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Narrowing has been used as a mechanism for reasoning about equations and evaluating 
equational logic programs, where enumeration of all narrowing derivations is often neces- 
sary in order to generate complete sets of solutions. In this paper, a special type of narrow- 
ing derivations, called outer narrowing derivations, is examined for the class of 
constructor-based term rewriting systems. It is shown that every narrowing derivation in 
this class is subsumed by an outer narrowing derivation. This result is applied to a matching 
problem in equational theories, i.e., whether an arbitrary term is E-matchable to a term 
composed of constructors and disjoint variables. It is shown that outer narrowing deriva- 
tions generate complete and minimal sets of E-matchers. An E-matching procedure is 
presented which enumerates all and only outer narrowing derivations for the E-matching 
problem considered in this paper. 

1. Introduction 

Narrowing is a method that combines term unification and rewriting. This method has been 
adopted in reasoning about equations encountered in theorem proving (Lankford 1975; Slagle 
1974), universal unification and matching (Fay 1979; Hullot 1980; Jouannaud et al. 1983; 
Siekmann 1984), and logic programming with an equational flavor (Dershowitz 1985; 
Dershowitz & Plaisted 1985; Goguen & Meseguer 1984; Fribourg 1985; Reddy 1985; You & 
Subrahmanyam 1986a). 

Given a term rewriting system R,  a term t narrows to s at a nonvariable subterm t/u using 
the k -th rewrite rule c~ k --4 ~ in R, denoted by t ->It,. t. pl s (or t ->~  s for abbreviation), if p 

is the most general unifier of t/u and c~., and s = p(t [u 6--[3 k ]), i.e., t/u is replaced by 13,~ and 
p is applied to the whole term. It is always assumed that the sets o f  variables in t and ct k are 

disjoint. This can be done by appropriate variable renaming. Narrowing gains its power by 
using term unification while reduction in contrast only uses one-sided unification, which is 
called matching. 

Given a term, there might be several subterms at which narrowing is possible. It is impor- 
tant to know if some of  the narrowing derivations can be pruned without losing completeness. 
The problem of special narrowing strategies appears to be a much harder problem than its 
counterpart concerning reduction, which enjoys several well-known results based on special 
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strategies, such as the itmermost and outermost strategies. Difficulties arise when these stra- 
tegies are considered for narrowing. The following example shows that neither the innermost 
narrowing strategy which ignores narrowing steps at outer occurrences, nor the outermost nar- 
rowing strategy which ignores narrowing steps at inner occurrences can be complete even for 
some very simple systems. Consider the term rewriting system 

R = { f ( y , a ) ~ t r u e ,  f ( c , b ) - - ~ t r u e ,  g ( b ) - - ) c  }, 

We will use x ,  y ,  z ,  etc., to denote variables and others to denote function symbols. The sys- 
tem is obviously confluent. With the term f (g (x), .r), innermost narrowing leads to 

f (g (.r), .r ) -> {.~./h] f (c, b ) ->{) true, 

while outermost narrowing yields 

f (g (x), x ) ->{xm) true. 

The innermost and outermost derivations generate uncompared solutions; missing either of  
them would result in loss of a solution. 

Fribourg (1985) showed the completeness of the innermost narrowing strategy under certain 
sufficient conditions. These conditions appear to be restrictive as illustrated above. As pointed 
out by Fribourg, the difficulty stems from the fact that functinns, as defined by rewrite rules, are 
often partial functions over the domain of terms. Though restrictive, innermost narrowing can 
indeed eliminate many redundant derivations. Dincbas and Hentenryck (1987) investigated 
some practical aspects of several narrowing strategies, including innermost, outermost and a 
form of lazy strategy based on a procedural semantics of functional programming. To extend a 
functional language to the one that is capable of solvi~Tg, Reddy (1985) defined a denotational 
semantics and outlined a lazy narrowing strategy. As pointed out by Reddy, however, lazy nar- 
rowing is not complete for the classic equality theory (and it was certainly not designed for that 
purpose). The problem of whether an approach along the same line as lazy narrowing can be 
adopted in the completely equational setting has not been explored. Other methods for reducing 
search space and for eliminating redundant solutions can be found in Hullot (t980), R6ty et al. 
(1985) and REty (1987) (also see Nutt et al. 1987). A more detailed account of these narrowing 
methods will be given in Subsection 3.3. 

In this paper we consider a special type of narrowing derivations, called outer narrowing 
derivations, for solving equations in equational theories. In particular, we consider the applica- 
tion of outer narrowing to an E-matching problem in equational theories. Outer narrowing will 
be defined in this paper by means of an ordering on narrowing steps in a narrowing derivation. 
Informally, the main requirement for a narrowing derivation 

A t) - >  [u ~), k~. 9t~] . . . .  > [u,,_l. k,,_l, P~- I / A,j 

to be outer is that no later narrowing step at an outer occurrence be able to be carried out eat- 
lier in the derivation, using the same rule and at the same occurrence. (This is by no means a 
precise definition. See Subsection 3.2) Intuitively, if an outer narrowing step can be "moved" to 
the early part of the sequence, then those steps before it may be wasted in that they do not con- 
tribute to the narrowability of an outer function. An outer narrowing derivation, ho~vever, may 
not be an outermost narrowing derivation. For example, the narrowing derivation given earlier 

f (g (.r), x ) ->[x~b] f (c, b ) ->[7 true 

is considered an outer narrowing derivation, in that the rule used in the second narrowing step 
is not applicable when tried to narrow the given term, due to the function symbol conflict 
between c and g. This derivation is obviously not an outermost narrowing derivation. 

Outer narrowing can indeed prune redundant derivations. As a simple example, consider 

R = { f ( a . b , x ) - - ~ t r u e ,  g ( a ) - - ~ c  }. 
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The derivation 

f (y, z, g (y)) ->{yla}f  (a, z, c) ->[z/b} true 
is not outer since the second narrowing step can be performed right at the beginning, using the 
same rule and at the same occurrence. In doing so we get the same solution by one step of outer 
narrowing: 

f (y, z,  g (y)) ->{yla, ".1#} true. 

It was not very clear at first whether or not outer narrowing is complete when narrowing is. 
As a matter of fact, in the course of investigation we discavered a counterexample that shows 
that outer narrowing can lose potential solutions for left-linear and nonoverlapping term rewrit- 
ing systems. We therefore restrict our attention to a subclass called constructor-based term 
rewriting systems. We will show in this paper that every narrowing derivation in this class is 
subsumed by an outer narrowing derivation. 

A function symbol f is said to be defined if it appears as the leftmost functor in the left hand 
side of some rule cq. ~ ~k; in this case we say that the rule ak ~ 13~ defines f .  Otherwise it 
is called a consn'uctor, A term rewriting system is constructor-based if  it is left-linear, nono- 
verlapping, and has no defined function symbols appearing in the inner part of  the left hand 
side of any rule. Some of the functional languages primarily based on recursive equations, such 
as HOPE (Burstall & Sannella 1980), SASL (Turner 1979), and ML (Milner 1984) fall into this 
category when restricted to defining first order functions. Although O'Donnell 's language 
(O'Donnell 1985) is purely first order and in theory belongs to the class of nonoverlapping sys- 
tems, it has mainly been used as a constructor-based language. 

Our intention of studying special narrowing strategies was driven by a desire to discover 
complete and minimal E-unification or E-matching procedures for some nontrivial classes of 
equational theories, no matter whether they are used in programming or in theorem proving. 
Unfortunately, outer narrowing does not guarantee minimality in the general case. However, 
applying the result of outer narrowing we are able to obtain a complete and minimal procedure 
for a special case of the E-matching problem: given a constructor-based term rewriting system 
R and two terms t t and t2 with disjoint sets of variables, where t2 is composed of constructors 
and variables, the problem is to find a complete and minimal set t9 of E-matchers from t l to t2 
such that for every ~ in O, cr(t 1) is E-equivalent to t2 under the equational theory described by 
R and no two E-marchers in �9 can compare under the same equational theory. 

The minimality problem in universal unification and matching is known to be important. In 
general, unification and matching procedures are embedded into a larger reasoning system 
involving equality (Plotkin 1972), which performs reasoning by using E-unifiers or E-marchers 
provided by these special inference procedures. Without the minimality property the system 
may waste a lot of time performing redundant reasoning steps. 

The minimality problem is also known to be difficult. Since the discovery of some equa- 
tional theories for which complete and minimal sets of E-unifiers or E-matchers do not exist 
(Fages & Huet 1983), the questions as to which classes of equational theories complete and 
minimal sets of E-unifiers or E-matchers exist, and how to obtain them, have rarely been inves- 
tigated. To our knowledge, all currently known results are based on the discovery of some 
complete and terminating algorithms for decidable equational theories. The minimal sets can 
then be obtained from complete sets by a filtering process. The class of  equational theories and 
the matching problem considered in this paper are both semi-decidable; thus the filtering 
method no longer applies. 

The next section provides notations used in this paper. It is shown in Section 3 that for 
constructor-based term rewriting systems, every narrowing derivation is subsumed by an outer 
narrowing derivation. Section 4 applies this result to a matching problem and shows that outer 
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narrowing derivations yield complete and minimal sets of E-matchers.  In Section 5, a pattern- 
driven (Subrahmanyam & You 1986) procedure is presented, which correctly enumerates all 
and only outer narrowing derivations for this matching problem. The final section contains a 
summary and some remarks. 

2. P r e l i m i n a r y  Def in i t ions  

2.1 DEFINITION.  We denote by T ( F ,  V )  the set of  terms composed from a set of  function 
symbols  F and an enumerable,  disjoint set of variables V. Terms are viewed as labeled trees in 
the fo l lowing  way: a term A is a partial function from the set of  sequences of  positive integers, 
denoted by I* ,  to F ~ V such that its domain satisfies: 

(i) 8 ~  D ( A )  
(ii) u ~ D ( t  i) iff i,u ~ DO"(tl  . . . . .  ti . . . . .  t n))  l < i  < n .  

D (A) is called a set of  occurrences  of A ; O (A) denotes the nonvariable subset of  D (A).  
The set of  occurrences is partially ordered by the prefix ordering: it < v iff ( 3 W )  lI.W = 1', and 
u < v iff u < v & u r v. When u < v we then say u is outer to v and v is inner to u.  u and 
w are said to be independent ,  denoted by u <> w iff u ~ w and w ~ u. The quotient u/v  of 
two occurrences u and v is defined as: t t /v  = ~, iff v.vt, = u.  

W e  use V ( A  ) to denote the set of variables occurring in an object A ,  We define A [u ~--B ] as 
the term A ,  in which the subterm at occurrence u has been replaced by the term B. We denote 
by A/u  the subterm of  A at occurrence u.  

2.2 DEFINITION.  A substi tut ion c~ is a mapping from V to T ( F ,  V) ,  extended to an endomor- 
phism of  T ( F ,  V). W e  denote by ~ the set of all substitutions. If G ~ ~ and A E T ( F ,  V), we 
write ~A for application of  c~ to A.  The domain of a substitution ~, denoted by D (cy), contains 
the variables that are not mapped to themselves. The set of  variables introduced by a substitu- 
tion cr is defined as: I((~) = u V(ox) for all x in D (~). The composition of  substitutions cr and 0 
is defined as: (~.0)x = ~(0x). O lw denotes the restrict ion of the substitution cr to the subset W 
of  V. 

2.3 DEFINITION,  An equational  axiom A = B is a pair  of  terms separated by the symbol =. 
An equat ional  theory is a set E of equational axioms. E-equality =6 is defined as the smallest 

congruence containing E and closed under replacement and instantiation, i.e., =E is generated 

by E as the smallest  congruence containing all pairs ~A = ~ B  forA = B in E and a in ~ .  
E-equal i ty  is extended to substitutions as follows: ~ =E 0 iff Vx ~ V c~x =e Or. 

We will write, for  a subset W of  V: or= E 0 [W] iff Vx E W crx =E 0x.  

In the same way, c~ is more general than 0 under the equational theory E over W: 

cy< E 0 [ W ]  iff 3q r l*o=  E 0 [ W ] .  

Two terms A and B are said to be E-unifiable iff there exists ~r in ~ ,  such that era =E 6B.  

U E ( A ,  B ) denotes the set of all E-unifiers of A and B.  Let W be a finite set of  variables con- 

taining V --- V(A  ) ~ V (B  ). We say that a set of substitutions Z is a complete set of unifiers of  
A and B away  from W iff: 

(i) V ~ Z  D ( o ' ) c V &  l(er) n W = ~  (protection of W) 

(ii) ]E c U E ( A ,  B ) (correctness) 

(iii) V ~  ~ U E (A, B ) 30 ~ Z 0 <E ~ iV ] (completeness) 

In addit ion,  Y is said to be minimal  if and only if it also satisfies the condition: 

V ~ . 0 ~  E (s :~0 ~ (rT" E 0 iV] (minimality) 
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An E-unification procedure is complete if it generates a complete set of  E-unifiers away from 
W for all E-unifiable input terms, and is complete and minimal if it generates a complete and 
minimal set of E-unifiers away from W for all E-unifiable input terms. We also use the terms 
completeness and minimality when it is understood that certain conditions have been imposed 
on the input terms. 

Given two terms A and B such that V(A ) ~ V(B) = O"t', a substitution (r is said to be an E- 
matcher from A to B iff ~ (A)=E B.  In the same way as for E-unification we compare E- 
matchers by ---E [V] and define complete (and minimal) sets of  E-matchers and complete (and 

minimal) E-matching procedures. 

2.4 DEFINITION. A term rewriting system (or rewrite system) is a set of  directed equations R 
= {c~ i --~ [3 i } such that variables appearing in [3 i must also appear in c~ i. c~ i ---) 13i is called a 
rewrite rule, 

The reduction (or rewriting) relation --~'~ associated with R is the finest relation over 
T(F,  V), containing R and closed by substitution and replacement. Equivalently, we say that a 
term A reduces to a term B at occurrence tt and write A ---/~ B iff: 

3c~ k-~13k ~ R 3q 3 u ~ O ( A )  Alu = r l ( a  k) & B =A[u~rl(13/~)l.  

From now on we will use ~ for ._.>R. We denote by -~ the reflexive, transitive closure of  --->. 
The symmetric closure of  --~ is denoted by ~-->, which is the same as the E-equality =E, when R 

is considered a set of equational axioms. I fR = {cz i ----> [3 i } is a term rewriting system, we then 

say that R describes the equational theory E = { o~ i = 13i }. 
A term is said to be in normal form if it is not reducible. A substitution is normalized if each 

substitute wherein is in normal form. 
A term rewriting system R is said to be canonical iff --~ is noetherian, i.e., there does not 

exist any infinite derivation sequence: A 0 ~ A 1 ~ .... and --~ is confluent, i.e., 

V A , B , C  (A ~ B  & A - ~ C )  ~ 3D (B -~->D & C --~D). 
An equivalent characterization of the confluence property is the Church-Rosser property: 

V A , B  A = E B  ~ 3D (A - ~ D  & B 2.>D). 

When a term A reduces to a term B at occurrence tt using the rule cz~. ---> [3 k in R, we also 

write A -">[u, k 1 B or A --4[u" %..,13~ ] B (or A -->u B for abbreviation) to denote a reduction 

step. In this case, u is called a redex of  A. A sequence of reduction steps is called a reduction 
derivation. For notational convenience, we sometimes write A o 2">[u, g 1 An (or A 0 2->u An for 

abbreviation) to denote A 0 --->[,q~, k0] " " ' -->['~n-i, k,-t] An' where [U, K ] denotes the sequence 

of [u i ,  k i 1. 

REMARK. The difference between the reduction relation and reduction derivation should be 
noticed. In particular, for any relation A0--% A,~ there may be more than one reduction deriva- 
tion leading A0 to A, .1: In this paper we mainly deal with derivations which are notationally 

distinguished from the relation by attaching the occurrence and rule associated with the reduc- 
tion step, such as --*[u, k ]" [u, k ] is omitted only if no confusion arises. 

+ The requirement that W(A ) n W(B ) = ~ is not a limitation on practical applications of matching, and is to avoid 
some of the subtleties brought up by more general definitions. See Burckert et al. (1987) for details. 

In the case of left-linear, nonoverlapping systems (see the next definition), derivations were nicely expLained by Huet 
( 1986. 1987) in terms of a categorical structure. 
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2.5 DEFINITION. Given a term rewriting system R and a set of function symbols F (constants 
are treated as 0-nary functions), F is divided into defined function symbols, denoted by Fo,  
and constructors denoted by Fc.  An n-ary function symbol f is in FD iff there is a rule of the 
form f (t I ..... tj~ ) ---> [3 in R.  Otherwise it is in F c . 

A term rewriting system R is said to be left-linear if no variable appears more than once at 
the left hand side of  any rule. 

A term rewriting system R is said to be nonoverlapping if for any two rules ct i ~ [3 i and 
O'-j ~ ~j in R (with variables properly renamed such that V ( a i ) n  V ( ~ i ) = ~ ) ,  and for any 
U ~ O(ezi), (Zi/ll and ctj have no common instance, except when u = e  and i = j .  This is also 
called nonambiguous or superposition fl'ee in the literature. 

A term rewriting system R is said to be constructor-based if it is left-linear, nonoverlapping, 
and has no defined function symbols appearing in the inner part of  the left hand side of any 
rule, 

Finally, a narrowing step from a term A to B at occurrence u ~ O (A) using 0t I. ---> [3 k in R 

is denoted by A ->[u ,  ~. P] B or A - > [ . .  at~[3k" lal B (or A ->~ B for abbreviation), where 

V(A ) n V ( ~  k ) = ~ ,  p is the most general unifier of  A/u  and cc t ,  and B = 9(A [u ~---~ 1). A 
sequence of  narrowing steps is called a Jtarrowing derivation. We may denote a narrowing 
derivation 

A 0 ->[uu. kt~. pJ . . . .  >[u,s-I' kn-l" Pn-I ] An 

byA 0 *> A n , where [U, K,  cy] is the sequence of  [u i k i, pi] and o = P,t-I'..-'P0. - [U. g,ol  

3. Outer Reduct ion  and Outer  N a r r o w i n g  

In this section we are going to establish the following result for constructor-based term 
rewriting systems: for any narrowing derivation 

A o ->[u~, k~, P0] . . . .  >Inn-I" k~-l" 9~-11 An ' 
there exists an outer narrowing derivation 

A 0 = Bo ~->[vo, io ' yl~] . . . .  >b',~,_ t, %-i, Y,,-i I Bin' 

such that there exists a substitution 0, 0(B m) =A,F and 0,ym_l.....yo = P,- i ' . -- 'P0,  when res- 
tricted to V(Ao). This will be proven by establishing the following results: we show in Subsec- 
tion 3.1 that for every reduction derivation there exists an outer reduction derivation, and in 
Subsection 3,2 that for every outer reduction derivation there exists an outer narrowing deriva- 
tion. Since for every narrowing derivation there exists a corresponding reduction derivation, we 
conclude that every narrowing derivation is subsumed by an outer narrowing derivation. In 
Subsection 3.3, we will provide a detailed comparison of  outer narrowing with Reddy's lazy 
narrowing, Fribourg's innermost narrowing and the works on basic narrowing by Hullot and 
Rdty. 

Since we are primarily interested in the bindings for the variables occurring in the given 
term, we will assume, for notational convenience, that the substitution (5 generated by a nar- 
rowing derivation C o - > l u ,  x. ol Cm is already restricted to the variables in Co whenever it is 
referenced. Also, because constructor-based term rewriting systems are a subclass of closed 
linear term rewriting systems that were studied by O'Donnell  (1977), it is convenient to use 
some of the properties possessed by closed linear systems. We hence introduce the class of 
closed linear term rewriting systems and outer reductions wherein. 
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3.1 OUTER REDUCTION IN CLOSED LINEAR TERM REWRITING SYSTEMS 

In this section we essential ly use the closure property to show that an arbitrary reduction 
derivation of a closed linear term rewriting system can be rearranged to yield an outer reduc- 
tion derivation. 

When a term A is rewritten to yield a term B, some o f  the subterms in A might reappear 
(perhaps more than once) in B .  The residue map defined below is intended to capture this rear- 
rangement process by mapping each occurrence v in a term A to a set of occurrences in B 
which are "images" of v under the rearrangement. 

3.1 DEFINITION. The residue map r with respect to a left-linear term rewriting system R is a 
function defined as follows: 

t'or all v E D (A) 

r [A -~[u.k] B lv 

= {u.w.(v/v') I 3v" c t t . (v")~  VCct k) & otkCv")= 13kCw) & u.v" = v ' }  i f v  > u 

= { v }  i f (u < > v  or v < u )  
= | otherwise 

For example, with the rewrite rule f (c (.r)) ~ g (x, .v) and reduction f (c (a))  --*~ g (a ,  a ), 
both occurrences of a in .q, Ca, a ) are residues of a in f (c (a)) .  Note that if v is independent of 
u ,  or v is outer to u,  then the residue of v is itself and unique. The definition given here treats 
redexes and other occurrences uniformly. There are two technical differences between this 
definition of residue and others such as the ones by O'Donnel l  (1977), Huet & L~vy (1979) and 
REty (1987). First, we consider not only redexes, but any occurrence in a term. Secondly, an 
outer occurrence (which may not be a redex) remains to be a residue o f  itself. 

The closure property, which was used by O'Donnel l  (1977) to ensure the confluence pro- 
perty, essentially says that inner and outer reductions can be switched. 

3.2 DEFINITION. A term rewriting system R is closed l#lear iffR is left-linear and 

(i) Vu,v E O ( A )  (v < u  & A "-~r B & A -%1 C)  

=* 3 D (B ---),[A -~, 8 ]J~ D & C "~rlA --+,, C Iv D ) 

(ii) Vu ~ O ( A ) ( A  --).  B & A --). C)  ~ B = C 

The first clause essentially says that, if a term A can reduce to B at an outer redex and can 
also reduce to C at an inner redex, respectively, then there exists a term D such that D can be 
reduced from B by a sequence of inner reductions and from C by the reduction at the same 
outer redex. Note that either of  these two sequences can be a null sequence if the corresponding 
set of residues is empty. The second clause says that if two different left hand sides match the 
same term, then the corresponding right hand sides must be the same. 

It should be mentioned that O 'Donne l l ' s  definition of closure is given in terms of  subtree 
replacement systems and is more general in that the residue map r can be arbitrary as far as cer- 
tain conditions are satisfied. The residue map r used in this paper is fixed to the preceding 
definition. From now on, when we refer to the tenn closed linear it is understood that the resi- 
due map is fixed as above. Notice also that a closed linear term rewriting system need not be 
nonoverlapping. For example,  the fol lowing system, which has been used by Fages & Huet 
(1983) to show nonexistence of complete and minimal sets of  E-unifiers in general, is closed 
linear: 

R = { a * .r ~ . r ,  , f  ( .v * 3' ) --+,f (y) 1. 
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3.3 PROPOSITION.  A telw7 rewrit ing sys tem is confluent i f  it is c losed lineal'. 

PROOF. See O 'Donnel l  (1977). 

The residue map r can be extended to show how a set of  occurrences is rearranged by a 
sequence &reduc t ions  (also see O'Donnell 1977; Huet & L6vy 1979; R6ty 1987). 

3,4 DEFINITION. Let  U = { u 0 ..... u ,_ l  } and S denote A o - % u A ,  �9 The extended residue map 
, 
r with respect to S is defined as follows: 

for any M c D ( A ~ )  

~[A o - ~ u A n  ] M  = I"*'[A,,_ l "--> u,,_~ A,, ]~'[A o Y->U' A,, _I]M 

where U' = {u0 ..... un_2} & n > 1 

~'[Ao - % A  I]M = k..)vE M r [ A o - - % , A  i]v 

We say that w is a residue of  v. with respect to A o 24U A,~. iff w e ~[A 0 -%u A, ] { v ). 

Intuitively, the above  definition says that the residues of a set of  occurrences are the union of 
the individual residues, and that a residue yielded by a sequence of reductions is the cascaded 
residue yielded by the individual residues in the sequence. 

Before defining outer  reduction we need to define an ordering on independent occurrences. 

3.5 DEFINITION. Let A be a term. Two occurrences ir and w in O CA) are said to be left 
independent ,  denoted by u <>l  w, iff u <> w and u <h,x w ,  where <t,,.v is the lexicographic 
ordering on I*. 

For example, with the terrn f (g (a ), b) ,  we will have 1 <>f 2 and 1.1 <>/ 2. Left indepen- 
dence is a slightly generalized version of Prolog's leftmost computation rule which deals only 
with the flat structure at the literal level. 

Outer reduction defined below requires that an inner reduction not be performed if it is fol- 
lowed (may or may not  be immediately) by an outer reduction and it does not contribute to the 
reducibility of  that outer  reduction. In addition, independent reductions should be ordered by 
<>/ .  

3.6 DEFINITION. A reduction derivation S:  A o -->[~q~. % ~ 1  " " " --)i %_i, ct,,-i ~ , ,  -i1 An is 

said to be outer  iff 
Ca) for any u i in S ,  if quj  in S, j > i, which is the closest  to u i, such that 3w ~ OCA i) ,  

,a' < u i and Uj is a residue of w; then qv ~j((IIit~').V)E F & A i C u i . v ) ~  F & 

OCj ( (u i /w ).v ) ~ A i (u i .v ); and 
(b) suppose (a) is satisfied. I f u j  is a residue o f w ~ O  (At) and w <> u i, then u i <>/  w. 

Recall that A i (it i ) denotes the function symbol at occurrence u i . {Xj((tIi/W ).V) thus denotes 
the function symbol in otj which, by o~j ((ui/w).1' ) # A i (lli .1' ), disagrees with A i (it i .1' ). Techni- 
cally, Condition (a) says that if we try to reduce A i at an outer occurrence w by the rule 

r --9 [3j., then there exists a function symbol at U i .V, which would conflict with the one, 
denoted by ccjC(ui /w) .v  ), at the corresponding position in r Since we are dealing with left- 
linear rules where each variable in the left hand side occurs at most once, failure of matching or 
unification can only be caused by function symbol conflicts. Condition (b) simply orders 
independent reductions to further limit possible alternative reductions from a given term. 
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As an example, consider R = { f (a ,  b, x ) --a true, g (c) ---> a,  h (a )  --* b }. The reduction 
sequence 

f (a,  b, g (c)) --*3 f (a, b ,  a ) -'-~e true 

is not outer because it violates Condition (a). The reduction sequence 

f (g(c) ,  h(a) ,  c ) - - ) 2 f  (g(c),  b , c ) - - ) l f  (a, b ,  c )  

is not outer either, since it violates Condition (b). 
Note that outer reduction does not correspond to the well-known outermost reduction rule, 

by which only outermost redex occurrences can be used. For example, with the preceding term 
rewriting system, the following derivation is outer though it is not outermost (it does not even 
reduce the term to its normal form): 

f (a, b ,  g (c ) )  ~ 3 f  (a, b, a). 
The definition of outer reduction used in this paper is essentially equivalent to the one called 

outside-in reduction by Huet & L6vy (1979) for the class of/eft-linear, nonambiguous term 
rewriting systems. We present similar results below under a slightly less restrictive condition 
by the closure property.'l" 

Our interest in outer reduction lies in the following fact: for any reduction derivation A -~ 
IV, KI B of a closed linear system, there exists an outer reduction derivation A "2-~[v ,.tl B. This 
can in fact be obtained from the closure property. 

3.7 LEMMA. Let R be a closed linear term rewriting system. For any pair of reductions 

S : A --~[u, i I B --->b', j I C 

there exists an outer reduction derivation A -%u C. 

PROOF. If S is already outer nothing needs to be done. If v <>/ u then switch the two reduc- 
tions. In the case v < u and A is reducible at v by the j - th  rule, using the closure property we 
get 

S ' :  A --->b',Jl B'  2-->r[ A "*r B'I,~ C. 

Since all of the occurrences in r[A - %  B']u are mutually independent, r[A - %  B']u can be 

ordered by <>/.  

3.8 LEMMA. Let R be a closed linear term rewriting system. For every reduction derivation 
AO "~ [U, Ki An' there exists an outer reduction derivation A o = B o -% IV,J] Bm such that 

Aiz = B m . 

PROOF. The outer reduction sequence Bo -~[v,J] Bm is actually a "sorted" sequence of the 
given sequence A o -%[u, KlAn with some reductions at inner occurrences duplicated, because 

reductions at outer occurrences are performed before inner reductions whenever possible. We 
show this by induction on the number of  reduction steps in the given derivation. By definition 
any singleton is outer. Assume that Bo -~[Vl,,ll] •l is an outer sequence for A o -~[gi. Ki ] A i, 

where A i = B I , and show that there exists an outer sequence for A o -%[ui, Ki] Ai --->[ui. ki] Ai+l. 

For this purpose, move the last reduction B I --)[ui.kil Ai+l in Bo -%[vi.Ji ] B l --->[ui.ki ] Ai+ 1 to 

the left as far as possible using Lemma 3.7 (the number of steps is at mos t /+1) .  The rearranged 
sequence B0 -%[v/+l.jt+l I Ai+ 1 is obviously outer. 

t Huet and LEvy (1979) mentioned the question about whether the nonambiguity condition was necessary in iheir ap- 
proach. 
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3.2 SUBSUMPTION OF NARROWING BY OUTER NARROWING 

In order to define outer narrowing and establish its relationship with outer reduction, we 
need to keep track of  subterms that are rearranged by narrowing derivations. We thus define a 
residue map for narrowing derivations. 

3.9 DEFINITION.  The residue map n with respect to a narrowing step is defined as follows: 

n[A - > [ u , k , p ] B ] v  =r [p(A)- - - ) fu ,k lB]V v ~ O ( A  ) 

The extension of  n to a narrowing derivation, denoted by p~, is similarly defined: 

~[Ao--*>[U.lC.~IAnlM =*[r  M G O ( A o ) .  

We say that w is a residue of  v, with respect to Ao --*>IU.K.vlAn . iff 

w E ;~[Ao *> A , l{v  }. [U,K.~I 

Note that ~ is well-defined since for every narrowing derivation A 0 - >  [u, K, c~I An there 
always exists a reduction derivation o f  the form ~(A o) 2-~[u, K l An .  

Outer narrowing is also defined with respect to narrowing derivations, which, as in the case 
of  outer reduction, essentially says that no later narrowing steps can be performed earlier in the 
sequence. 

3.10 DEFINITION. A narrowing derivation 

S : A 0 ->[u o. ao-~o, P~ll . . . .  >[u,-I" % , - l - ' - ' ~ n -  I " P.-I] An 

iS said to be outer iff 
(a) for any u i in S ,  if 3u j  in S,  j > i,  which is the closest  to u i, such that 3u' ~ 0 (A i ), 

w < u i and uj is a residue of  w (with respect to S) ;  then 

3l'  o ~ j ( ( u i l w ) . v ) E  F & A i ( t t i . v ) ~  F & ( x j ( ( u i / w ) . v ) ; ~ A i ( u i . v  ); and 
(b) suppose (a) is satisfied. I f u j  is a residue o f w E ( A i )  and w <> tt i ,  then u i <>/ w. 

We give two terminologies below that will be frequently referenced in the rest of this paper. 

3.11 DEFINITION, A term is called a constructor term if it contains constructors and vari- 
ables only. A substitution o = {x I/t l . . . . .  x n/ tn} is said to be cons truc tor-based  if all o f  t i ' s  are 
constructor terms. 

3.12 LEMMA. Cons ider  a cons tructor-based term rewri t ing system R. Let  ~(B o) = A o. where  
A o and  B o are  terms and  c a c'onstructor-based substi tut ion when restr ic ted to V (B o). For  any  
reduct ion derivat ion 

(i) A o --+tuo, %-'+f~o] "" " --'~[u,_l, % , - 1 ~ , - I  l An '  

there exist  a narrowing derivation 

(ii) Bo ->[uo. %--+13o. Pal . . . .  >[%-p %-V+t3,- p P,,-j] Bn, 

and ~i, 0 < i < n ,  such that ~i is constructor-based.  ~ i ( B i ) = A  i and ~n'P, ,-1 . . . . .  P0= ~. 
Fur thermore ,  i f ( i )  is outer  then (ii) is outer. 

Converse ly ,  for  evel S narrowing derivation (ii), there exist  a reduction derivation 

(iii) Pn -I  . . . . .  po(B 0) = C 0 "+[,r %-~o] ' ' " --~[u,,_ I' %,-1-+13,-zl Cn 

and ~i, 0 < i < n,  such that ~i is constr lwtor-based,  ~i (Bi)  = Ci, and  B n = C n , i.e., ~n is the  
identi ty  substi tution.  Fur t twrmore ,  i f  (ii) is outer then (iii) is outer. 
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PROOF. The correspondence between reduction and narrowing derivations is a well-known 
result in some more general settings. The result proved by Hullot (Hullot 1980) which requires 
that cr be normalized is applicable here since c is constructor-based and therefore normalized. 
Here we prove that the outer properties preserve. 

( ~ )  Show that Condition (a) for outer narrowing preserves from that of  outer reduction. 

Let Uj be the closest to tt i such that u/ is a residue of w e O ( A i )  and w < u[. Then uj is 

the closest to tt i such that uj is a residue of w e O (B i) and w < u i , with respect to the narrow- 
ing derivation. Since (i) is outer and R is constructor-based, c~j ( u i / w )  must be a constructor 

and A i (u i) must be a defined function: thus Ev, v = E such that c~j((ui /w) ,v):~ A i (u i .v ), or 
simply c~j (u i/w ) ~ A i (u i ). That is, matching A i/w with otj would result in a conflict at u i . We 

show that (xj(ui/w ) ~ Bi(ui  ). 
First of all, the symbol A i (u i ) must be a defined function symbol since A i is reducible at u i . 

Because ~i is constructor-based and ~i(Bi)  = A i '  we have B i(u i)  =A i (u  i). That is, 
B i (u i ) = A i (u i ) :r o~j (u i /w ). (The situation is illustrated in Figure 1.) Theretbre, Condition (a) 

is satisfied for (ii), i.e., o~j( t t i /w)~ Bi(ui) .  We conclude that (ii) is outer by observing that 
Condition (b) trivially preserves. 

( ~ )  Similar and thus omitted. 

B i A i (Xj 

r = {  - . . , x / t ,  . . -  t 

Figure 1: An illustration of the proof of  Lemma 3.12. 

come to the main result of this section: every narrowing 

It .= It i /B '  

We now derivation o f  a 
constructor-based term rewriting system is subsumed by an outer narrowing derivation. 

3.13 THEOREM. Let R be a constructor-based term rewriting system. For eve13' narrowing 
derivation 

(a) Co *> C m [ U , K  , r 

there exists an outer narrowing derivation 

(b) Co ->[U', K', 0l Dn 
such that 3"c. T,O = c~ and z(D n ) = C m . 

PROOF. Let the narrowing derivation (a) be (ii) of Lemma 3.12 without the outer assumption. 
We then get (iii) from (ii). For which there exists an outer reduction derivation (Lemma 3.8) 

A 0 "-4[uo, %--+13ol " " " --a[%_l, %-1-~13,-0 Al~ ' 

where r = Ao  and A n = C m . Since R is constructor-based it is easy to show that the com- 

position of all substitutions along a narrowing derivation, restricted to the set of variables in the 
initial terrn to be narrowed, is constructor-based. Thus cylv(c,~ ~ is constructor-based. By Lemma 

3.12 again, we get an outer narrowing derivation 

Co = Do ->1"o. %---+!3., pt~l . . . .  >I",,-L. %,-1--~13n-I ' 13n-I } D, ,  (*) 
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and ~n, ~. (D.)  = A .  = C m such that ~n "9 . - j  . . . . .  Po = cr, The derivation (*) is therefore the 
desired derivation (b) where 0 = 9n-I  . . . . .  PO. 

3.14 COROLLARY. Let E be the set of all E-unifiers generated by narrowing on two terms P 
and Q. Then outer narrowing generates Z', Z' __. X and for any (~ in Z there exists cy' in X', 
(~' <E C [V (P,  Q)]. 

3.15 EXAMPLE. Consider the following system about sum and product over natural numbers:  
R = {  

(1) 0 + x  ~ x  
(2) s ( x ) + y  ---~s(x + y )  
(3) 0 *  x ---~ 0 
(4) s ( x )  * y --+y + x  * y 

1. 
The system is constructor-based. Suppose we want to unify the terms x l * y t and s (x t). One of  
the outer derivations is given below. We use a new binary operator == to iterate the narrowing 
process on the two terms, 

x i * Y l = =  s ( x  l ) - > [e, 4 .  ( ,v , /s  (.v,)j ] 

)'l +X2 * )'l == S(S (X2)) ->[e, 2,{y,/s(y,_)}l 

S (V 2 + X2 * S (V 2)) == S (S (X 2)) ->I t ,  2, b',_/s (>'3)11 

S (S (3'3 + Xe * S (S CV3)))) == S (S (X2)) ->f l .  I, Z. :>',lOll 

s (s (x2 * s (s (ODD == s (s (x2)) ~>[z. I, 3, {x_~/o)] 
s (s (0)) == s (s (0)) 

The derivation generates s (0) for x l and s (s(0)) for y I. Note that from the term y I + x~ * y I, 
narrowing on the inner term x 2 * y I using either the third rule or the fourth rule can result in an 
infinite number of non-outer derivations, which, by Theorem 3.13, are all redundant. 

It is important to mention that Lemma 3.12 and Theorem 3.13 may not be true of  other 
classes of term rewriting systems, even though Lemma 3.8 is valid for all closed linear term 
rewriting systems. 

3.16 COUNTEREXAMPLE. Consider the following nonoverlapping term rewriting system: 

R = {f(g(d))----~true.  g ( c )  ---)g (d)}. 

With the term f (g (x)) and the substitution ~ = {x/c }, we have cr(f (g (x))) = f (g (c))  and 

(i) f ( g ( c ) )  - - ) f  (g (d)) ~ true 

(ii) f (g (x)) ->Lr/c) f (g (d)) ~>{~ true. 

The reduction derivation (i) is outer while the corresponding narrowing derivation (ii) is not, 
since when f (g (x)) is unified with f (g (d)) no function symbol conflict exists. It is easy to 
check that this narrowing derivation is not subsumed by any outer narrowing derivation. 

3.3 COMPARISON WITH OTHER NARROWING METHODS 

LAZY NARROWING. Reddy (1985) defined a denotational semantics for the purpose of 
extending functional programming to functional logic programming. Under this semantics, the 
notion of equality is based on an equality function: two terms (called expressions) are 
equivalent if their denotations are the same. A lazy narrowing strategy was outlined in terms of  
a demand-driven unification algorithm. The key step in the algorithm is Step 2: 
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"when one of the two expressions to be unified has a function application at the 
outermost level, then it is narrowed until it has a constructor at the outermost level." 

We should notice that the phrase two e.~pressions above may actually refer to subexpressions 
of the given expressions, and the outermost function symbol of a subexpression may not neces- 
sarily be an outermost redex of the whole expression at which narrowing is possible. Thus lazy 
narrowing is not the outermost narrowing strategy which ignores narrowing steps at all inner 
occurrences. It can be shown that a lazy narrowing derivation is an outer narrowing derivation 
but the reverse may not be true. Phrased in other words, lazy narrowing is outer narrowing with 
every defined function symbol eventually disappearing. As an example, consider 

R = { f ( a , y ) - - - ) y ,  g ( c ( x ) ) - - ~ g ( x ) ,  g ( b ) - - - ) d }  

and unification o f f  (z I, z2) and g (z3). From the following outer narrowing derivation 

f (z I, z2) == g (z3) ->[e.f~a,y) ~ ) ' ,  {: doll z2 == g (z3) 

we get an E-unifier {z n/a, z2/g (z3)} for the two given terms. Because any narrowing on g (z 3) 
can only generate compared but less general E-unifiers, these derivations can be dropped.t 

The derivation above, however, is not a lazy narrowing derivation. First, g (z3) is not an 
expression having a constructor at the outermost level; and secondly, a solution containing 
zz/g (z3) is not admissible by Reddy's denotational semantics. Thus, lazy narrowing will carry 
out narrowings on g(z3), producing an infinite number of solutions. As the reader can see, 
outer narrowing is operationally similar to lazy narrowing. The major difference between the 
two stems from the difference of the underlying semantics; lazy narrowing is aimed at comput- 
ing denotations of expressions, while the purpose of outer narrowing is to generate unifiers 
modulo an equational theory. Lazy narrowing does not yield a complete procedure for E- 
unification and was not designed for that purpose. Our results show that a form of lazy strategy 
can be adopted for E-unification without losing completeness for constructor-based term 
rewriting systems. 

INNERMOST NARROWING. We will restrict our discussion to the unit case corresponding 
to term rewriting systems, though Fribourg's results on innermost narrowing (Fribourg 1985) 
were obtained for the general case of equational Horn clauses. 

A term f (t i ..... t n ) is said to be innermost if all t i 's are constructor terms and f is a defined 
function symbol. Given a term, the innermost narrowing strategy selects an innermost term to 
narrow. The essential condition for completeness is called well-innermost-reducing, which 
requires that every ground innermost term be reducible. We have seen at the outset of this 
paper that 

f (g (x), x ) ->[z t'Cv a ) --> true, Ix~all true 
is not innermost, and its omission results in loss of a solution. The problem is that f (g (a), a ) 
is not well-innermost-reducing, because g (a) is not reducible. Though a number of sufficient 
conditions were given by Fribourg to guarantee well-innermost-reducing, it appears difficult to 
mechanically check the satisfaction of these conditions in general, since all of them must be 
satisfied for all (ground) terms. The difficulty stems from the fact that functions, as defined by 
rewrite rules, are often partial functions over the domain of terms. For example, a rule such as 
g (b) ---) c defines a partial function on the set of terms. When such rules are present in the 
program, completeness can be easily lost. In practice, however, many programs do define total 
functions. 

Note that outer narrowing does not automatically prune this type of search space and should be used in combination 
with other methods such as recurrent description of sets of E-unifiers (Rrty et al. 1985). 
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When innermost narrowing is complete, an innermost narrowing derivation is in general 
shorter than the corresponding outer narrowing derivation that generates the same solution, 
because innermost narrowing avoids repeated evaluation of inner terms. However, the converse 
may also be true when variable-dropping rules are present in the program (a rewrite rule 
o~ ---) ~ is variable-dropping if V([3) c V(ot)). For example, with the rewrite system given ear- 
lier (Example 3.15), we have 

innermost: x * (0 + y ) ->[2, 1, {)l x * y ->[E, 3, {.v J011 0 

outer: x * (0 + y ) ->Is, 3, tx/Ol] 0 

BASIC NARROWING. The idea behind the concept of basic narrowing (Hullot 1980) is to 
avoid narrowing steps (and then subsequent sequences) on subterms that are introduced by 
instantiation. Rfity (1987) discovered that the "basic" concept did not automatically extend to 
nopwTalized narrowing (i.e., every narrowing step is followed by simplification), and showed a 
method to compute the basic occurrences which preserve the completeness of the solution set. 
Since we deal with constructor-based systems in this paper, all the substitutes generated by any 
narrowing step for the variables appearing in the given term must be constructor terms and thus 
not narrowable. Therefore, any narrowing derivation in this class is trivially basic. 

In his paper, in order to compare various narrowing methods, Rfity established a general 
commutation result of narrowing for arbitrary term rewriting systems. The term commutation is 
similar to what we have called rearrangement. To deal with non-left linear systems, R6ty intro- 
duced the dual of residual notion, called antecedent, and extended it to narrowing. Our 
definition of residue map allows outer occurrences to be carried over to be residues when 
rewriting (or narrowing) is performed at an inner occurrence. Thus if we have a reduction 
t --~v t' where u < v for some u in O (t), a residue of u may not represent the same subterm 
as u; i.e., if u ' 6 0  (t ') is a residue of u, t'/u' may not necessarily be identical to t /u,  Rfity's 
definition disallows u to be an antecedent of u'. Our definition of residue allows us to describe 
formally how narrowing steps at outer occurrences can be "moved" to the front of a narrowing 
sequence. However, it should be emphasized that this rearrangement is achieved under the 
strong restriction that the underlying term rewriting systems be constructor-based. 

4. Complete and Minimal Sets of E-Matchers 

In this section, we apply the result of last section to the following E-matching problem: 
given a constructor-based rewrite system R and two terms t~ and t~ with disjoint sets of vari- 
ables, where t2 is a constructor term, find a complete and minimal set of E-marchers from t l to 
t2. This special case of E-matching may arise in practice: for example, compute pairs of values 
for x and y such that their sum is equal to a certain natural number by the familiar rewrite sys- 
tem: 

R ={0+x---~.~ ' ,  s ( x ) + y - - - > s ( x + y ) } .  

We first show that for this matching problem unrelated outer narrowing derivations generate 
uncompared E-matchers, i.e., no one is more general than the other. Based on a known result of 
closed linear term rewriting systems (You & Subrahmanyam 1986b) and the result of last sec- 
tion on the subsumption of narrowing by outer narrowing, we conclude that outer narrowing 
generates complete and minimal sets of E-marchers. 

4.1 DEFINITION. Let A 0 be a term and cYl and cY2 be normalized substitutions. Two reduction 
derivations cYl(Al~) 2-~[U,, K,I C l and c2(A 0) YblU,. x:] C2 are said to be tmrelated if [U I, K l] 

and [U2, Kz] are no prefixes of each other. 
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�9 . . ~ 

Similarly, two narrowing derlvatmns Ao ->lug, K,, ad C i and A 0 ->[U.,, g2, ~-.l C~ are said to 

be unrelated if [Ut, K l] and [U2, K2] are no prefixes of each other. 

The two lemmas below are prepared for Theorem 4.4 in which we will show unrelated outer 
narrowing derivations must generate uncompared E-matchers. 

4.2 LEMMA. Let  R be a constructor-based term rewriting system, P a term, and  C a 
constructor-based term. For any normalized substitutions crt and  or2 and outer reduction 
derivations 

(i) ch (P)  -Z>rU,K ] C 

(ii) o'2(P) "~[V, Jl C 

(i) and  (ii) are urn'elated ~ ch > or2 and  c2 ?k or1. 

PROOF. Assume cr~ _< o2. The proof is similar for the symmetric case c~2-< cry. From this 
assumption and the fact that at  and (~2 are normalized we have 

3'c, "c is normalized and "c.cl = ~2. 
For any reduction derivation reducing a term to a constructor term, the outermost defined func- 
tion symbol(s) must be reduced eventually, possibly repeatedly. Thus (i) and (ii) can be 
divided into sub-derivations of the form 

(i') cYl (P) = A o 2->[U., g0] ' " ' -~[U,t_r K,,_I ] A ,  = C 

(ii') o2(P ) = "c'al(P ) = Bo -%Wo, Jol ' ' " "~[Vrn-l,Jm-I] Bm= C 

such that the last reduction in each sub-derivation, say 

Ai -~[Ui, Kt ] Ai+l, 

occurs at u ' ,  where u' is a (unique) residue of  u, A i (u) is a defined function symbol and for 

any occurrence v, i fAi(v)  is a defined function symbol then u <> v or u < v, 

Because (i') and (ii') are unrelated, there exist nonempty sequences [U i, K i] and [V i, Ji ] 

such that [ U i , K i ] :~ [ V i , J i 1' Let [ U i , K i ] and [ V i , J i ] be the first such pair that occurred in the 
two derivations (i') and (ii'), respectively. Since the reduction steps before i are the same for 
both derivations (at the same occurrences and using the same rules), it is easy to show that 
B i = ~(Ai). Thus, by the definition of  outer reduction, the last reduction step in A i -~  

[Ui,KilAi+I and the last reduction step in B i -~[vi,jilBi+l will take place at the same 

occurrence, say u, in order to change the same function symbol A i (u )  = B i (u). Let f = A i ( u )  

= B i (u) .  Now these two reductions will use either the same rule, or different rules defining f .  
Case a: using two different rules. 
Let the rules be ocj --9 [3j and o~/ ~ 13/. Because R is constructor-based (and thus left-linear 

and nonoverlapping), 3v,  O.j(~') and c~l(v) are two constructors such that o~j(v) e otl(v). 

Denote the subterms with these two constructors as the principal functors by c ( t )  and d ( s ) ,  
respectively, and assume they are a pair of outermost disagreed constructors, which always 
exists�9 By the definition of  outer reduction again, there exist two outer reduction derivations 

Ailu & c ( t )  and Bi/u - ~ d ( s ) .  

From which it is easy to show by induction that for any "~, "~(A i/u ) ~ 1:(c (t)). From B i = "c(A i ), 

we have B i/u = ~(A i/u ). Therefore "c(c ( t ) ) ~ ,  d (s), i.e., "c(c (t)) =E d (s). However, the con- 

structors c and d cannot be changed. That is, "c(c (t));e d ( s )  and there do not exist reductions 
Ieading them to an identical term. This contradicts the Church-Rosser property. 
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Case  b: using the same rule. 
Let the rule be otj ~ 13j. In this case. the two very last reductions take place at the same 

occurrence and using the same rule. By the definition of outer reduction and the assumption 
[Ui, Ki ] ~: [Vi, Ji ], we will end up reducing both A i and B i at u.v, where A i (u.v ) and B i (u.v ) 
are the rightmost outermost defined function symbols such that A i (u.v ) = B i (tt. v ) ~: ~ j  (V ); oth- 
erwise we would have [U i, Ki] = [Vi ,Ji]  = {[u, j ]} .  We thus have sub-derivations issuing 
from Ai/u.v  and Bi/u .v .  Since there are only a finite number of  reductions in [U i, Ki] and 
[Vi, Ji ], continuing in this way it will eventually either give us two identical sequences, which 
contradicts the assumption [U i , Ki] ~- [Vi, Ji], or lead to Case a. 

Therefore, crl < c2 cannot be true. 

4.3 LEMMA.  Let R be a constructor-based term rewriting system, P a term, and C a 
constructor-based term. Let C ] and C 2 be instances o f  C,  and "ci and ~2 be substitutions such 
that z i (C I) = C and ~2(C z) = C .  Then for  any two outer narrowing derivations 

(i) P *> C - [U,.K~.~I] 1 

(ii) P *-> C-, - [U_,, K,_, a:] - 

( i )  and (ii) are unrelated ~ xj,cr I > r.2.~2 and x2"~2 :~ "q.o~. 

PROOF. Notice that "qmr t and "c2.r 2 are both constructor-based. (Recall that we have assumed 
that oh and r are already restricted to V(P) . )  Based on Lemma 3.12, for the two given outer 
narrowing derivations, we have two outer reduction derivations 

~ l ( P )  -~[U,.K,ICt and cY2(P) 2-~[U._.K,_IC2. 

From which we can get 

"q.offP ) -~[u,, x,l z~( C l) = C 

1:2"O~(P ) '~)[U_~. K.,I z2(C2) = C. 
By Lemma 4.2 we have z~,ot ~ "~2*(Y 2 and q~2~ 2u Ti,O" I. 

4.4 THEOREM.  Let  R be a constructor-based term rewriting system, P a term, and C a 
constructor-based term. Let C i and C 2 be instances of  C,  and "cl and "c~_ be such that 
"cl(C I) = C and ~2(C 2) = C.  Then for  any two outer narrowing derivations 

(iJ P ->[Ut, K ,a , l  Cl  

(ii) P ->[U.,, X.,, a2] C2 

(i) and (ii) are urnelated ~ Zl'O1 ~E Z2 ~176 [V (P )] and z2"o2 ~E ZI'OI IV (P)]. 

PROOF. Suppose x t ' o l  <E z~.r [ V ( P ) ] .  The proof is similar for the symmetric case. Since 
"q.o~ and "~,-o~ are constructor-based, 3~:, ~ is constructor-based and ~:"q~ =E Z2~ [V(P )]. 

Now both ~c-'t~.~ and z2.0 2 are constructor-based, we then must have ~:"q'a~  = z2"o2, i ,e . ,  
"q "o'i -< "~2~ which is not possible by Lemma 4.3 .  

It remains to show that outer narrowing generates complete sets of E-matchers, First, we 
have a completeness result for the class of closed linear rewrite systems. 

4.5 LEMMA.  Let R he a closed linear term rewriting system, Po a term and C a constructor- 
based term, For any E-matcher (r fi'om Po to C,  there exists a narrowing derivation 

P0  -> [u0 ,  kr , P0] . . . .  >[t"n-l '  kn-l" Pn-l] Pn 
such that ~ ' P n - l ' " " 9 o  <E O [V(P0)], where ~ is a most general match from Pn to C.  
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If R is also terminating the lemma easily follows from Hullot's results (Hullot 1980). A 
closed linear term rewriting system, however, need not possess the termination property. In 
You & Subrahmanyam (1986b), we defined a transformation process whose termination 
guarantees the existence of the corresponding narrowing derivation. The transformation pro- 
cess trivially terminates for the case discussed here simply because C is not reducible and R is 
strictly left-linear, The details are omitted here, 

4.6 LEMMA. Let R be a constructor-based term rewriting system, P a term and C a 
constructor-based term. Let  P ~> <r B be a narrowing derivation such that B is matchable to 

C.  Let ~B. be a most general match f rom B to C. Then there exists an outer narrowing deriva- 

tion P - >  0 D , such that i f  ~l) is a most general match fi'om D to C then 

~D "0 <E ~B .or [V (P)1. 

PROOF. By Theorem 3.13, the outer narrowing derivation exists and 3z, "c.0=cr and 
x(D ) = B .  Hence, ~n .'c(D ) = ~B (B) = C. ~8 -x is therefore a match from D to C.  However, 
since ~o is a most general one, we have 

~D <-~B "T" ==~ ~D'O<-~B*T"O=~B "(I ~ ~D'O<-E ~B ~ [V(P)]. 

The interest of the lemma blow lies in the fact that for any pair of narrowing derivations, nei- 
ther can be a prefix of the other: they must therefore be unrelated. The proof is obvious. 

4.7 LEMMA. Let R be a constructor-based term rewriting system, P be a telw7 and C a 
constructor-based term. Assume P is matchable to C,  i.e., there exists r ~(P ) = C .  Then P is 
constructor-based and not na~v-owable. 

We now give the main result of this section. 

4.8 THEOREM. Let R be a constructor-based term rewriting system, P be a term and C a 
constructor term such that V ( P ) ~  V ( C ) =  ~ .  Let W be a set o f  variables containing V ( P )  
but disjoint with V(C) .  The set of  all outer narrowing derivations issuing f i o m  P yields a 
complete and minimal set o f  E-marchers from P to C ,  away from W . 

PROOF. The correctness of outer narrowing for the E-matching problem considered here fol- 
lows from Hullot (1980). Narrowing is complete (Lemma 4.5). For any E-matcher generated 
by a narrowing derivation, there is an outer narrowing derivation generating a more general E- 
matcher (Lemma 4.6); thus outer narrowing is complete. Any two E-matchers must be gen- 
erated by two unrelated outer narrowing derivations (Lemma 4.7). Any two unrelated outer 
narrowing derivations must generate uncompared E-matchers (Theorem 4.4). Therefore, if Z is 
the set of E-matchers from P to C,  generated by outer narrowing derivations, then 1; is a com- 
plete set and 

V0h 02 ~ Z, 0t ~ 02 ~ 0t ~'~: 02 [V(P)]. 

We conclude the proof by observing that W can be easily protected by introducing disjoint 
sets of variables in each hartowing step. 

Note that for this E-matching problem, the E-matchers obtained by outer narrowing are all 
constructor-based. 

The following statement directly follows from the above result: given two terms P and C, 
where one of them is a ground constructor term, outer narrowing generates a complete and 
minimal set of E-unifiers for P and C. 
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5. A Pattern-Driven Procedure Enumerating Outer Narrowing Sequences 

The procedure is presented in the form of solving systems of equations, following Martelli 
and Montanari (1982) (see also Herbrand 1971). However, the assumption of  constructor-based 
term rewriting systems can simplify a number of processes. 

An e q u a t i o n  t = s is in s o h ' e d  f o r m  f o r  m a t c h i n g  if t is a variable, and is in s o l v e d  f o r m  f o r  

u n i f i c a t i o n  if either t or s is a variable. An o r d e r e d  system of equations is in solved form for 
matching if every equation wherein is in solved form for matching and has no variable in the 
left hand sides appearing in other equations. An ordered system of equations is in solved form 
for unification if every equation wherein is in solved form for unification and has no variable 
appearing in other equations. 

Given a term P and a constructor term C, we would like to find all outer narrowing deriva- 
tions P *>  C ' ,  where C '  is syntactically matchable to C.  It should be kept in mind that we are 
dealing with constructor-based systems, in which the left hand sides of rules are linear and not 
possibly narrowable. We first give three auxiliary procedures in Figure 2. The procedure 
t r ans fo rm syntactically transforms an ordered system of equations, preserving the ordering 
according to <>t.  From a solved system of equations, a match is obtained by get-match and a 
unifier by get-unifier. 

t r ans fo rm(EQ ): 
where E Q  = { t l  = s l  . . . . .  t .  = s .  }; 
Repeat 

I f the i-th equation in E Q  is of the form g (1 ~ . . . . .  lm)  = g (I'1 ..... l '  m ), t h e n  

E Q  : = { t I = s 1 . . . . .  t i -  1 = s i -  1 . . . . .  I I = I' I . . . . .  lm = l'm . . . . .  ti + 1 = s i  + 1 . . . . .  tn = s .  } ; 

I f 3 x i = s i e E Q  where xj is a variable. 
t h e n  substitute s i into any other occurrences of%. 

End repeat; 

return EQ. 

get -match(EQ ): 
where E Q  is in solved form for matching; 
c:={); 
F o r  eachx  i = t i in E Q .  compose {.ri / t  i } into c~; 
return (y. 

get-unifier(EQ ): 
where E Q  is in solved form for unification; 

~:={t; 
F o r  each.% = t i or t i = x i in E Q .  where .% is a variable 

compose { x i / t  i } into a;  
return ~. 

Figure 2: Auxiliary procedures. 

Since we are interested in the matching problem from a term P to a constructor term C of 
disjoint variables, it is safe to technically treat the variables in C as "constant" symbols. This 
allows us to use the procedure t rans form for both (syntactic) unification and matching pur- 
poses. 

Note that in the procedure t rans form we do not need to consider substituting the variables in 
right hand sides of equations. This is due to the way that the procedure is used: the right hand 
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side of  an equation is extracted either from the left hand side of some rule which is linear, or 
from the given constructor term. 

Before describing the procedure solve in Figure 3, we give a definition. 

5.1 DEFINITION. Given a term rewriting system R = { aj  --) ~]j }, we denote by f i  the func- 
tion symbol f defined by the i-th rewrite rule. Thus, i f f  is defined by more than one rule it 
will have different subscripts. We define a binary relation Xe as follows: 

(a) Let f ( t l  ..... tn) -4 g(sl  ..... Srn) be the i-th rule in R.  Then < f i , g >  ~ Xn if g E F c ;  
and < f  i , g.i > ~ XR if the j-th rule defines g .  

(b) Let f ( t t  . . . . .  t n) ---) x be the i-th rule in R where x is a variable. Then for any c E F c ,  
<fi, c>  ~ Xn ; and for any g E Fo, <fi ,  gj  > E X R if thej-th rule defines g .  

(c) Xn is the smallest relation satisfying (a) and (b). 

We will denote by xtn the transitive closure of Xn. 

Note that xtn is finite for finite R and F .  It is clear that for any defined function symbol  f 
and constructor c ,  an equation of the form f (..3 = c (...) has a solution, only if there exists 
<fi,  c > ~ x tk ,  for some i. For example, with the following rewrite system 

R = { length ([ ]) --~ 0, length (x.y) ~ s (length (2,'))} 

we have xtn = { <length l, 0>, <length 2, s > }. 
The procedure solve(EQ, 9, I]) in Figure 3 tries to syntactically solve a system of equations; 

if the attempt is unsuccessful it then invokes the procedure ou te r -na r row( t ,  c )  and finds the 
rules that can possibly narrow the term t to the one with c as the leftmost symbol. The param- 
eters in solve are used for the following purposes: EQ holds the system of equations to be 
solved; 9 is the composition of the unifiers recursively obtained from syntactically solved 
(sub)systems of equations; and ~ the right hand side of the rule used by the procedure outer -  
narrow. Initially, the procedure is invoked by soive({P = C  }, {}, _1_), where {P = C }  is the 
original system of equation for the E-matching problem from a term P to a constructor term C ; 
{ } is the empty substitution; and I indicates that no rewrite rule has been used. 

Notice the pairs of elements returned by solve as intermediate results: the first component  
holds the right hand side (with the unifier applied) of the rule employed by ou te r -na r row,  and 
the second the accumulated unifier generated from solving the corresponding (sub)system of 
equations. 

When a system of equations is not syntactically solvable, the procedure ou t e r -na r row( t ,  c)  
is called, which tries to change the term t to the one having c as the leftmost symbol. For each 
newly formed system of  equations, if it is syntactically solvable the execution returns to solve 
to see if the modified system of equations is syntactically solvable; otherwise, o u t e r - n a r r o w  
will be called recursively, These two procedures recursively call each other until the generated 
systems of equations are either solved or cannot be solved for the reason of constructor conflict. 
The procedure solve is not guaranteed to terminate in general since we are dealing with a 
semi-decidable problem. Note that nondeterminism can only be introduced by the procedure 
outer-narrow.  In addition, the relation xte further cuts down the degree of nondeterminism. 

For each successfully computed E-matcher, we can construct a narrowing derivation as fol- 
lows, A syntactically solved system of equations returned from each call of o u t e r - n a r r o w  
corresponds to a single narrowing step. Since we are using left-linear rules, it is easy to see that 
cyclic equations (i.e., a variable is equated to a term containing itself) cannot be generated and 
as a consequence, failure of unification can only result from function symbol conflict(s). Also, 
the unifier obtained from a syntactically solved system of equations is obviously most general 
for the term and the left hand side of the rule. 
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solve(EQ, p, 13): 
where EQ is an ordered system of equations, 

p the accumulated substitution and ~ either a term or _1_; 
EQ" := t ransform(EQ ); 
I f  ~ = .L and EQ' is in solved form for matching t h e n  

{ 
cr := get.mateh(EQ'); 
r e t u r n  c -p  /*an E-matcher  generated*/ 
); 

I f 13 # _L and EQ' is in solved form for unification t h e n  
{ 
cr := get.unifier(EQ'); 
return {O'([~), o'.p} /*an intermediate result obtained*/ 
); 

O t h e r w i s e  choose the leftmost equation t i = s i in EQ' 

such that 3 <% (e)], s i (E)> e xtR for some j 
[ /*consider an equation which might be solvable*/ 

:= outer -narrow(t i ,  s i (e)), where elements in qb are of  the form { [3', O }; 
F o r  each {]3', 0} E qb do 

I 
EQ" := O(EQ') with O(ti) replaced by 13'; 
r e t u r n  soive(EQ",  O.p, [~) 
} 

} 
I f  none of the above applies t h e n  s t o p  and r e t u r n  FAILURE. 

o u t e r - n a r r o w ( t ,  c ): 

F o r  each rule o~j --4 13j e R such that <t(a) / ,  c >  e XtR, 
assuming variables are properly renamed, 
form an ordered system of equations: EQ := I t = ctj ]; 
r e t u r n  solve(EQ, {}, ]3j). 

Figure 3: The procedures solve and ou te r -na r row.  

To be more precise, let us consider the calls of o . ' t e r - n a r r o w  involved in the successful 
computation o f  an E-marcher. The order in which these calls were made can be represented by 
a tree (which may not necessarily be binary), and the sequence can be obtained by the depth- 
first search of the tree. In addition, a system of equations may be seen as an implicit represen- 
tation of  a term. Each subterm t in ou te r -na r row( t ,  c )  can therefore be given a redex with 
respect to the top level system of equations. We will omit  the complex but routine construction 
for this correspondence and leave it to the reader's intuition to see that this can be done. As an 
example, consider a successfully computed E-matcher by the following calls of  o u t e r - n a r r o w :  

rl 

ill2. k2, ~ _  ', ]':4, (~4] 

[uo, ko,~o] [ul,kl, cl] [l~'3, k3, (~3] 
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We then have the following narrowing derivation: 

P o ->[m~.k,,.~J,,] P I ~>[u,.k.cy,] P2 ->[u..k..o.] P3 ~>[u3.k~.~] P4 ~>[ll4,k4,CJ4] P5 

where G i is returned by get-unifier upon the return of the i-th call of outer-narrow, Pi is 
restored from the top level system of equations at that time. Since this is a successful deriva- 
tion, P5 must be matchable to C with the most general match rl (returned by the first call of 
solve). The generated E-matcher is therefore 

lq *~4"0"3"(~2"~1"G0 I V(Po)" 

Note that each recursive call of outer-narrow is due to a disagreed function symbol. It is then 
obvious that A i is not narrowable at uj by the kj-th rule if ltj is a residue of some w outer to 
u i. Notice also that the order in a system of equations corresponds exactly to the one deter- 
mined by <>r in an outer narrowing derivation. Therefore, solve enumerates only outer nar- 
rowing derivations. 

Now, let us use solve as a reduction procedure. More precisely, let o be a normalized substi- 
tution such that o(Ao) "~o  C is outer. It is not difficult to construct a calling sequence of 
outer-narrow and a calling sequence of solve connecting all reduction steps that reduce ~(A o) 
to C. From the exact same calling sequences a narrowing derivation starting from Ao can be 
constructed. We therefore conclude that the procedure solve enumerates all and only outer nar- 
rowing derivations for the special matching problem considered in this paper. 

The mechanism of solving systems of equations has also been employed in developing more 
general unification procedures without the minimality result. Gallier and Snyder (1987) 
developed a transformation system that is complete for all equational theories. The transforma- 
tion system described in Martelli et al. (1986) aims at dealing with canonical term rewriting 
systems and employs a transformation rule (among others), called "outermost term rewriting" 
which has similar effect as outer narrowing. The procedure described in this section can be 
viewed as a simplified version of theirs because of the restrictions imposed on the rewrite sys- 
tems. However, rewrite systems considered here are not required to be terminating in general. 

6. Summary and Final Remarks 

We have studied a special narrowing strategy, the outer narrowing strategy, which 
enumerates all outer narrowing derivations. Two results have been obtained. The first result 
shows that for the class of constructor-based term rewriting systems, every narrowing deriva- 
tion is subsumed by an outer narrowing derivation. This result can be seen as an extension of 
Reddy's lazy narrowing strategy (Reddy 1985) in the purely equational framework. The second 
result is about complete and minimal sets of E-matchers for a restricted case of the general E- 
matching problem. It follows from this result that for this special matching problem, complete 
and minimal sets of E-matchers exist for equational theories that can be described by a 
constructor-based term rewriting system. 

To our knowledge, all the known complete and minimal algorithms are based on the fact that 
they terminate. The minimal sets can then be obtained from the complete sets by a filtering 
process. These theories thus belong tofinitary theories (Burckert et al. 1987; Siekmann 1984). 
It can be shown by an example that for the matching problem considered in this paper the class 
of constructor-based equational theories belong to the class of i@nitarv matching theories 
(Burckert et al. 1987; Siekmann 1984). Consider the following term rewriting system: 

R = { ./'(c(,r)) ---> f (x), f(d) -~ e }. 

The system is constructor-based and even terminating. However, there are an infinite number 
of most general E-matchers from the term f (.r) to e, which are {.r/d }, {.v/c (d) }, {x/c (c (d))}, 
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... {.r tc(. . .c (d)...)} .... The result presented in this paper appears to be the first one dealing with 
the minimality problem for classes of infinitary theories, 

The approach used in this paper may be further extended with certain limitation. We claim 
that for terminating constructor-based systems, the general matching problem can be solved by 
the outer narrowing method. The difficulty to extend the current approach to the E-unification 
problem is that two compared E-unifiers may be generated by two narrowing derivations, one 
being a prefix of  the other: a set of generated E-unifier is thus no longer guaranteed to be 
minimal. It appears that the handling of  this situation is tricky and can be costly. 

We noticed that a counterexample given in Fages & Huet (1983) was a closed linear term 
rewriting system; consequently, we restricted our attention to subclasses of closed linear sys- 
tems. The following problem is still open: do complete and minimal sets of  E-matchers or E- 
unifiers exist in general for equational theories that can be described by a constructor-based 
term rewriting system'?. We conjecture that the answer is yes. We further conjecture that com- 
plete and minimal sets of  E-matchers or E-unifiers exist even for equational theories that can be 
described by a left-linear, nonoverlapping term rewriting system. We wish the work presented 
in this paper provides insights into solutions to these problems. However, eve~ the existence 
problem can be positively answered, developing complete and minimal procedures can be 
difficult. 

The rewrite systems considered in this paper are highly restricted; they only allow functions 
to be defined in terms of constructors. This is inadequate for other applications such as verify- 
ing properties of equational programs. This problem may be tackled along the same line as 
combining theories or building unification algorithms incrementally (see, for example, Huet & 
Oppen 1980, Jouannaud et al. 1983, Yellick [985). Research in this direction is needed as most 
available methods work only for finitary theories. 
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