
J. Symbolic Computation (1989)7, 319-341

Enumerating Outer Narrowing Derivations
for Constructor-Based Term Rewriting Systemst

JIA-HUAI YOU

Department of Computing Science, Universi~ of Alberta,
Edmonton, Alberta, Canada T6G 2HI

(Received 18 December 1987)

Narrowing has been used as a mechanism for reasoning about equations and evaluating
equational logic programs, where enumeration of all narrowing derivations is often neces-
sary in order to generate complete sets of solutions. In this paper, a special type of narrow-
ing derivations, called outer narrowing derivations, is examined for the class of
constructor-based term rewriting systems. It is shown that every narrowing derivation in
this class is subsumed by an outer narrowing derivation. This result is applied to a matching
problem in equational theories, i.e., whether an arbitrary term is E-matchable to a term
composed of constructors and disjoint variables. It is shown that outer narrowing deriva-
tions generate complete and minimal sets of E-matchers. An E-matching procedure is
presented which enumerates all and only outer narrowing derivations for the E-matching
problem considered in this paper.

1. Introduction

Narrowing is a method that combines term unification and rewriting. This method has been
adopted in reasoning about equations encountered in theorem proving (Lankford 1975; Slagle
1974), universal unification and matching (Fay 1979; Hullot 1980; Jouannaud et al. 1983;
Siekmann 1984), and logic programming with an equational flavor (Dershowitz 1985;
Dershowitz & Plaisted 1985; Goguen & Meseguer 1984; Fribourg 1985; Reddy 1985; You &
Subrahmanyam 1986a).

Given a term rewriting system R, a term t narrows to s at a nonvariable subterm t/u using
the k -th rewrite rule c~ k --4 ~ in R, denoted by t ->It,. t. pl s (or t ->~ s for abbreviation), if p

is the most general unifier of t/u and c~., and s = p(t [u 6--[3 k]), i.e., t/u is replaced by 13,~ and
p is applied to the whole term. It is always assumed that the sets o f variables in t and ct k are

disjoint. This can be done by appropriate variable renaming. Narrowing gains its power by
using term unification while reduction in contrast only uses one-sided unification, which is
called matching.

Given a term, there might be several subterms at which narrowing is possible. It is impor-
tant to know if some of the narrowing derivations can be pruned without losing completeness.
The problem of special narrowing strategies appears to be a much harder problem than its
counterpart concerning reduction, which enjoys several well-known results based on special

t Work supported by the Natural Sciences and Engineering Research Council of Canada.

319
0747-7171/89/030319+23 $03.00/0 Q t989 Academic Press Limited

320 J . -H . You

strategies, such as the itmermost and outermost strategies. Difficulties arise when these stra-
tegies are considered for narrowing. The following example shows that neither the innermost
narrowing strategy which ignores narrowing steps at outer occurrences, nor the outermost nar-
rowing strategy which ignores narrowing steps at inner occurrences can be complete even for
some very simple systems. Consider the term rewriting system

R = { f (y , a) ~ t r u e , f (c , b) - - ~ t r u e , g (b) - -) c },

We will use x , y , z , etc., to denote variables and others to denote function symbols. The sys-
tem is obviously confluent. With the term f (g (x), .r), innermost narrowing leads to

f (g (.r), .r) -> {.~./h] f (c, b) ->{) true,

while outermost narrowing yields

f (g (x), x) ->{xm) true.

The innermost and outermost derivations generate uncompared solutions; missing either of
them would result in loss of a solution.

Fribourg (1985) showed the completeness of the innermost narrowing strategy under certain
sufficient conditions. These conditions appear to be restrictive as illustrated above. As pointed
out by Fribourg, the difficulty stems from the fact that functinns, as defined by rewrite rules, are
often partial functions over the domain of terms. Though restrictive, innermost narrowing can
indeed eliminate many redundant derivations. Dincbas and Hentenryck (1987) investigated
some practical aspects of several narrowing strategies, including innermost, outermost and a
form of lazy strategy based on a procedural semantics of functional programming. To extend a
functional language to the one that is capable of solvi~Tg, Reddy (1985) defined a denotational
semantics and outlined a lazy narrowing strategy. As pointed out by Reddy, however, lazy nar-
rowing is not complete for the classic equality theory (and it was certainly not designed for that
purpose). The problem of whether an approach along the same line as lazy narrowing can be
adopted in the completely equational setting has not been explored. Other methods for reducing
search space and for eliminating redundant solutions can be found in Hullot (t980), R6ty et al.
(1985) and REty (1987) (also see Nutt et al. 1987). A more detailed account of these narrowing
methods will be given in Subsection 3.3.

In this paper we consider a special type of narrowing derivations, called outer narrowing
derivations, for solving equations in equational theories. In particular, we consider the applica-
tion of outer narrowing to an E-matching problem in equational theories. Outer narrowing will
be defined in this paper by means of an ordering on narrowing steps in a narrowing derivation.
Informally, the main requirement for a narrowing derivation

A t) - > [u ~), k~. 9t~] > [u,,_l. k,,_l, P~- I / A,j

to be outer is that no later narrowing step at an outer occurrence be able to be carried out eat-
lier in the derivation, using the same rule and at the same occurrence. (This is by no means a
precise definition. See Subsection 3.2) Intuitively, if an outer narrowing step can be "moved" to
the early part of the sequence, then those steps before it may be wasted in that they do not con-
tribute to the narrowability of an outer function. An outer narrowing derivation, ho~vever, may
not be an outermost narrowing derivation. For example, the narrowing derivation given earlier

f (g (.r), x) ->[x~b] f (c, b) ->[7 true

is considered an outer narrowing derivation, in that the rule used in the second narrowing step
is not applicable when tried to narrow the given term, due to the function symbol conflict
between c and g. This derivation is obviously not an outermost narrowing derivation.

Outer narrowing can indeed prune redundant derivations. As a simple example, consider

R = { f (a . b , x) - - ~ t r u e , g (a) - - ~ c }.

Narrowing Derivations for Term Rewriting Systems 321

The derivation

f (y, z, g (y)) ->{yla}f (a, z, c) ->[z/b} true
is not outer since the second narrowing step can be performed right at the beginning, using the
same rule and at the same occurrence. In doing so we get the same solution by one step of outer
narrowing:

f (y, z, g (y)) ->{yla, ".1#} true.

It was not very clear at first whether or not outer narrowing is complete when narrowing is.
As a matter of fact, in the course of investigation we discavered a counterexample that shows
that outer narrowing can lose potential solutions for left-linear and nonoverlapping term rewrit-
ing systems. We therefore restrict our attention to a subclass called constructor-based term
rewriting systems. We will show in this paper that every narrowing derivation in this class is
subsumed by an outer narrowing derivation.

A function symbol f is said to be defined if it appears as the leftmost functor in the left hand
side of some rule cq. ~ ~k; in this case we say that the rule ak ~ 13~ defines f . Otherwise it
is called a consn'uctor, A term rewriting system is constructor-based if it is left-linear, nono-
verlapping, and has no defined function symbols appearing in the inner part of the left hand
side of any rule. Some of the functional languages primarily based on recursive equations, such
as HOPE (Burstall & Sannella 1980), SASL (Turner 1979), and ML (Milner 1984) fall into this
category when restricted to defining first order functions. Although O'Donnell 's language
(O'Donnell 1985) is purely first order and in theory belongs to the class of nonoverlapping sys-
tems, it has mainly been used as a constructor-based language.

Our intention of studying special narrowing strategies was driven by a desire to discover
complete and minimal E-unification or E-matching procedures for some nontrivial classes of
equational theories, no matter whether they are used in programming or in theorem proving.
Unfortunately, outer narrowing does not guarantee minimality in the general case. However,
applying the result of outer narrowing we are able to obtain a complete and minimal procedure
for a special case of the E-matching problem: given a constructor-based term rewriting system
R and two terms t t and t2 with disjoint sets of variables, where t2 is composed of constructors
and variables, the problem is to find a complete and minimal set t9 of E-matchers from t l to t2
such that for every ~ in O, cr(t 1) is E-equivalent to t2 under the equational theory described by
R and no two E-marchers in �9 can compare under the same equational theory.

The minimality problem in universal unification and matching is known to be important. In
general, unification and matching procedures are embedded into a larger reasoning system
involving equality (Plotkin 1972), which performs reasoning by using E-unifiers or E-marchers
provided by these special inference procedures. Without the minimality property the system
may waste a lot of time performing redundant reasoning steps.

The minimality problem is also known to be difficult. Since the discovery of some equa-
tional theories for which complete and minimal sets of E-unifiers or E-matchers do not exist
(Fages & Huet 1983), the questions as to which classes of equational theories complete and
minimal sets of E-unifiers or E-matchers exist, and how to obtain them, have rarely been inves-
tigated. To our knowledge, all currently known results are based on the discovery of some
complete and terminating algorithms for decidable equational theories. The minimal sets can
then be obtained from complete sets by a filtering process. The class of equational theories and
the matching problem considered in this paper are both semi-decidable; thus the filtering
method no longer applies.

The next section provides notations used in this paper. It is shown in Section 3 that for
constructor-based term rewriting systems, every narrowing derivation is subsumed by an outer
narrowing derivation. Section 4 applies this result to a matching problem and shows that outer

322 J . -H. You

narrowing derivations yield complete and minimal sets of E-matchers. In Section 5, a pattern-
driven (Subrahmanyam & You 1986) procedure is presented, which correctly enumerates all
and only outer narrowing derivations for this matching problem. The final section contains a
summary and some remarks.

2. P r e l i m i n a r y Def in i t ions

2.1 DEFINITION. We denote by T (F , V) the set of terms composed from a set of function
symbols F and an enumerable, disjoint set of variables V. Terms are viewed as labeled trees in
the fo l lowing way: a term A is a partial function from the set of sequences of positive integers,
denoted by I* , to F ~ V such that its domain satisfies:

(i) 8 ~ D (A)
(ii) u ~ D (t i) iff i,u ~ DO"(tl ti t n)) l < i < n .

D (A) is called a set of occurrences of A ; O (A) denotes the nonvariable subset of D (A).
The set of occurrences is partially ordered by the prefix ordering: it < v iff (3 W) lI.W = 1', and
u < v iff u < v & u r v. When u < v we then say u is outer to v and v is inner to u. u and
w are said to be independent , denoted by u <> w iff u ~ w and w ~ u. The quotient u/v of
two occurrences u and v is defined as: t t /v = ~, iff v.vt, = u.

W e use V (A) to denote the set of variables occurring in an object A , We define A [u ~--B] as
the term A , in which the subterm at occurrence u has been replaced by the term B. We denote
by A/u the subterm of A at occurrence u.

2.2 DEFINITION. A substi tut ion c~ is a mapping from V to T (F , V) , extended to an endomor-
phism of T (F , V). W e denote by ~ the set of all substitutions. If G ~ ~ and A E T (F , V), we
write ~A for application of c~ to A. The domain of a substitution ~, denoted by D (cy), contains
the variables that are not mapped to themselves. The set of variables introduced by a substitu-
tion cr is defined as: I((~) = u V(ox) for all x in D (~). The composition of substitutions cr and 0
is defined as: (~.0)x = ~(0x). O lw denotes the restrict ion of the substitution cr to the subset W
of V.

2.3 DEFINITION, An equational axiom A = B is a pair of terms separated by the symbol =.
An equat ional theory is a set E of equational axioms. E-equality =6 is defined as the smallest

congruence containing E and closed under replacement and instantiation, i.e., =E is generated

by E as the smallest congruence containing all pairs ~A = ~ B forA = B in E and a in ~ .
E-equal i ty is extended to substitutions as follows: ~ =E 0 iff Vx ~ V c~x =e Or.

We will write, for a subset W of V: or= E 0 [W] iff Vx E W crx =E 0x.

In the same way, c~ is more general than 0 under the equational theory E over W:

cy< E 0 [W] iff 3q r l*o= E 0 [W] .

Two terms A and B are said to be E-unifiable iff there exists ~r in ~ , such that era =E 6B.

U E (A , B) denotes the set of all E-unifiers of A and B. Let W be a finite set of variables con-

taining V --- V(A) ~ V (B). We say that a set of substitutions Z is a complete set of unifiers of
A and B away from W iff:

(i) V ~ Z D (o ') c V & l(er) n W = ~ (protection of W)

(ii)]E c U E (A , B) (correctness)

(iii) V ~ ~ U E (A, B) 30 ~ Z 0 <E ~ iV] (completeness)

In addit ion, Y is said to be minimal if and only if it also satisfies the condition:

V ~ . 0 ~ E (s :~0 ~ (rT" E 0 iV] (minimality)

Narrowing Derivations for Term Rewriting Systems 323

An E-unification procedure is complete if it generates a complete set of E-unifiers away from
W for all E-unifiable input terms, and is complete and minimal if it generates a complete and
minimal set of E-unifiers away from W for all E-unifiable input terms. We also use the terms
completeness and minimality when it is understood that certain conditions have been imposed
on the input terms.

Given two terms A and B such that V(A) ~ V(B) = O"t', a substitution (r is said to be an E-
matcher from A to B iff ~ (A)=E B. In the same way as for E-unification we compare E-
matchers by ---E [V] and define complete (and minimal) sets of E-matchers and complete (and

minimal) E-matching procedures.

2.4 DEFINITION. A term rewriting system (or rewrite system) is a set of directed equations R
= {c~ i --~ [3 i } such that variables appearing in [3 i must also appear in c~ i. c~ i ---) 13i is called a
rewrite rule,

The reduction (or rewriting) relation --~'~ associated with R is the finest relation over
T(F, V), containing R and closed by substitution and replacement. Equivalently, we say that a
term A reduces to a term B at occurrence tt and write A ---/~ B iff:

3c~ k-~13k ~ R 3q 3 u ~ O (A) Alu = r l (a k) & B =A[u~rl(13/~)l.

From now on we will use ~ for ._.>R. We denote by -~ the reflexive, transitive closure of --->.
The symmetric closure of --~ is denoted by ~-->, which is the same as the E-equality =E, when R

is considered a set of equational axioms. I fR = {cz i ----> [3 i } is a term rewriting system, we then

say that R describes the equational theory E = { o~ i = 13i }.
A term is said to be in normal form if it is not reducible. A substitution is normalized if each

substitute wherein is in normal form.
A term rewriting system R is said to be canonical iff --~ is noetherian, i.e., there does not

exist any infinite derivation sequence: A 0 ~ A 1 ~ and --~ is confluent, i.e.,

V A , B , C (A ~ B & A - ~ C) ~ 3D (B -~->D & C --~D).
An equivalent characterization of the confluence property is the Church-Rosser property:

V A , B A = E B ~ 3D (A - ~ D & B 2.>D).

When a term A reduces to a term B at occurrence tt using the rule cz~. ---> [3 k in R, we also

write A -">[u, k 1 B or A --4[u" %..,13~] B (or A -->u B for abbreviation) to denote a reduction

step. In this case, u is called a redex of A. A sequence of reduction steps is called a reduction
derivation. For notational convenience, we sometimes write A o 2">[u, g 1 An (or A 0 2->u An for

abbreviation) to denote A 0 --->[,q~, k0] " " ' -->['~n-i, k,-t] An' where [U, K] denotes the sequence

of [u i , k i 1.

REMARK. The difference between the reduction relation and reduction derivation should be
noticed. In particular, for any relation A0--% A,~ there may be more than one reduction deriva-
tion leading A0 to A, .1: In this paper we mainly deal with derivations which are notationally

distinguished from the relation by attaching the occurrence and rule associated with the reduc-
tion step, such as --*[u, k]" [u, k] is omitted only if no confusion arises.

+ The requirement that W(A) n W(B) = ~ is not a limitation on practical applications of matching, and is to avoid
some of the subtleties brought up by more general definitions. See Burckert et al. (1987) for details.

In the case of left-linear, nonoverlapping systems (see the next definition), derivations were nicely expLained by Huet
(1986. 1987) in terms of a categorical structure.

324 J.-H. You

2.5 DEFINITION. Given a term rewriting system R and a set of function symbols F (constants
are treated as 0-nary functions), F is divided into defined function symbols, denoted by Fo,
and constructors denoted by Fc. An n-ary function symbol f is in FD iff there is a rule of the
form f (t I tj~) ---> [3 in R. Otherwise it is in F c .

A term rewriting system R is said to be left-linear if no variable appears more than once at
the left hand side of any rule.

A term rewriting system R is said to be nonoverlapping if for any two rules ct i ~ [3 i and
O'-j ~ ~j in R (with variables properly renamed such that V (a i) n V (~ i) = ~) , and for any
U ~ O(ezi), (Zi/ll and ctj have no common instance, except when u = e and i = j . This is also
called nonambiguous or superposition fl'ee in the literature.

A term rewriting system R is said to be constructor-based if it is left-linear, nonoverlapping,
and has no defined function symbols appearing in the inner part of the left hand side of any
rule,

Finally, a narrowing step from a term A to B at occurrence u ~ O (A) using 0t I. ---> [3 k in R

is denoted by A ->[u , ~. P] B or A - > [. . at~[3k" lal B (or A ->~ B for abbreviation), where

V(A) n V (~ k) = ~ , p is the most general unifier of A/u and cc t , and B = 9(A [u ~---~ 1). A
sequence of narrowing steps is called a Jtarrowing derivation. We may denote a narrowing
derivation

A 0 ->[uu. kt~. pJ >[u,s-I' kn-l" Pn-I] An

byA 0 *> A n , where [U, K, cy] is the sequence of [u i k i, pi] and o = P,t-I'..-'P0. - [U. g,ol

3. Outer Reduct ion and Outer N a r r o w i n g

In this section we are going to establish the following result for constructor-based term
rewriting systems: for any narrowing derivation

A o ->[u~, k~, P0] >Inn-I" k~-l" 9~-11 An '
there exists an outer narrowing derivation

A 0 = Bo ~->[vo, io ' yl~] >b',~,_ t, %-i, Y,,-i I Bin'

such that there exists a substitution 0, 0(B m) =A,F and 0,ym_l.....yo = P,- i ' . -- 'P0, when res-
tricted to V(Ao). This will be proven by establishing the following results: we show in Subsec-
tion 3.1 that for every reduction derivation there exists an outer reduction derivation, and in
Subsection 3,2 that for every outer reduction derivation there exists an outer narrowing deriva-
tion. Since for every narrowing derivation there exists a corresponding reduction derivation, we
conclude that every narrowing derivation is subsumed by an outer narrowing derivation. In
Subsection 3.3, we will provide a detailed comparison of outer narrowing with Reddy's lazy
narrowing, Fribourg's innermost narrowing and the works on basic narrowing by Hullot and
Rdty.

Since we are primarily interested in the bindings for the variables occurring in the given
term, we will assume, for notational convenience, that the substitution (5 generated by a nar-
rowing derivation C o - > l u , x. ol Cm is already restricted to the variables in Co whenever it is
referenced. Also, because constructor-based term rewriting systems are a subclass of closed
linear term rewriting systems that were studied by O'Donnell (1977), it is convenient to use
some of the properties possessed by closed linear systems. We hence introduce the class of
closed linear term rewriting systems and outer reductions wherein.

Narrowing Derivations for Term Rewriting Systems 325

3.1 OUTER REDUCTION IN CLOSED LINEAR TERM REWRITING SYSTEMS

In this section we essential ly use the closure property to show that an arbitrary reduction
derivation of a closed linear term rewriting system can be rearranged to yield an outer reduc-
tion derivation.

When a term A is rewritten to yield a term B, some o f the subterms in A might reappear
(perhaps more than once) in B . The residue map defined below is intended to capture this rear-
rangement process by mapping each occurrence v in a term A to a set of occurrences in B
which are "images" of v under the rearrangement.

3.1 DEFINITION. The residue map r with respect to a left-linear term rewriting system R is a
function defined as follows:

t'or all v E D (A)

r [A -~[u.k] B lv

= {u.w.(v/v') I 3v" c t t . (v")~ VCct k) & otkCv")= 13kCw) & u.v" = v ' } i f v > u

= { v } i f (u < > v or v < u)
= | otherwise

For example, with the rewrite rule f (c (.r)) ~ g (x, .v) and reduction f (c (a)) --*~ g (a , a),
both occurrences of a in .q, Ca, a) are residues of a in f (c (a)) . Note that if v is independent of
u , or v is outer to u, then the residue of v is itself and unique. The definition given here treats
redexes and other occurrences uniformly. There are two technical differences between this
definition of residue and others such as the ones by O'Donnel l (1977), Huet & L~vy (1979) and
REty (1987). First, we consider not only redexes, but any occurrence in a term. Secondly, an
outer occurrence (which may not be a redex) remains to be a residue o f itself.

The closure property, which was used by O'Donnel l (1977) to ensure the confluence pro-
perty, essentially says that inner and outer reductions can be switched.

3.2 DEFINITION. A term rewriting system R is closed l#lear iffR is left-linear and

(i) Vu,v E O (A) (v < u & A "-~r B & A -%1 C)

=* 3 D (B ---),[A -~, 8]J~ D & C "~rlA --+,, C Iv D)

(ii) Vu ~ O (A) (A --). B & A --). C) ~ B = C

The first clause essentially says that, if a term A can reduce to B at an outer redex and can
also reduce to C at an inner redex, respectively, then there exists a term D such that D can be
reduced from B by a sequence of inner reductions and from C by the reduction at the same
outer redex. Note that either of these two sequences can be a null sequence if the corresponding
set of residues is empty. The second clause says that if two different left hand sides match the
same term, then the corresponding right hand sides must be the same.

It should be mentioned that O 'Donne l l ' s definition of closure is given in terms of subtree
replacement systems and is more general in that the residue map r can be arbitrary as far as cer-
tain conditions are satisfied. The residue map r used in this paper is fixed to the preceding
definition. From now on, when we refer to the tenn closed linear it is understood that the resi-
due map is fixed as above. Notice also that a closed linear term rewriting system need not be
nonoverlapping. For example, the fol lowing system, which has been used by Fages & Huet
(1983) to show nonexistence of complete and minimal sets of E-unifiers in general, is closed
linear:

R = { a * .r ~ . r , , f (.v * 3') --+,f (y) 1.

326 J.-H. You

3.3 PROPOSITION. A telw7 rewrit ing sys tem is confluent i f it is c losed lineal'.

PROOF. See O 'Donnel l (1977).

The residue map r can be extended to show how a set of occurrences is rearranged by a
sequence &reduc t ions (also see O'Donnell 1977; Huet & L6vy 1979; R6ty 1987).

3,4 DEFINITION. Let U = { u 0 u ,_ l } and S denote A o - % u A , �9 The extended residue map
,
r with respect to S is defined as follows:

for any M c D (A ~)

~[A o - ~ u A n] M = I"*'[A,,_ l "--> u,,_~ A,,]~'[A o Y->U' A,, _I]M

where U' = {u0 un_2} & n > 1

~'[Ao - % A I]M = k..)vE M r [A o - - % , A i]v

We say that w is a residue of v. with respect to A o 24U A,~. iff w e ~[A 0 -%u A,] { v).

Intuitively, the above definition says that the residues of a set of occurrences are the union of
the individual residues, and that a residue yielded by a sequence of reductions is the cascaded
residue yielded by the individual residues in the sequence.

Before defining outer reduction we need to define an ordering on independent occurrences.

3.5 DEFINITION. Let A be a term. Two occurrences ir and w in O CA) are said to be left
independent , denoted by u <>l w, iff u <> w and u <h,x w , where <t,,.v is the lexicographic
ordering on I*.

For example, with the terrn f (g (a), b) , we will have 1 <>f 2 and 1.1 <>/ 2. Left indepen-
dence is a slightly generalized version of Prolog's leftmost computation rule which deals only
with the flat structure at the literal level.

Outer reduction defined below requires that an inner reduction not be performed if it is fol-
lowed (may or may not be immediately) by an outer reduction and it does not contribute to the
reducibility of that outer reduction. In addition, independent reductions should be ordered by
<>/ .

3.6 DEFINITION. A reduction derivation S: A o -->[~q~. % ~ 1 " " " --)i %_i, ct,,-i ~ , , -i1 An is

said to be outer iff
Ca) for any u i in S , if quj in S, j > i, which is the closest to u i, such that 3w ~ OCA i) ,

,a' < u i and Uj is a residue of w; then qv ~j((IIit~').V)E F & A i C u i . v) ~ F &

OCj ((u i /w).v) ~ A i (u i .v); and
(b) suppose (a) is satisfied. I f u j is a residue o f w ~ O (At) and w <> u i, then u i <>/ w.

Recall that A i (it i) denotes the function symbol at occurrence u i . {Xj((tIi/W).V) thus denotes
the function symbol in otj which, by o~j ((ui/w).1') # A i (lli .1'), disagrees with A i (it i .1'). Techni-
cally, Condition (a) says that if we try to reduce A i at an outer occurrence w by the rule

r --9 [3j., then there exists a function symbol at U i .V, which would conflict with the one,
denoted by ccjC(ui /w) .v), at the corresponding position in r Since we are dealing with left-
linear rules where each variable in the left hand side occurs at most once, failure of matching or
unification can only be caused by function symbol conflicts. Condition (b) simply orders
independent reductions to further limit possible alternative reductions from a given term.

Narrowing Derivations for Term Rewriting Systems 327

As an example, consider R = { f (a , b, x) --a true, g (c) ---> a, h (a) --* b }. The reduction
sequence

f (a, b, g (c)) --*3 f (a, b , a) -'-~e true

is not outer because it violates Condition (a). The reduction sequence

f (g(c) , h(a) , c) - -) 2 f (g(c), b , c) - -) l f (a, b , c)

is not outer either, since it violates Condition (b).
Note that outer reduction does not correspond to the well-known outermost reduction rule,

by which only outermost redex occurrences can be used. For example, with the preceding term
rewriting system, the following derivation is outer though it is not outermost (it does not even
reduce the term to its normal form):

f (a, b , g (c)) ~ 3 f (a, b, a).
The definition of outer reduction used in this paper is essentially equivalent to the one called

outside-in reduction by Huet & L6vy (1979) for the class of/eft-linear, nonambiguous term
rewriting systems. We present similar results below under a slightly less restrictive condition
by the closure property.'l"

Our interest in outer reduction lies in the following fact: for any reduction derivation A -~
IV, KI B of a closed linear system, there exists an outer reduction derivation A "2-~[v ,.tl B. This
can in fact be obtained from the closure property.

3.7 LEMMA. Let R be a closed linear term rewriting system. For any pair of reductions

S : A --~[u, i I B --->b', j I C

there exists an outer reduction derivation A -%u C.

PROOF. If S is already outer nothing needs to be done. If v <>/ u then switch the two reduc-
tions. In the case v < u and A is reducible at v by the j - th rule, using the closure property we
get

S ' : A --->b',Jl B' 2-->r[A "*r B'I,~ C.

Since all of the occurrences in r[A - % B']u are mutually independent, r[A - % B']u can be

ordered by <>/.

3.8 LEMMA. Let R be a closed linear term rewriting system. For every reduction derivation
AO "~ [U, Ki An' there exists an outer reduction derivation A o = B o -% IV,J] Bm such that

Aiz = B m .

PROOF. The outer reduction sequence Bo -~[v,J] Bm is actually a "sorted" sequence of the
given sequence A o -%[u, KlAn with some reductions at inner occurrences duplicated, because

reductions at outer occurrences are performed before inner reductions whenever possible. We
show this by induction on the number of reduction steps in the given derivation. By definition
any singleton is outer. Assume that Bo -~[Vl,,ll] •l is an outer sequence for A o -~[gi. Ki] A i,

where A i = B I , and show that there exists an outer sequence for A o -%[ui, Ki] Ai --->[ui. ki] Ai+l.

For this purpose, move the last reduction B I --)[ui.kil Ai+l in Bo -%[vi.Ji] B l --->[ui.ki] Ai+ 1 to

the left as far as possible using Lemma 3.7 (the number of steps is at mos t /+1) . The rearranged
sequence B0 -%[v/+l.jt+l I Ai+ 1 is obviously outer.

t Huet and LEvy (1979) mentioned the question about whether the nonambiguity condition was necessary in iheir ap-
proach.

328 J.-H, You

3.2 SUBSUMPTION OF NARROWING BY OUTER NARROWING

In order to define outer narrowing and establish its relationship with outer reduction, we
need to keep track of subterms that are rearranged by narrowing derivations. We thus define a
residue map for narrowing derivations.

3.9 DEFINITION. The residue map n with respect to a narrowing step is defined as follows:

n[A - > [u , k , p] B] v =r [p(A)- - -) fu ,k lB]V v ~ O (A)

The extension of n to a narrowing derivation, denoted by p~, is similarly defined:

~[Ao--*>[U.lC.~IAnlM =*[r M G O (A o) .

We say that w is a residue of v, with respect to Ao --*>IU.K.vlAn . iff

w E ;~[Ao *> A , l{v }. [U,K.~I

Note that ~ is well-defined since for every narrowing derivation A 0 - > [u, K, c~I An there
always exists a reduction derivation o f the form ~(A o) 2-~[u, K l An .

Outer narrowing is also defined with respect to narrowing derivations, which, as in the case
of outer reduction, essentially says that no later narrowing steps can be performed earlier in the
sequence.

3.10 DEFINITION. A narrowing derivation

S : A 0 ->[u o. ao-~o, P~ll >[u,-I" % , - l - ' - ' ~ n - I " P.-I] An

iS said to be outer iff
(a) for any u i in S , if 3u j in S, j > i, which is the closest to u i, such that 3u' ~ 0 (A i),

w < u i and uj is a residue of w (with respect to S) ; then

3l' o ~ j ((u i l w) . v) E F & A i (t t i . v) ~ F & (x j ((u i / w) . v) ; ~ A i (u i . v); and
(b) suppose (a) is satisfied. I f u j is a residue o f w E (A i) and w <> tt i , then u i <>/ w.

We give two terminologies below that will be frequently referenced in the rest of this paper.

3.11 DEFINITION, A term is called a constructor term if it contains constructors and vari-
ables only. A substitution o = {x I/t l x n/ tn} is said to be cons truc tor-based if all o f t i ' s are
constructor terms.

3.12 LEMMA. Cons ider a cons tructor-based term rewri t ing system R. Let ~(B o) = A o. where
A o and B o are terms and c a c'onstructor-based substi tut ion when restr ic ted to V (B o). For any
reduct ion derivat ion

(i) A o --+tuo, %-'+f~o] "" " --'~[u,_l, % , - 1 ~ , - I l An '

there exist a narrowing derivation

(ii) Bo ->[uo. %--+13o. Pal >[%-p %-V+t3,- p P,,-j] Bn,

and ~i, 0 < i < n , such that ~i is constructor-based. ~ i (B i) = A i and ~n'P, ,-1 P0= ~.
Fur thermore , i f (i) is outer then (ii) is outer.

Converse ly , for evel S narrowing derivation (ii), there exist a reduction derivation

(iii) Pn -I po(B 0) = C 0 "+[,r %-~o] ' ' " --~[u,,_ I' %,-1-+13,-zl Cn

and ~i, 0 < i < n, such that ~i is constr lwtor-based, ~i (Bi) = Ci, and B n = C n , i.e., ~n is the
identi ty substi tution. Fur t twrmore , i f (ii) is outer then (iii) is outer.

Narrowing Derivations for Term Rewriting Systems 329

PROOF. The correspondence between reduction and narrowing derivations is a well-known
result in some more general settings. The result proved by Hullot (Hullot 1980) which requires
that cr be normalized is applicable here since c is constructor-based and therefore normalized.
Here we prove that the outer properties preserve.

(~) Show that Condition (a) for outer narrowing preserves from that of outer reduction.

Let Uj be the closest to tt i such that u/ is a residue of w e O (A i) and w < u[. Then uj is

the closest to tt i such that uj is a residue of w e O (B i) and w < u i , with respect to the narrow-
ing derivation. Since (i) is outer and R is constructor-based, c~j (u i / w) must be a constructor

and A i (u i) must be a defined function: thus Ev, v = E such that c~j((ui /w) ,v):~ A i (u i .v), or
simply c~j (u i/w) ~ A i (u i). That is, matching A i/w with otj would result in a conflict at u i . We

show that (xj(ui/w) ~ Bi(ui).
First of all, the symbol A i (u i) must be a defined function symbol since A i is reducible at u i .

Because ~i is constructor-based and ~i(Bi) = A i ' we have B i(u i) =A i (u i). That is,
B i (u i) = A i (u i) :r o~j (u i /w). (The situation is illustrated in Figure 1.) Theretbre, Condition (a)

is satisfied for (ii), i.e., o~j(t t i /w)~ Bi(ui) . We conclude that (ii) is outer by observing that
Condition (b) trivially preserves.

(~) Similar and thus omitted.

B i A i (Xj

r = { - . . , x / t , . . - t

Figure 1: An illustration of the proof of Lemma 3.12.

come to the main result of this section: every narrowing

It .= It i /B '

We now derivation o f a
constructor-based term rewriting system is subsumed by an outer narrowing derivation.

3.13 THEOREM. Let R be a constructor-based term rewriting system. For eve13' narrowing
derivation

(a) Co *> C m [U , K , r

there exists an outer narrowing derivation

(b) Co ->[U', K', 0l Dn
such that 3"c. T,O = c~ and z(D n) = C m .

PROOF. Let the narrowing derivation (a) be (ii) of Lemma 3.12 without the outer assumption.
We then get (iii) from (ii). For which there exists an outer reduction derivation (Lemma 3.8)

A 0 "-4[uo, %--+13ol " " " --a[%_l, %-1-~13,-0 Al~ '

where r = Ao and A n = C m . Since R is constructor-based it is easy to show that the com-

position of all substitutions along a narrowing derivation, restricted to the set of variables in the
initial terrn to be narrowed, is constructor-based. Thus cylv(c,~ ~ is constructor-based. By Lemma

3.12 again, we get an outer narrowing derivation

Co = Do ->1"o. %---+!3., pt~l >I",,-L. %,-1--~13n-I ' 13n-I } D, , (*)

330 J . -H . You

and ~n, ~. (D.) = A . = C m such that ~n "9 . - j Po = cr, The derivation (*) is therefore the
desired derivation (b) where 0 = 9n-I PO.

3.14 COROLLARY. Let E be the set of all E-unifiers generated by narrowing on two terms P
and Q. Then outer narrowing generates Z', Z' __. X and for any (~ in Z there exists cy' in X',
(~' <E C [V (P, Q)].

3.15 EXAMPLE. Consider the following system about sum and product over natural numbers:
R = {

(1) 0 + x ~ x
(2) s (x) + y ---~s(x + y)
(3) 0 * x ---~ 0
(4) s (x) * y --+y + x * y

1.
The system is constructor-based. Suppose we want to unify the terms x l * y t and s (x t). One of
the outer derivations is given below. We use a new binary operator == to iterate the narrowing
process on the two terms,

x i * Y l = = s (x l) - > [e, 4 . (,v , /s (.v,)j]

)'l +X2 *)'l == S(S (X2)) ->[e, 2,{y,/s(y,_)}l

S (V 2 + X2 * S (V 2)) == S (S (X 2)) ->I t , 2, b',_/s (>'3)11

S (S (3'3 + Xe * S (S CV3)))) == S (S (X2)) ->f l . I, Z. :>',lOll

s (s (x2 * s (s (ODD == s (s (x2)) ~>[z. I, 3, {x_~/o)]
s (s (0)) == s (s (0))

The derivation generates s (0) for x l and s (s(0)) for y I. Note that from the term y I + x~ * y I,
narrowing on the inner term x 2 * y I using either the third rule or the fourth rule can result in an
infinite number of non-outer derivations, which, by Theorem 3.13, are all redundant.

It is important to mention that Lemma 3.12 and Theorem 3.13 may not be true of other
classes of term rewriting systems, even though Lemma 3.8 is valid for all closed linear term
rewriting systems.

3.16 COUNTEREXAMPLE. Consider the following nonoverlapping term rewriting system:

R = {f(g(d))----~true. g (c) ---)g (d)}.

With the term f (g (x)) and the substitution ~ = {x/c }, we have cr(f (g (x))) = f (g (c)) and

(i) f (g (c)) - -) f (g (d)) ~ true

(ii) f (g (x)) ->Lr/c) f (g (d)) ~>{~ true.

The reduction derivation (i) is outer while the corresponding narrowing derivation (ii) is not,
since when f (g (x)) is unified with f (g (d)) no function symbol conflict exists. It is easy to
check that this narrowing derivation is not subsumed by any outer narrowing derivation.

3.3 COMPARISON WITH OTHER NARROWING METHODS

LAZY NARROWING. Reddy (1985) defined a denotational semantics for the purpose of
extending functional programming to functional logic programming. Under this semantics, the
notion of equality is based on an equality function: two terms (called expressions) are
equivalent if their denotations are the same. A lazy narrowing strategy was outlined in terms of
a demand-driven unification algorithm. The key step in the algorithm is Step 2:

Narrowing Derivations for Term Rewriting Systems 331

"when one of the two expressions to be unified has a function application at the
outermost level, then it is narrowed until it has a constructor at the outermost level."

We should notice that the phrase two e.~pressions above may actually refer to subexpressions
of the given expressions, and the outermost function symbol of a subexpression may not neces-
sarily be an outermost redex of the whole expression at which narrowing is possible. Thus lazy
narrowing is not the outermost narrowing strategy which ignores narrowing steps at all inner
occurrences. It can be shown that a lazy narrowing derivation is an outer narrowing derivation
but the reverse may not be true. Phrased in other words, lazy narrowing is outer narrowing with
every defined function symbol eventually disappearing. As an example, consider

R = { f (a , y) - - -) y , g (c (x)) - - ~ g (x) , g (b) - - -) d }

and unification o f f (z I, z2) and g (z3). From the following outer narrowing derivation

f (z I, z2) == g (z3) ->[e.f~a,y) ~) ' , {: doll z2 == g (z3)

we get an E-unifier {z n/a, z2/g (z3)} for the two given terms. Because any narrowing on g (z 3)
can only generate compared but less general E-unifiers, these derivations can be dropped.t

The derivation above, however, is not a lazy narrowing derivation. First, g (z3) is not an
expression having a constructor at the outermost level; and secondly, a solution containing
zz/g (z3) is not admissible by Reddy's denotational semantics. Thus, lazy narrowing will carry
out narrowings on g(z3), producing an infinite number of solutions. As the reader can see,
outer narrowing is operationally similar to lazy narrowing. The major difference between the
two stems from the difference of the underlying semantics; lazy narrowing is aimed at comput-
ing denotations of expressions, while the purpose of outer narrowing is to generate unifiers
modulo an equational theory. Lazy narrowing does not yield a complete procedure for E-
unification and was not designed for that purpose. Our results show that a form of lazy strategy
can be adopted for E-unification without losing completeness for constructor-based term
rewriting systems.

INNERMOST NARROWING. We will restrict our discussion to the unit case corresponding
to term rewriting systems, though Fribourg's results on innermost narrowing (Fribourg 1985)
were obtained for the general case of equational Horn clauses.

A term f (t i t n) is said to be innermost if all t i 's are constructor terms and f is a defined
function symbol. Given a term, the innermost narrowing strategy selects an innermost term to
narrow. The essential condition for completeness is called well-innermost-reducing, which
requires that every ground innermost term be reducible. We have seen at the outset of this
paper that

f (g (x), x) ->[z t'Cv a) --> true, Ix~all true
is not innermost, and its omission results in loss of a solution. The problem is that f (g (a), a)
is not well-innermost-reducing, because g (a) is not reducible. Though a number of sufficient
conditions were given by Fribourg to guarantee well-innermost-reducing, it appears difficult to
mechanically check the satisfaction of these conditions in general, since all of them must be
satisfied for all (ground) terms. The difficulty stems from the fact that functions, as defined by
rewrite rules, are often partial functions over the domain of terms. For example, a rule such as
g (b) ---) c defines a partial function on the set of terms. When such rules are present in the
program, completeness can be easily lost. In practice, however, many programs do define total
functions.

Note that outer narrowing does not automatically prune this type of search space and should be used in combination
with other methods such as recurrent description of sets of E-unifiers (Rrty et al. 1985).

332 J.-H. You

When innermost narrowing is complete, an innermost narrowing derivation is in general
shorter than the corresponding outer narrowing derivation that generates the same solution,
because innermost narrowing avoids repeated evaluation of inner terms. However, the converse
may also be true when variable-dropping rules are present in the program (a rewrite rule
o~ ---) ~ is variable-dropping if V([3) c V(ot)). For example, with the rewrite system given ear-
lier (Example 3.15), we have

innermost: x * (0 + y) ->[2, 1, {)l x * y ->[E, 3, {.v J011 0

outer: x * (0 + y) ->Is, 3, tx/Ol] 0

BASIC NARROWING. The idea behind the concept of basic narrowing (Hullot 1980) is to
avoid narrowing steps (and then subsequent sequences) on subterms that are introduced by
instantiation. Rfity (1987) discovered that the "basic" concept did not automatically extend to
nopwTalized narrowing (i.e., every narrowing step is followed by simplification), and showed a
method to compute the basic occurrences which preserve the completeness of the solution set.
Since we deal with constructor-based systems in this paper, all the substitutes generated by any
narrowing step for the variables appearing in the given term must be constructor terms and thus
not narrowable. Therefore, any narrowing derivation in this class is trivially basic.

In his paper, in order to compare various narrowing methods, Rfity established a general
commutation result of narrowing for arbitrary term rewriting systems. The term commutation is
similar to what we have called rearrangement. To deal with non-left linear systems, R6ty intro-
duced the dual of residual notion, called antecedent, and extended it to narrowing. Our
definition of residue map allows outer occurrences to be carried over to be residues when
rewriting (or narrowing) is performed at an inner occurrence. Thus if we have a reduction
t --~v t' where u < v for some u in O (t), a residue of u may not represent the same subterm
as u; i.e., if u ' 6 0 (t ') is a residue of u, t'/u' may not necessarily be identical to t /u, Rfity's
definition disallows u to be an antecedent of u'. Our definition of residue allows us to describe
formally how narrowing steps at outer occurrences can be "moved" to the front of a narrowing
sequence. However, it should be emphasized that this rearrangement is achieved under the
strong restriction that the underlying term rewriting systems be constructor-based.

4. Complete and Minimal Sets of E-Matchers

In this section, we apply the result of last section to the following E-matching problem:
given a constructor-based rewrite system R and two terms t~ and t~ with disjoint sets of vari-
ables, where t2 is a constructor term, find a complete and minimal set of E-marchers from t l to
t2. This special case of E-matching may arise in practice: for example, compute pairs of values
for x and y such that their sum is equal to a certain natural number by the familiar rewrite sys-
tem:

R ={0+x---~.~ ' , s (x) + y - - - > s (x + y) } .

We first show that for this matching problem unrelated outer narrowing derivations generate
uncompared E-matchers, i.e., no one is more general than the other. Based on a known result of
closed linear term rewriting systems (You & Subrahmanyam 1986b) and the result of last sec-
tion on the subsumption of narrowing by outer narrowing, we conclude that outer narrowing
generates complete and minimal sets of E-marchers.

4.1 DEFINITION. Let A 0 be a term and cYl and cY2 be normalized substitutions. Two reduction
derivations cYl(Al~) 2-~[U,, K,I C l and c2(A 0) YblU,. x:] C2 are said to be tmrelated if [U I, K l]

and [U2, Kz] are no prefixes of each other.

Narrowing Derivations for Terra Rewriting Systems 333

�9 . . ~

Similarly, two narrowing derlvatmns Ao ->lug, K,, ad C i and A 0 ->[U.,, g2, ~-.l C~ are said to

be unrelated if [Ut, K l] and [U2, K2] are no prefixes of each other.

The two lemmas below are prepared for Theorem 4.4 in which we will show unrelated outer
narrowing derivations must generate uncompared E-matchers.

4.2 LEMMA. Let R be a constructor-based term rewriting system, P a term, and C a
constructor-based term. For any normalized substitutions crt and or2 and outer reduction
derivations

(i) ch (P) -Z>rU,K] C

(ii) o'2(P) "~[V, Jl C

(i) and (ii) are urn'elated ~ ch > or2 and c2 ?k or1.

PROOF. Assume cr~ _< o2. The proof is similar for the symmetric case c~2-< cry. From this
assumption and the fact that at and (~2 are normalized we have

3'c, "c is normalized and "c.cl = ~2.
For any reduction derivation reducing a term to a constructor term, the outermost defined func-
tion symbol(s) must be reduced eventually, possibly repeatedly. Thus (i) and (ii) can be
divided into sub-derivations of the form

(i') cYl (P) = A o 2->[U., g0] ' " ' -~[U,t_r K,,_I] A , = C

(ii') o2(P) = "c'al(P) = Bo -%Wo, Jol ' ' " "~[Vrn-l,Jm-I] Bm= C

such that the last reduction in each sub-derivation, say

Ai -~[Ui, Kt] Ai+l,

occurs at u ' , where u' is a (unique) residue of u, A i (u) is a defined function symbol and for

any occurrence v, i fAi(v) is a defined function symbol then u <> v or u < v,

Because (i') and (ii') are unrelated, there exist nonempty sequences [U i, K i] and [V i, Ji]

such that [U i , K i] :~ [V i , J i 1' Let [U i , K i] and [V i , J i] be the first such pair that occurred in the
two derivations (i') and (ii'), respectively. Since the reduction steps before i are the same for
both derivations (at the same occurrences and using the same rules), it is easy to show that
B i = ~(Ai). Thus, by the definition of outer reduction, the last reduction step in A i -~

[Ui,KilAi+I and the last reduction step in B i -~[vi,jilBi+l will take place at the same

occurrence, say u, in order to change the same function symbol A i (u) = B i (u). Let f = A i (u)

= B i (u) . Now these two reductions will use either the same rule, or different rules defining f .
Case a: using two different rules.
Let the rules be ocj --9 [3j and o~/ ~ 13/. Because R is constructor-based (and thus left-linear

and nonoverlapping), 3v, O.j(~') and c~l(v) are two constructors such that o~j(v) e otl(v).

Denote the subterms with these two constructors as the principal functors by c (t) and d (s) ,
respectively, and assume they are a pair of outermost disagreed constructors, which always
exists�9 By the definition of outer reduction again, there exist two outer reduction derivations

Ailu & c (t) and Bi/u - ~ d (s) .

From which it is easy to show by induction that for any "~, "~(A i/u) ~ 1:(c (t)). From B i = "c(A i),

we have B i/u = ~(A i/u). Therefore "c(c (t)) ~ , d (s), i.e., "c(c (t)) =E d (s). However, the con-

structors c and d cannot be changed. That is, "c(c (t));e d (s) and there do not exist reductions
Ieading them to an identical term. This contradicts the Church-Rosser property.

334 J.-H. You

Case b: using the same rule.
Let the rule be otj ~ 13j. In this case. the two very last reductions take place at the same

occurrence and using the same rule. By the definition of outer reduction and the assumption
[Ui, Ki] ~: [Vi, Ji], we will end up reducing both A i and B i at u.v, where A i (u.v) and B i (u.v)
are the rightmost outermost defined function symbols such that A i (u.v) = B i (tt. v) ~: ~ j (V); oth-
erwise we would have [U i, Ki] = [Vi ,Ji] = {[u, j]} . We thus have sub-derivations issuing
from Ai/u.v and Bi/u .v . Since there are only a finite number of reductions in [U i, Ki] and
[Vi, Ji], continuing in this way it will eventually either give us two identical sequences, which
contradicts the assumption [U i , Ki] ~- [Vi, Ji], or lead to Case a.

Therefore, crl < c2 cannot be true.

4.3 LEMMA. Let R be a constructor-based term rewriting system, P a term, and C a
constructor-based term. Let C] and C 2 be instances o f C, and "ci and ~2 be substitutions such
that z i (C I) = C and ~2(C z) = C . Then for any two outer narrowing derivations

(i) P *> C - [U,.K~.~I] 1

(ii) P *-> C-, - [U_,, K,_, a:] -

(i) and (ii) are unrelated ~ xj,cr I > r.2.~2 and x2"~2 :~ "q.o~.

PROOF. Notice that "qmr t and "c2.r 2 are both constructor-based. (Recall that we have assumed
that oh and r are already restricted to V(P) .) Based on Lemma 3.12, for the two given outer
narrowing derivations, we have two outer reduction derivations

~ l (P) -~[U,.K,ICt and cY2(P) 2-~[U._.K,_IC2.

From which we can get

"q.offP) -~[u,, x,l z~(C l) = C

1:2"O~(P) '~)[U_~. K.,I z2(C2) = C.
By Lemma 4.2 we have z~,ot ~ "~2*(Y 2 and q~2~ 2u Ti,O" I.

4.4 THEOREM. Let R be a constructor-based term rewriting system, P a term, and C a
constructor-based term. Let C i and C 2 be instances of C, and "cl and "c~_ be such that
"cl(C I) = C and ~2(C 2) = C. Then for any two outer narrowing derivations

(iJ P ->[Ut, K ,a , l Cl

(ii) P ->[U.,, X.,, a2] C2

(i) and (ii) are urnelated ~ Zl'O1 ~E Z2 ~176 [V (P)] and z2"o2 ~E ZI'OI IV (P)].

PROOF. Suppose x t ' o l <E z~.r [V (P)] . The proof is similar for the symmetric case. Since
"q.o~ and "~,-o~ are constructor-based, 3~:, ~ is constructor-based and ~:"q~ =E Z2~ [V(P)].

Now both ~c-'t~.~ and z2.0 2 are constructor-based, we then must have ~:"q'a~ = z2"o2, i ,e . ,
"q "o'i -< "~2~ which is not possible by Lemma 4.3 .

It remains to show that outer narrowing generates complete sets of E-matchers, First, we
have a completeness result for the class of closed linear rewrite systems.

4.5 LEMMA. Let R he a closed linear term rewriting system, Po a term and C a constructor-
based term, For any E-matcher (r fi'om Po to C, there exists a narrowing derivation

P0 -> [u0 , kr , P0] >[t"n-l ' kn-l" Pn-l] Pn
such that ~ ' P n - l ' " " 9 o <E O [V(P0)], where ~ is a most general match from Pn to C.

Narrowing Derivations for Term Rewriting Systems 335

If R is also terminating the lemma easily follows from Hullot's results (Hullot 1980). A
closed linear term rewriting system, however, need not possess the termination property. In
You & Subrahmanyam (1986b), we defined a transformation process whose termination
guarantees the existence of the corresponding narrowing derivation. The transformation pro-
cess trivially terminates for the case discussed here simply because C is not reducible and R is
strictly left-linear, The details are omitted here,

4.6 LEMMA. Let R be a constructor-based term rewriting system, P a term and C a
constructor-based term. Let P ~> <r B be a narrowing derivation such that B is matchable to

C. Let ~B. be a most general match f rom B to C. Then there exists an outer narrowing deriva-

tion P - > 0 D , such that i f ~l) is a most general match fi'om D to C then

~D "0 <E ~B .or [V (P)1.

PROOF. By Theorem 3.13, the outer narrowing derivation exists and 3z, "c.0=cr and
x(D) = B . Hence, ~n .'c(D) = ~B (B) = C. ~8 -x is therefore a match from D to C. However,
since ~o is a most general one, we have

~D <-~B "T" ==~ ~D'O<-~B*T"O=~B "(I ~ ~D'O<-E ~B ~ [V(P)].

The interest of the lemma blow lies in the fact that for any pair of narrowing derivations, nei-
ther can be a prefix of the other: they must therefore be unrelated. The proof is obvious.

4.7 LEMMA. Let R be a constructor-based term rewriting system, P be a telw7 and C a
constructor-based term. Assume P is matchable to C, i.e., there exists r ~(P) = C . Then P is
constructor-based and not na~v-owable.

We now give the main result of this section.

4.8 THEOREM. Let R be a constructor-based term rewriting system, P be a term and C a
constructor term such that V (P) ~ V (C) = ~ . Let W be a set o f variables containing V (P)
but disjoint with V(C) . The set of all outer narrowing derivations issuing f i o m P yields a
complete and minimal set o f E-marchers from P to C , away from W .

PROOF. The correctness of outer narrowing for the E-matching problem considered here fol-
lows from Hullot (1980). Narrowing is complete (Lemma 4.5). For any E-matcher generated
by a narrowing derivation, there is an outer narrowing derivation generating a more general E-
matcher (Lemma 4.6); thus outer narrowing is complete. Any two E-matchers must be gen-
erated by two unrelated outer narrowing derivations (Lemma 4.7). Any two unrelated outer
narrowing derivations must generate uncompared E-matchers (Theorem 4.4). Therefore, if Z is
the set of E-matchers from P to C, generated by outer narrowing derivations, then 1; is a com-
plete set and

V0h 02 ~ Z, 0t ~ 02 ~ 0t ~'~: 02 [V(P)].

We conclude the proof by observing that W can be easily protected by introducing disjoint
sets of variables in each hartowing step.

Note that for this E-matching problem, the E-matchers obtained by outer narrowing are all
constructor-based.

The following statement directly follows from the above result: given two terms P and C,
where one of them is a ground constructor term, outer narrowing generates a complete and
minimal set of E-unifiers for P and C.

336 J.-H. You

5. A Pattern-Driven Procedure Enumerating Outer Narrowing Sequences

The procedure is presented in the form of solving systems of equations, following Martelli
and Montanari (1982) (see also Herbrand 1971). However, the assumption of constructor-based
term rewriting systems can simplify a number of processes.

An e q u a t i o n t = s is in s o h ' e d f o r m f o r m a t c h i n g if t is a variable, and is in s o l v e d f o r m f o r

u n i f i c a t i o n if either t or s is a variable. An o r d e r e d system of equations is in solved form for
matching if every equation wherein is in solved form for matching and has no variable in the
left hand sides appearing in other equations. An ordered system of equations is in solved form
for unification if every equation wherein is in solved form for unification and has no variable
appearing in other equations.

Given a term P and a constructor term C, we would like to find all outer narrowing deriva-
tions P *> C ' , where C ' is syntactically matchable to C. It should be kept in mind that we are
dealing with constructor-based systems, in which the left hand sides of rules are linear and not
possibly narrowable. We first give three auxiliary procedures in Figure 2. The procedure
t r ans fo rm syntactically transforms an ordered system of equations, preserving the ordering
according to <>t. From a solved system of equations, a match is obtained by get-match and a
unifier by get-unifier.

t r ans fo rm(EQ):
where E Q = { t l = s l t . = s . };
Repeat

I f the i-th equation in E Q is of the form g (1 ~ lm) = g (I'1 l ' m), t h e n

E Q : = { t I = s 1 t i - 1 = s i - 1 I I = I' I lm = l'm ti + 1 = s i + 1 tn = s . } ;

I f 3 x i = s i e E Q where xj is a variable.
t h e n substitute s i into any other occurrences of%.

End repeat;

return EQ.

get -match(EQ):
where E Q is in solved form for matching;
c:={);
F o r eachx i = t i in E Q . compose {.ri / t i } into c~;
return (y.

get-unifier(EQ):
where E Q is in solved form for unification;

~:={t;
F o r each.% = t i or t i = x i in E Q . where .% is a variable

compose { x i / t i } into a;
return ~.

Figure 2: Auxiliary procedures.

Since we are interested in the matching problem from a term P to a constructor term C of
disjoint variables, it is safe to technically treat the variables in C as "constant" symbols. This
allows us to use the procedure t rans form for both (syntactic) unification and matching pur-
poses.

Note that in the procedure t rans form we do not need to consider substituting the variables in
right hand sides of equations. This is due to the way that the procedure is used: the right hand

Narrowing Derivations for Term Rewriting Systems 337

side of an equation is extracted either from the left hand side of some rule which is linear, or
from the given constructor term.

Before describing the procedure solve in Figure 3, we give a definition.

5.1 DEFINITION. Given a term rewriting system R = { aj --) ~]j }, we denote by f i the func-
tion symbol f defined by the i-th rewrite rule. Thus, i f f is defined by more than one rule it
will have different subscripts. We define a binary relation Xe as follows:

(a) Let f (t l tn) -4 g(sl Srn) be the i-th rule in R. Then < f i , g > ~ Xn if g E F c ;
and < f i , g.i > ~ XR if the j-th rule defines g .

(b) Let f (t t t n) ---) x be the i-th rule in R where x is a variable. Then for any c E F c ,
<fi, c> ~ Xn ; and for any g E Fo, <fi , gj > E X R if thej-th rule defines g .

(c) Xn is the smallest relation satisfying (a) and (b).

We will denote by xtn the transitive closure of Xn.

Note that xtn is finite for finite R and F . It is clear that for any defined function symbol f
and constructor c , an equation of the form f (..3 = c (...) has a solution, only if there exists
<fi, c > ~ x tk , for some i. For example, with the following rewrite system

R = { length ([]) --~ 0, length (x.y) ~ s (length (2,'))}

we have xtn = { <length l, 0>, <length 2, s > }.
The procedure solve(EQ, 9, I]) in Figure 3 tries to syntactically solve a system of equations;

if the attempt is unsuccessful it then invokes the procedure ou te r -na r row(t , c) and finds the
rules that can possibly narrow the term t to the one with c as the leftmost symbol. The param-
eters in solve are used for the following purposes: EQ holds the system of equations to be
solved; 9 is the composition of the unifiers recursively obtained from syntactically solved
(sub)systems of equations; and ~ the right hand side of the rule used by the procedure outer -
narrow. Initially, the procedure is invoked by soive({P = C }, {}, _1_), where {P = C } is the
original system of equation for the E-matching problem from a term P to a constructor term C ;
{ } is the empty substitution; and I indicates that no rewrite rule has been used.

Notice the pairs of elements returned by solve as intermediate results: the first component
holds the right hand side (with the unifier applied) of the rule employed by ou te r -na r row, and
the second the accumulated unifier generated from solving the corresponding (sub)system of
equations.

When a system of equations is not syntactically solvable, the procedure ou t e r -na r row(t , c)
is called, which tries to change the term t to the one having c as the leftmost symbol. For each
newly formed system of equations, if it is syntactically solvable the execution returns to solve
to see if the modified system of equations is syntactically solvable; otherwise, o u t e r - n a r r o w
will be called recursively, These two procedures recursively call each other until the generated
systems of equations are either solved or cannot be solved for the reason of constructor conflict.
The procedure solve is not guaranteed to terminate in general since we are dealing with a
semi-decidable problem. Note that nondeterminism can only be introduced by the procedure
outer-narrow. In addition, the relation xte further cuts down the degree of nondeterminism.

For each successfully computed E-matcher, we can construct a narrowing derivation as fol-
lows, A syntactically solved system of equations returned from each call of o u t e r - n a r r o w
corresponds to a single narrowing step. Since we are using left-linear rules, it is easy to see that
cyclic equations (i.e., a variable is equated to a term containing itself) cannot be generated and
as a consequence, failure of unification can only result from function symbol conflict(s). Also,
the unifier obtained from a syntactically solved system of equations is obviously most general
for the term and the left hand side of the rule.

338 J.-H. You

solve(EQ, p, 13):
where EQ is an ordered system of equations,

p the accumulated substitution and ~ either a term or _1_;
EQ" := t ransform(EQ);
I f ~ = .L and EQ' is in solved form for matching t h e n

{
cr := get.mateh(EQ');
r e t u r n c -p /*an E-matcher generated*/
);

I f 13 # _L and EQ' is in solved form for unification t h e n
{
cr := get.unifier(EQ');
return {O'([~), o'.p} /*an intermediate result obtained*/
);

O t h e r w i s e choose the leftmost equation t i = s i in EQ'

such that 3 <% (e)], s i (E)> e xtR for some j
[/*consider an equation which might be solvable*/

:= outer -narrow(t i , s i (e)), where elements in qb are of the form { [3', O };
F o r each {]3', 0} E qb do

I
EQ" := O(EQ') with O(ti) replaced by 13';
r e t u r n soive(EQ", O.p, [~)
}

}
I f none of the above applies t h e n s t o p and r e t u r n FAILURE.

o u t e r - n a r r o w (t , c):

F o r each rule o~j --4 13j e R such that <t(a) / , c > e XtR,
assuming variables are properly renamed,
form an ordered system of equations: EQ := I t = ctj];
r e t u r n solve(EQ, {},]3j).

Figure 3: The procedures solve and ou te r -na r row.

To be more precise, let us consider the calls of o . ' t e r - n a r r o w involved in the successful
computation o f an E-marcher. The order in which these calls were made can be represented by
a tree (which may not necessarily be binary), and the sequence can be obtained by the depth-
first search of the tree. In addition, a system of equations may be seen as an implicit represen-
tation of a term. Each subterm t in ou te r -na r row(t , c) can therefore be given a redex with
respect to the top level system of equations. We will omit the complex but routine construction
for this correspondence and leave it to the reader's intuition to see that this can be done. As an
example, consider a successfully computed E-matcher by the following calls of o u t e r - n a r r o w :

rl

ill2. k2, ~ _ ',]':4, (~4]

[uo, ko,~o] [ul,kl, cl] [l~'3, k3, (~3]

Narrowing Derivations for Term Rewriting Systems 339

We then have the following narrowing derivation:

P o ->[m~.k,,.~J,,] P I ~>[u,.k.cy,] P2 ->[u..k..o.] P3 ~>[u3.k~.~] P4 ~>[ll4,k4,CJ4] P5

where G i is returned by get-unifier upon the return of the i-th call of outer-narrow, Pi is
restored from the top level system of equations at that time. Since this is a successful deriva-
tion, P5 must be matchable to C with the most general match rl (returned by the first call of
solve). The generated E-matcher is therefore

lq *~4"0"3"(~2"~1"G0 I V(Po)"

Note that each recursive call of outer-narrow is due to a disagreed function symbol. It is then
obvious that A i is not narrowable at uj by the kj-th rule if ltj is a residue of some w outer to
u i. Notice also that the order in a system of equations corresponds exactly to the one deter-
mined by <>r in an outer narrowing derivation. Therefore, solve enumerates only outer nar-
rowing derivations.

Now, let us use solve as a reduction procedure. More precisely, let o be a normalized substi-
tution such that o(Ao) "~o C is outer. It is not difficult to construct a calling sequence of
outer-narrow and a calling sequence of solve connecting all reduction steps that reduce ~(A o)
to C. From the exact same calling sequences a narrowing derivation starting from Ao can be
constructed. We therefore conclude that the procedure solve enumerates all and only outer nar-
rowing derivations for the special matching problem considered in this paper.

The mechanism of solving systems of equations has also been employed in developing more
general unification procedures without the minimality result. Gallier and Snyder (1987)
developed a transformation system that is complete for all equational theories. The transforma-
tion system described in Martelli et al. (1986) aims at dealing with canonical term rewriting
systems and employs a transformation rule (among others), called "outermost term rewriting"
which has similar effect as outer narrowing. The procedure described in this section can be
viewed as a simplified version of theirs because of the restrictions imposed on the rewrite sys-
tems. However, rewrite systems considered here are not required to be terminating in general.

6. Summary and Final Remarks

We have studied a special narrowing strategy, the outer narrowing strategy, which
enumerates all outer narrowing derivations. Two results have been obtained. The first result
shows that for the class of constructor-based term rewriting systems, every narrowing deriva-
tion is subsumed by an outer narrowing derivation. This result can be seen as an extension of
Reddy's lazy narrowing strategy (Reddy 1985) in the purely equational framework. The second
result is about complete and minimal sets of E-matchers for a restricted case of the general E-
matching problem. It follows from this result that for this special matching problem, complete
and minimal sets of E-matchers exist for equational theories that can be described by a
constructor-based term rewriting system.

To our knowledge, all the known complete and minimal algorithms are based on the fact that
they terminate. The minimal sets can then be obtained from the complete sets by a filtering
process. These theories thus belong tofinitary theories (Burckert et al. 1987; Siekmann 1984).
It can be shown by an example that for the matching problem considered in this paper the class
of constructor-based equational theories belong to the class of i@nitarv matching theories
(Burckert et al. 1987; Siekmann 1984). Consider the following term rewriting system:

R = { ./'(c(,r)) ---> f (x), f(d) -~ e }.

The system is constructor-based and even terminating. However, there are an infinite number
of most general E-matchers from the term f (.r) to e, which are {.r/d }, {.v/c (d) }, {x/c (c (d))},

340 J.-H. You

... {.r tc(. . .c (d)...)} The result presented in this paper appears to be the first one dealing with
the minimality problem for classes of infinitary theories,

The approach used in this paper may be further extended with certain limitation. We claim
that for terminating constructor-based systems, the general matching problem can be solved by
the outer narrowing method. The difficulty to extend the current approach to the E-unification
problem is that two compared E-unifiers may be generated by two narrowing derivations, one
being a prefix of the other: a set of generated E-unifier is thus no longer guaranteed to be
minimal. It appears that the handling of this situation is tricky and can be costly.

We noticed that a counterexample given in Fages & Huet (1983) was a closed linear term
rewriting system; consequently, we restricted our attention to subclasses of closed linear sys-
tems. The following problem is still open: do complete and minimal sets of E-matchers or E-
unifiers exist in general for equational theories that can be described by a constructor-based
term rewriting system'?. We conjecture that the answer is yes. We further conjecture that com-
plete and minimal sets of E-matchers or E-unifiers exist even for equational theories that can be
described by a left-linear, nonoverlapping term rewriting system. We wish the work presented
in this paper provides insights into solutions to these problems. However, eve~ the existence
problem can be positively answered, developing complete and minimal procedures can be
difficult.

The rewrite systems considered in this paper are highly restricted; they only allow functions
to be defined in terms of constructors. This is inadequate for other applications such as verify-
ing properties of equational programs. This problem may be tackled along the same line as
combining theories or building unification algorithms incrementally (see, for example, Huet &
Oppen 1980, Jouannaud et al. 1983, Yellick [985). Research in this direction is needed as most
available methods work only for finitary theories.

Acknowledgments.
The author would like to thank Chung Sea Law fer helpful feedback on an early draft of this
paper, and the anonymous referees for the comments and suggestions that helped improve this
paper.

References

Burckert, H., Herold, A., Schmidt-Schaul3, M. (1987). On equational theories, unification and decidabil-
ity. Proc. RTA '87, LNCS 256. Springer-Verlag, New York.

Burstall, R.M., Sannella, D.T. (t980). HOPE user's mamml. Dept, of Computer Science. University of
Edinburgh.

Dershowitz, H., Plaisted, D. (1985). Logic programming c~,n applicative programming, Proc, Interna-

tional Symposium on Logic Programmit~g, pp. 54-67, Boston, Mass.
Dershowitz, H. ([985"1. Computing with rewrite rules, htfi, wtation and Ccmtr~l, May/June, 65, 2/3.
Dincbas, M., van Hentenryck. P, (1987). Extended unification algorithms for the integration of functional

programming into ~ogic programming. J. Logic" Prograrnmittg, September, 4, 3, pp. 199-219.
Fages, F., Huet, G. (I 983). Unification and matching in equational theories. Proc. CAAP '83. LNCS 159,

pp. 205-220, Springer-Verlag.
Fay, M.L (1979). First-order unification in an equational theory. Proc. 4th Workshop on Automated

Deduction, pp. 161-167,
Fribourg, L. (1985). SLOG: A logic programming language interpreter based on clausal superposition

and rewriting. Proc. Symposium on Logic Programming, pp. 172-184, Boston. Mass., 1985.
Gallier J,H., Snyder, W. (1987). A general complete E-unification procedure. Proc. RTA '87, LNCS 256,

pp. 216-227. Springer-Verlag,

Narrowing Derivations for Term Rewriting Systems 341

Goguen, J., Meseguer, J. (1984). Equality, types, modules and generics for logic programming. J. Logic'
Programming, 2, pp 179-210.

Herbrand, J. (1971). Sur la Thforie de la Drmonstration. In Logical Writings, W. Goldfarb (ed.), Cam-
bridge.

Huet, G., Lrvy, J.J. (1979). Computations in nonambiguous linear term rewriting systems (Part I and II),
INRIA, Le Chesnay, France.

Huet, G., Oppen, D.C. (1980). Equations and rewrite rules: a survey. In Formal Language Theory: Per-
spectives and Open Problems, R.V. Book (ed.), pp. 349-405, Academic Press, New York.

Hunt, G. (I986). Formal structures for computations and deduction. Course notes, Carnegie-MeiIon
University, May 1986.

Huet, G. (1987). A uniform approach to type theory. INRIA, Le Chesnay, France.
Hullot, J.M, (1980). Canonical forms and unification. Proc. 5th Conference on Automated Deduction,

pp. 318-334.
Jouannaud, J.P., Kirchner, C., Kirchner, H. Incremental construction of unification procedures in equa-

tional theories. Proc. l Oth ICALP, LNCS 154. Springer-Verlag.
Lankford, D.S, (1975). Canonical inference. Tech. Report ATP-32, Department of Mathematics and

Computer Science, University of Texas at Austin.
Martelli, A., Montanari U. An efficient unification algorithm, ACM TOPLAS, 4, 2, pp. 258-282.
Martelli, A., Moiso, C., Rossi, G. (1986). An algorithm for unification in equational theories. Proc.

1986 International Symposium on Logic Programming, pp. 18(/-186, Salt Lake City, Utah.
Milner, R. (1984). A proposal for standard ML, Proc. of 1984 ACM Symposium on Lisp and Functional

Programming, pp. 184-197.
Nutt, W., Rfty, R., Smolka, G. (1987). Basic narrowing revisited. Tech. Report SR-87-07, Universitat

Kaiserslautem.
O'Donnell, M. (1977). Computing in systems described by equations. LNCS 58, Springer-Verlag.
O'Donnell, M. (1985). Equational Logic as a Programming Language. The MIT Press, Cambridge,

Massachusetts.
Plotkin, G. (1972), Building-in equational theories. In MachhTe Intelligence 7, pp, 73-90, Edinburgh

University Press.
Reddy, U. (1985). Narrowing as the operational semantics of functional languages. Proc. International

Symposium on Logic Programming, pp. 138-151, Boston, Mass.
Rfty P., Kirchner, C., Kirchner, H., Lescanne, P. (1985). NARROWER: a new algorithm and its applica-

tion to logic programming. Proc. Rewriting Techniques and Applications. LNCS 202, pp. 141-157.
Rrty, P. (1987). Improving basic narrowing techniques. Proc. RTA'87. LNCS 256, pp. 228-241.
Siekmann, J. (1984). Universal unification. Proc. 7th International Conference on Automated Ded~wtion,

pp. 1-42, Napa, California.
Slagle, J.R. (1974). Automated theorem proving for theories with simplifier, commutativity, and associa-

tivity. J. ACM, Oct., 21, 4, pp. 622-642.
Subrahmanyam, P,A., You, J. (1986). FUNLOG: a computational model integrating logic and functional

programming. In Logic Programming: Functions, Relations, and Equations, D. DeGroot and G.
Lindstrom (eds.), Prentice-Hall, 1986.

Turner, D.A. (1979). SASL language manual, University of St, Andrews, 1979.
Yellick, K. (1985). Combining unification algorithms for confined equational theories. Proc. RTA'85

LNCS 202.
You, J., Subrahmanyam, P.A. (1986a). Equational logic programming: an extension to equational pro-

gramming. Proc. 13th POPL, pp. 209-218, St. Petersburg, Florida.
You, J., Subrahmanyam, P.A. (1986b). A class of confluent term rewriting systems and unification. J.

Automated Reasoning, December, 2, 391-418.

