i) P* is complete, i.e. the corresponding (call-by-name) functional P* has a
unique fixed-point [ff,- - -, £¥].

(ii) For i=1,-- -, n, last (ff(mkseq (d,), - - - , mkseq (d,.;))) =f,(d) for all #f-
tuples d over |D|.

Proof. The proof follows the same outline as the proof of the corresponding
theorem for call-by-value fixed-points in § 8. Recall that F is the least upper bound
of the chain of function n-tuples

FOcFV¢c...cF¥c...

where F® =[f{ ... ] is defined Yk =0 by
F(O)=[Ail sl AR, -L]’
F&+D =P(F(k)),

and that D denotes the structure DUF®. Let D*“* denote the structure DU F*®
for the call-by-name program P* over D* analogous to D® for the program P
over D.

Property (ii) is a simple consequence of the following lemma.

LeMMA 1. For every term t in Lp, every state s over |D*|,and all k= 0, D®[¢][s]=
D*®[1ast (£*)][s].

Proof (of Lemma 1). The proof is essentially identical to the proof of the corres-
ponding lemma in § 8, which proceeds by induction on the pair [k, t]. The details are
left to the reader. 0O

Property (ii) follows immediately from Lemma 1 by the following argument. For
any function f; and # fi-tuple d=[d,, -+, d4] over D there exists p=0 such that

£7(d) = f,(d)
and
5" (mkseq (d,), - - - , mkseq (d.;)) =f¥(mkseq (d,), - - -, mkseq (d,y)).

Let s be a state mapping £ into d, and Spy.eq be the state mapping each variable x;
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into mkseq (s(x;)). Then
f,(d) =1 (d)
=DY[f(D)]s]
= D*?[last (mkseq (d*) o f¥ (%)) Smkseq]
=D*Plast (f¥ ()] Smuseq)
=1last (£*”(mkseq (d,), - - - , mkseq (d,;)))
=last (ff(mkseq (d,), - - - , mkseq (d,.;)))

proving property (ii).

To prove property (i), we must utilize the definitions introduced in the analogous
proof in Appendix II. Let H, D%, and FE* be defined exactly as in §8, except
substitute call-by-name semantics for call-by-value semantics in the definition of F}
and D#*. In other words,

F5”=H,
FE<0 = P(FAY).

Since the remaining details of the proof of property (i) are nearly identical to those
found in the corresponding proof in Appendix III, they are omitted. 0O

It is a straightforward exercise to formulate and prove call-by-name analogues to
the corollary and the generalization of the fixed-point normalization theorem presented
in § 8 for call-by-value programs. The details are left to the reader.
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