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ABSTRACT: Most knowledge based systems in artificial intelligence (AI), with a commitment to a 

symbolic representation, support one basic operation: "matching of descriptions". This operation, 

called unification in work on deduction, is the "addition-and-multiplication" of AI-systems and is 

consequently often supported by special purpose hardware or by a fast instruction set on most 

AI-machines. Unification theory provides the formal framework for investigations into the 

properties of this operation. This article surveys what is presently known in unification theory and 

records its early history. 

1. Introduction 

Oberhaupt hat der Fortschritt das an sich, daft er viel gr6J3er 

ausschaut, als er wirklich ist. 

J.N.Nestroy, 1859 

Not least because of its numerous applications in artificial intelligence (AI) and computer 

science, the field of unification theory is currently witnessing intense activity. This field is 

concerned with problems of the following kind: Let f and g be binary functions, a and b constants, 

and x and y variables, and consider the two first order terms s and t built from these symbols as 

follows: 

s = f(x g(a b)) t = f(g(y b) x) 

The decision problem is whether or not there exist terms which can be substituted for the variables 

x and y in s and t so that the two terms thus obtained are identical. In this example g(a b) and a are 

two such terms and we write 

8 = {x .-  g(a b), y *- a} 
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to represent this unifying substitution. 

We say that  8 is a unifier for s and t, since 8s = 5t = f(g(a b) g(a b)). 

In addi t ion  to  the above decision problem there is also the problem of finding a unification 

algorithm, which enumerates the unifiers for a given pair of terms. Such algorithms are at the very 

heart o f  present  day computing, in fact they form part of the central processing unit of  the "fifth 

generation computers" (][COT, 1984) (note the difference in reference convention to the bibligraphy 

in section f i v e  and the references in section four: references to section four are preceded by a *). 

For e f f i c iency  reasons they are often implemented in silicon or at least supported by an abstract 

machine, s u c h  as the Warren Abstract Machine (*Gabriel et al., 1984), into whose instruction set 

the terms to beunif ied are compiled. 

Consider a variation of the above problem, which arises when we assume that f is commutative: 

(c) f(x y) = f(y x) 

Now 8 is still a unifier for  s and t. However a = {y ~ a} is also a unifier for s and t since 

os = f(x g(a b)) =c f(g(a b) x) = or. 

But ff is more general than 15, or put another way ~ is an instance of o,since it is obtained as the 

compos i t ion  of the substitutions %~ where % = {x ,,- g(a b)}. Hence a unification algorithm 

only needs to compute ft. 

In some  cases  there is a single and unique least upper bound in the lattice of  unifiers, called the 

most general  unifier or alternatively the principal unifier. For example for every pair of 

un in te rp re ted  terms as above there is at most  one general unifying substitution. Under 

commuta t iv i ty  however, there are pairs of  terms which have more than one most  general unifier, 

but they a lways  have at most finitely many. 

The problem becomes entirely different, when we assume that the function f is associative: 

(A) f(x f(y z)) = f(f(x y) z) 

In this case ~i is still a unifying substitution, but z = [ x  +-- ffg(a b) g(a b)), y ~ a} is also a unifier, 

since 

"~ s -- f(f(g(a b) g(a b)) g(a b)) =n f(g(a b) f(g(a b) g(a b))) = x t. 

But " (=  [x ~ f(g(a b) f(g(a b) g(a b))), y ~ a} is again a unifying substitution and it is not 

difficult to  see, by  an iteration of  this process, that there are infinitely many unifiers, all of which 

are most  general. 
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Finally, if we assume that both axioms (A) and (C) hold for f, the situation changes yet again and 

for any pair of terms there are at most finitely many most general unifiers under (AC). 

The above examples as well as the many practical applications of unification theory (see section 

1.1.) share a common problem, which in its most abstract form is as follows: Let L b e  a formal 

language with variables and two words s and t in that language. Then for a given binary relation = 

defined in s find a substitution cr such that t~s -- t~t (provided of course that t~s and o t  are 

welldefined). 

If the relation ~ can be specified by a set E of equational axioms and if 1", is the language of  first 

order terms, unification of s and t in E amounts to solving the equation s = t in the variety defined 

by E. For example if E consists of the associative axiom and the idempotence axiom f(x,x) = x, 

and s and t are terms,then unification of s and t amounts to solving equations in free idempotent 

semigroups. A better known example may be the following: if E is an axiomatization of the natural 

numbers and s and t are appropriate terms, unification of s and t amounts to solving Diophantine 

equations. 

The mathematical investigation of equation solving is a subject as old as mathematics itself and 

right from the beginning was very much at the heart of it. It dates back to Babylonian mathematics 

(about 2000 B.C.) and has dominated much of mathematical research ever since. Unification 

theory carries this activity on in a more abstract setting. Just as universal algebra abstracts from 

certain properties that pertain to specific algebras and investigates issues that are common to all of 

them, unification theory addresses problems, which are typical for equation solving as such. And 

just as traditional equation solving drew much of its impetus from its numerous applications (for 

example the, for the times, complicated procedure for deriding legacies in Babylonian times or the 

applications in physics in more modem times), unification theory derives its impetus f rom its 

numerous applications in AI and computer science. 

Central to unification theory are the notions of a set of  most general unifiers ~U and 

the unification hierarchy based on the cardinality of  gU. Both notions will be formally 

introduced in section 2, where we define a unification problem for an equational theory E. 

However for many practical applications unification is too general a concept, instead it is of interest 

to know for two given terms s and t if there exists a matcher g (a one-side-unifier) such that g(s) 

and t are equal in E. In other words, in a matching problem we are allowed to substitute into 

one term only (into s using the above convention) and we say s matches t with matcher It. 
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1.1. APPLICATIONS 

There is a wide variety of areas in AI and computer science where unification problems arise. 

Databases 
A deductive database (*Gallaire & Mirtker, 1978) does not store every fact explicitly. 

Instead it contains only certain facts, from which other facts can be deduced by some inference 

rule. Such inference rules (deduction rules) heavily rely on unification algorithms. 

The user of a relational database (*Date, 1976) may logically and the properties he wants to retrieve 

or else he may be interested inthe natural join of two stored relations. But and is an associative and 

commutative operation and the natural join obeys an associative axiom, which distributes over 

some other operation, hence both can be built into a unification algorithm (Snelting & Henhapl, 

1985). 

Information Retrieval 
A patent office may store all known electric circuits (*Bryan & Carnog, 1966) or all 

recorded chemical compounds (*Sussenguth, 1965) as some graph structure, and the problem of 

checking whether a given circuit or compound already exists is an instance of a test for graph 

isomorphism (*Ullman, 1976; *Unger, 1964; *Comeil, 1968). More generally, if the nodes of 

such graphs are labelled with universally quantified variables ranging over subgraphs, then these 

problems are instances of a graph matching problem (*Rastall, 1969). 

Computer Vision 
It has become customary in this field to store the internal representation of external scenes 

as some net structure (*Ballard & Brown, 1982; *Winston, 1975). The problem to find a particular 

object represented in a given scene, is then also an instance of a graph matching problem (*Ballard 

& Brown, 1972; *Rastall, 1969). Here one of the main problems is to specify exactly what 

constitutes a successful match (since a test for endomorphism is too rigid for most applications ): 

matching is carried out with respect to some distance function (or some metric), that is usually not 

formally defmecl, but depends on the application in mind. 

Natural Language Processing 
The processing of natural language by a computer (*Winograd, 1972; *Winograd, 1983; 

*Tennant, 1981) is often based on transformation rules, which for example translate the surface 

structure of the input sentence into a more appropriate form for internal representation within the 

computer.Inference rules are used to derive the semantics of an input sentence and to disambiguate 

it. The knowledge about the external world that a natural language processing system must have, is 

represented by some machine oriented descriptions and it is of paramount importance to detect if 

two descriptions describe the same object or fact. 
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Transformation rules, inference rules and the matching of descriptions are but a few places where 

unification theory is applied within this field. 

The meaning of a natural language utterance has to be represented in some internal representation 

language, which in turn should have a well defined semantics. Recently developed formalisms 

such as situation semantics (for which see (*Barwise & Perry, 1983)) or discourse representation 

theory (*Kamp, 1981) no longer use elementary set theoretical operations for the manipulation of 

natural language utterances, but rely on one basic operation, namely unification with respect to 

certain constraints. 

Also special functional grammars have been designed for parsing natural languages, called 

unification grammars (Shieber, 1986), that depend on one fundamental operation: feature 

unification (Ait-Kaci, 1984; Smolka & Ait-Kaci, 1987). 

Expert Systems 

An expert system is a computer program (*Brachmarm & Schmolze, 1985), whose 

performance largely depends on its ability to represent and manipulate the knowledge within its 

field of expertise. Commonly this knowledge is represented in the form of production rules, such 

that if the preconditions of a production rule are fulfilled, its action part will be executed. Special 

languages such as OPS5 (*Forgy, 1981) and others have been developed for the implementation of 

such systems. In OPS5 the conditional part of a production rule is matched against the entries in the 

knowledge base and if the match succeeds, the preconditions are considered true and the rule will 

fire. 

The efficiency of this matching process is of crucial importance and special techniques, e.g. the 

Rete-algorithm (*Forgy, 1982) and even hardware realisations (*Rarnnarayan & Zimmermann, 

1985), have been proposed which are similar to efficient implementations of  the unification 

algorithm in logic programming languages. 

Text Manipulation Languages 
The fundamental mode of operation in programming languages like SNOBOL (*Farber et 

al., 1964) is to detect the occurrence of a substring within a larger string of characters (which may 

be a program or some other text ), and there are methods known for doing this, which require less 

than linear time (*Boyer & Moore, 1977). If these strings contain the SNOBOL "don't-care"- 

variable, the occurrence problem is an instance of the string unification problem (Siekmann, 1975). 

Planning Systems 
Computerbased generation of plans for actions, such as a plan for a robot action or plans 

for appropriate language generation, is an important subfield of AI. The methods for finding a plan 

can be viewed as a deduction process. In a recent paper Z.Manna and R.Waldinger show, how a 

tableau-based inference system with an extended unification algorithm (for additional equations and 

equivalences) can be used to generate such plans (*Manna & Waldinger, 1986). 
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Pattern Directed Programming Languages 
An important contribution to programming language design is the mechanism of 

pattern-directed invocation of procedures (*Brhrn et al. 1977; *Hewitt, 1972; *Rulifson et al., 

1972; *Beilken et al., 1982). Procedures are identified by patterns, instead of procedure identifiers 

as in traditional programming languages, and these patterns usually express goals to be achieved by 

executing the procedure. Incoming messages are tested for matching against the invocation patterns 

of procedures in a procedural data base, and a procedure is activated after a successful match 

between message and pattern is achieved. Here matching is carried out to find an appropriate 

procedure that helps to accomplish an intended goal and also for transmitting information to the 

invoked procedure. For these applications (often called demons, censors, agents, etc.) it is 

particularly desirable to have methods for the description and matching of objects in high level data 

structures such as strings, sets, multisets, lists and others. 

A little reflection will show that for very expressive matching languages, as e.g. MATCHLESS in 

PLANNER (*Hewitt, 1972), the matching problem is undecidable. This presents a problem for the 

designer of such languages: on the one hand, very rich and expressive languages are desirable, 

since they form the basis for the invocation and deduction mechanism. On the other hand, drastic 

restrictions will be necessary, if matching algorithms are to be found. The question is just how 

severe do these restrictions have to be. 

Knowledge Representation Languages 
Based on frame-like techniques to structure and represent knowledge (*Minsky, 1975), 

special purpose programming languages such as K_RL (*Bobrow & Winograd 1977) or KL-ONE 

(*Brachmart & Sehmolze, 1985) have been designed for this task. Apart from their respective 

commitment to the representation and structuring issue, they all support one central operation: 

"matching of descriptions" (*Brachmann & Levesque, 1985). In a sense unification theory relates 

to these new kinds of programming languages - and hence to knowledge based systems - as formal 

language theory relates to traditional programming languages. 

Logic Programming Languages 
The discovery of the close relationship between logical deduction and computation, which 

means that logic enjoys a role in computer science analogous to that of analysis in physics, is 

certainly one of the outstanding scientific achievements of the later part of this century. 

However there is a more specific point to this, namely that predicate logic itself can be viewed as a 

programming language (*Kowalski, 1979) given a suitable machine to execute it. Predicate logic 

relates to a deduction system as for example LISP relates to EVAL. This insight opened up a new 

technological race for logic programming languages and appropriate machines on which to execute 

them. The Japanese coined the name "fifth generation computers" for such machines. The central 

computation performed in logic programming machinery is unification. In fact the unification 

algorithm - be it implemented in software or in silicon - is the central processing unit, the CPU, of 

these machines. Hence the speed of these machines is no longer expressed in M:IPS (Millions of 



Unification Theory 213 

Instructions Per Second) as for conventional machines, but in KLIPS (thousands of  Logical 

Inferences Per Second), which is in effect a measure of the number of unifications performed per 

second. 

Term Rewriting Systems 
The manipulation of terms in equationally defined theories, traditionally called 

demodulation (*Wos et al., 1967), is based on matching and has always played an important role 

in deduction systems. If in addition the equations can be transformed into a confluent and finitely 

terminating rewriting system (*Huet & Oppen, 1980), they can be used to compute a unique 

normal form for any term. The test for confluence can be carried out by a procedure known as the 

Knuth-Bendix completion procedure (Knuth & Bendix, 1979), which uses a unification algorithm 

as its central component. 

Certain equational axioms, such as associativity or commutativity, are notoriously difficult to 

handle using these systems. Therefore a given equational theory T can sometimes be separated into 

two constituent parts, T = R u E ,  such that only R needs to be transformed into a canonical 

rewriting system and E (the difficult equations) can be built into a special purpose unification 

algorithms (Peterson & Stickel, 1981). 

Term rewriting systems are of considerable interest in computer science (Buchberger, 1987) and 

have now found a place in most computer science curricula, since they provide for a convenient 

computational treatment of equational logics. Not the least important among the many applications 

these systems have, is their foundational role in new programming languages which elegantly 

combine functional with logic programming. Term rewriting systems that operate on the word 

monoid are called Semi-Thue-Systems, for a survey see R.Book (*Book, 1985). 

Computer Algebra 
In computer algebra, matching and unification algorithms also play an important role. For 

example the integrand in a symbolic integration problem (*Moses, 1971) may be matched against 

certain patterns in order to detect the class of integration problems to which it belongs. A succesful 

match then triggers the appropriate action for its solution (which in turn may involve several quite 

complicated matching attempts (*Blair et al., 1971; *Fateman, 1971). Hence most computer 

algebra systems like REDUCE (Hearn, 1971), MACSYMA (Moses, 1974) or MATHLAB 

(*Manove et al., 1968) make extensive use of unification or matching algorithms. 

Algebra 
A famous decidability problem, which inspite of many attacks remained open for over 

twenty years, has been solved. The Monoid Problem (also called L/3b's Problem in western 

countries, Markov's Problem in eastern countries and the String Unification Problem in the field of 

automated deduction (Hmelevskij, 1964; Hmelevskij, 1966; Hmelevskij, 1967; *Markov, 1954; 

Plotkin, 1972; Siekmann, 1975; Livesey & Siekmann, 1975), is the problem of deciding whether 

or not an equational system over a free semigroup possesses a solution. This problem has been 
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shown to be decidable (Makanin, 1977). The Monoid Problem has important practical applications 

inter alia for deduction systems (string unification (Siekrnann, 1975) and second order monadic 

unification (Huet, 1976; Winterstein, 1976)), for formal language theory (the crossreference 

problem for van Wijngaarden Grammars (*van Wijngaarden, 1976) and for pattern directed 

invocation languages in AI as mentioned above. 

Without surveying classical equation solving as such, one "unification problem" that should be 

mentioned is Hilbert's Tenth Problem (Davis, 1973), which is known to be undecidable 

(Matiyasevich, 1970). The problem is whether or not a given polynomial P[x 1,x 2 ..... x n] = 0 has 

an integer solution (a Diophantine solution). Although this problem was posed originally within the 

framework of traditional equation solving, unification theory has shed new light upon this problem 

(Siekmann & Szabo, 1986). 

Semigroup theory (*Clifford & Preston, 1961; *Howie, 1976) is the field that traditionally poses 

the most important unification problems, i.e. those involving associativity. Although more 

established than unification theory is today, some interesting semigroup problems have been solved 

using techniques from unification theory and term rewriting systems (see e.g. (*Siekmann & 

Szabo, 1982; Lankford, 1980; Lankford, 1979; Baader, 1987)). 

Deduction Systems 
All present day deduction systems - whether they are based on resolution (Robinson, 

1965) or not - have a unification algorithm for first or higher order terms as their essential 

component: it is the "addition and multiplication of deduction work". 

For almost as long as attempts at proving theorems by machines have been made, it has been well 

known that certain equational axioms, if left unconslrained in the data base of a deduction system, 

may force it to go astray. In 1967 J.A.Robinson proposed that substantial progress ("a new 

plateau") could be achieved, by removing these troublesome axioms from the data base and 

building them directly into the inference rules of the deductive machinery. One technique that has 

become important for deduction systems, is to build these axioms, which often define common 

data structures, into the unification algorithm itself. G.Plotkirt has shown in a pioneering paper 

(Plotkin, 1972), that a deductionsystem is refutation complete, whenever its extended unification 

procedure generates a set of unifiers satisfying the three conditions of completeness, correctness 

and minirnality. These properties are now used to axiomatically define the set of most genera1 

unifiers. 

Nonclassical Logics 
Knowledge representation systems in AI are often based on nonclassical logics that model 

temporal information, modality, probability or beliefs more adequately than ordinary first order 

logic (*Brachmann & Levesque, 1985). As it turned out, the nonclassical aspect of a logic can 

often be accounted for using special terms and the mechanization of such logics amounts to finding 

appropriate unification algorithms. For example various forms of modal and temporal logics have 

been coded this way (*Wallen, 1987; *Nonnengart, 1987; *Ohlbach, 1987) and particular 
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unification algorithms for some standard modal logics (like S4,T etc) are reported in (Ohlbach, 

1988). 

It is the field of automated deduction systems (the series of Conferences of Automated 

Deduction, CADE ), where unification problems first became of general importance and that has 

historically contributed most to unification theory. 

1.2. EARLY HISTORY 

Allowing for some exceptions we take 1976 as the (not entirely arbitrary) date before 

which work is considered early history, whereas later contributions are recorded under the heading 

"Results" in sections 3.1. and 3.2. 

The visionary thoughts about the nature of mathematics, symbols and human reasoning that Emil 

Post recorded in his diary and notes (partially published in (*Davis, 1965)) contain the first hint as 

early as the 1920s of the concept of a unification algorithm that computes a most general 

representative as opposed to all possible instantiations (p.370 in (*Davis, 1965)). 

The first explicit account of a unification algorithm was given in J. Herbrand's thesis "Recherches 

sur la theorie de la demonstration" in 1930 (Herbrand, 1930), where he introduced three concepts 

with respect to the validity of formulas. He called them A, B and C. Concept B and C were the 

basis for the wellknown Herbrand Theorem, whereas concept A was by and large consigned to 

oblivion. In order to calculate that property A holds for a formula, he gave an algorithm which 

computes it. This was the first published unification algorithm and was based on a technique later 

rediscovered by A.Martelli and U.Montanari (Martelli & Montanari, 1976) and that is still much in 

use today. 

Based on Herbrand's idea of a finite counterexample, i.e. that only a finite number of 

instantiations are necessary in order to show the unsatisfiability of a set of formulas, early theorem 

proving programs were developed, but it was not until 1960 when D.Prawitz (*Prawitz, 1960) 

suggested a way out of these "British Museum Techniques" as they were called later on, which 

was to compute a most general representative for the abundant number of instantiations that are 

possible otherwise. However, as his logic did not contain any function symbols, there was little in 

fact to compute. In 1963 M.Davis published (*Davis, 1963) a proof procedure that combined the 

virtues of Prawitz's procedure with those of the Davis-Putnam procedure. The implementation of 

this new proof procedure on an IBM 7090 at Bell Telephone Laboratories November 1962 used a 

unification algorithm to compute the "matings" and appears to be the first fully implemented 

unification algorithm in actual use. 

It was not until 1965, however, when the seminal paper on the resolution principle by 

J.A.Robinson was published (Robinson, 1965), that a formal account of a unification algorithm 
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for first order terms, which computes a unique, single representative (i.e. the most general unifier ) 

first appeared in print. This has been the most influential paper in this field and firmly established 

the concept of unification in automated deduction systems (including systems not based on 

resolution). 

The work for this paper was done essentially in 1963 at Argonne National Laboratory, a time when 

another group headed by J.R. Guard at the Air Force Cambridge Lab developed a deduction 

system based on a Gentzen-style sequent logic that also incorporated a unification algorithm. The 

work was published in some internal reports (*Guard, 1964) and later in (*Guard & Oglesby, 

1969). However, although their algorithm was correct and complete, this was not proved. They 

also suggested extensions of the algorithm to higher order logic as well as first order extensions to 

incorporate axioms like commutativity and associativity. The algorithms used for these latter 

extensions were heuristically motivated (reordering of terms, rebracketing etc.) and were incorrect 

and incomplete in general. 

The basic unification algorithm was discovered again by D.Knuth and published in a paper (Knuth 

& Bendix, 1970) that became a classic in the field of term rewriting systems. In order to turn a 

given set of equations into a canonical rewriting system, a completion process is described that 

depends heavily on a unification algorithm, whose theoretical properties (computation of the most 

general unifier) were recognised and demonstrated. 

In 1967 J.A.Robinson proposed to build certain troublesome axioms directly into the deductive 

machinery of an automated theorem prover and in 1972 G.Plotkin (Plotkin, 1972) showed how 

this can be done without losing completeness. From the point of view of unification theory this 

paper contained two major contributions: first the definition of a set of most general unifiers, which 

became (in particular through the work of G.Huet) a central notion of the field, and second the 

discovery that there are equational theories (e.g. the associativity axiom) which induce an infinite 

set of most general unifiers. 

M.Stickel presented special unification algorithms for associativity, commutativity and their 

combination in his thesis (Stickel, 1975; Sfickel 1977), this work was essentially motivated by the 

matching problem in pattern invocated progrzmming languages as already descibed above. 

The work of O.Plotkin was taken up in my own thesis (Siekmann, 1978), which described several 

unification algorithms for the axioms of associativity, commutativity and idempotence and their 

combinations. This thesis also suggested that unification theory, at that stage a collection of special 

purpose algorithms, was worthy of study as a field in its own right and as an important branch of 

theoretical AI, centering around the unification hierarchy, a concept which was first introduced here 

along with some preliminary results concerning it. 

While these developments were taking place in first order unification theory, there was 

also important work going on in higher order unification around the same time. Based on the 

theorem proving system of J.R.Guard and his associates mentioned above, W.F.Gould (Gould, 

1966) investigated the most general common instance of two higher order terms and discovered 

that there are infinitely ascending chains of most general unifiers (i.e. a minimal set of most general 
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unifiers does not exist for c0-order logics). 

Influenced by P.Andrews,  whose  work was seminal for  higher  order deduction systems 

(Andrews, 1971), G.P.Huet developed a "constrained resolution method" (I-Iuet, 1972) for higher 

order theorem proving, based on an co-order unification algorithm. This work was then further 

developed in his "these d'6tat" in 1976 (I-Iuet, 1976), which became of  fundamental importance in 

shaping the field of first and higher order unification theory as it is known today. 

2. Notions and Notation 

Unification Theory rests upon the notational conventions of  Universal Algebra (see e.g. 

*Gr~itzer, 1979; *Burris, 1981) and of  Computational Logic (see e.g. (*Loveland, 1978; *Huet & 

Oppen, 1980; *Buchberger, 1987), which we shall briefly review in the following paragraphs. 

Given a set S with elements c ,  8, x . . . .  and a quasi ordering < on S, we say that two elements 

~,x ~ S are equivalent, a =- x, iff a < x and "~ _< t~. A subset U c S is called an (upper) segment 
or afilter of S, iff for o e S and x e U and x -< t~ we have c r e  U. W e  say U is generated by a set 

cU iff U consists exactly of those elements of S that are greater than some elements of  cU, i.e. 

cU ~ U and V x  ~ U there exists r ~ cU with o < x. A minimal generating set IxU is called a 

base of U or the It-set of U if it is a generating set for U with the following additional property: 

~ '  o,x e / sU:  ~ _< x implies o = x .  A segment does not necessarily have a base, but if the bases 

exist they are all equivalent. 

We are interested in the existence, uniqueness and cardinality of such Ix-sets in the more specific 

context of unification. 

2.1.  COMPUTATIONAL LOGIC 

Our starting point is the familiar concept of an algebra as a pair ( A, F ), where A is the 

carrier and F is a family of operators (the signatur ) given with their arities. 

For F and a denumerable set of  variables V, we define T, the set o f  first order terms, over F and 

V, as the least set with (i) V ~ T, and if ari ty(f)  = 0 for f ~ F then fe  T and 

(ii) if  t 1 ..... tag "r and ar i ty(f)  = n then f(h..- tn)~ T. 

Let V(t  ) be the variables occurring in term t, a term t is ground if V(t ) = ~ .  The algebra with 

carrier T and with operators corresponding to the term constructors of F is the absolutely free 

(term) algebra, i.e. it just gives an algebraic structure to T. I f  the carrier is the set of  ground terms it 

is called the initial algebra (*Goguen & Thatcher, 1977) or Herbrand Universe (*Loveland, 1978). 

A substitution a:  ~ ---) ~ is an endomorphism on the term algebra "it, which is identical almost 

everywhere on V and hence can be represented as a finite set of variable-term pairs: 

t3 = {Xl',-- t 1 ..... x n ~  tn}. 



218 J . H .  Siekmann 

Equational Logic 
Although unification theory is not restricted to equation,ally def'med theories, most results 

have been obtained within this frame. 

An equation is a pair of  terms, usually written as s = t. Given a set of  equations E and a single 

equat ion s = t ,  we  denote by E ~ s - - - t  t ha t s  = t is true in every model  of  E ( s = t i s a  

modeltheoretical  consequence of E ). An equational theory T is a set of  equations with T ~ s=t 
iff  (s --- t ) e  T, i.e. T consists of  all its consequences. For a given set of  equations E, the least 

equational theory T(E) is the finest congruence on the term algebra containing all pairs os = ot,  for 

all equations in E and all substitutions a (the substitution invariant congruence generated by E). We 

say s and t are E-equal, abbreviated as s =Et,  iff the terms s and t are in this congruence. E is a 

presentation of the congruence =E or an axiomatization of the equational theory T(E). Usually 

we say "theory E" and mean the equational theory T(E) axiomatized by  E. 

Obvious ly  the axiomatizat ion for an equational theory is not unique. A theory that has a finite 

axiomatization is called finitely generated, otherwise it is infinitely generated. E-equality is not 

decidable in general; however  in unification theory we are usually only interested in equational 

theories with a decidable word problem. Another natural restriction is that we consider only 

consistent theories, i.e. theories, which do not collapse into a single equivalence class. A theory is 

consistent if for all v ,we  V: v =Ew impl ies  v = w. 

A standard set of  inference rules for equational logic is the following: 

S = S  

if s = t  then t=s 
if r = s  a n d s = t  t h e n r = t  

if si= t i ,  1 < i _< n, then f(sl,s2 . . . . . .  sn) = f(tt,t2 . . . . .  tn) 

if s = t then os = ot  for all substitutions ~. 

An equation s = t can be derived orproved from an axiomatization E, E t- s = t ,  if it can be 

obtained in finitely many  steps f rom E using the above rules. G.Bi rkhoff  gave  the first 

completeness proof for this derivation system (*Birkhoff, 1935): 

Theorem: E I - s = t  iff E ~ s = t  

For a survey on classical equational logic see e.g.(*Tarski, 1968; *Taylor, 1979); sequences of 

replacement are used in (*McNulty, 1976). 

Term Rewriting Systems 

Since neither I- nor ~ are particularly convenient for a computational treatment of  =E, 

two compute r  or iented techniques for equational axioms called paramodulat ion (*Wos & 

Robinson, 1973) and demodulation (*Wos & Robinson, 1967) are extensively used in the field of 

a u t o m a t e d  deduc t ion .  Suppose  the  equa t iona l  theory  is ac tua l ly  p r e s e n t e d  as 



Unification Theory 219 

E= {ll=r 1, 12=r2,..., ln=rn], with the assumption that the rl are in some sense smaller than the 1 i. A 

term s is said to be demodulated to t ,  if there is a subterm s" in s and a pair 1 i = r i in E such that 

s '= ILl i for some substitution IX and term t is obtained from s by replacement of  s" by lax i. 

A term s is said to be paramodulated to t, if there is a subterm s" in s and a pair 1 i = r i in E such 

that t~l i = os" for a substitution a ;  term t is obtained from t~s by replacement of  t~s" by  OT i. Note 

that this is only a special case of paramodulation, in the context o f  full predicate logic a little extra 

machinery is required (*Loveland, 1978). The problem is of course how to find a presentation, 

such that the righthand side of the equations is smaller than the lefthand side. This problem has 

been addressed in a paper by D.Knuth (Knuth & Bendix, 1970), which is now a classic in this 

field. The essential observation is that it is often possible for a given set of equations E to find an 

equivalent set in the sense of the definition below, which is directed from left to right R E = [lt:~ q ,  

12~, r 2 ..... 1,~, rn} with Var(r i ) ~ Var(1 i) such that the r i are smaller than the 1 i. This is called a 

term rewriting system (TRS). A TRS can be used to define a reduction relation on terms by: 

s ~ R  t if s can be demodulated to t using R. If  there are no infinite sequences s t ~ s z ~  ... the 

relation ~R  is said to be terminating or Noetherian. The relation ~R is called confluent if for 

every r, s, t with r m R s and r ~ R  t there exists a term u such that s r*--, u and t ~*--, u. A 

confluent, Noetherian relation is called canonical ; similarily a TRS is called canonical, if the 

relation it is based upon is canonical. Canonical TRS's  are an important basis for a computational 

treatment of equational logic, since they define a unique normal form lit II for every term t given by: 

t ~-~ lit II and there does not exist a term s with lit II ~ s. lit II exists because of the finite termination 

property and it is unique because of confluence. The TRS R E is equivalent to E if: s =E t i f f  

Ilsll = lit II. A terminating term rewriting system can sometimes be completed to a canonical system 

with the Knuth-Bendix completion procedure (K_nuth & Bendix, 1970). Because o f  the great 

importance of TRS for computer science, there is intensive research now on methods of  how to 

obtain a canonical TRS from a given set of equations (see (*Huet & Oppen, 1980; *Buchberger, 

1987) for two classical surveys). Rewrite systems in the word monoid are known as Semi-Thue 

Systems (*Book, 1985). 

Similar to the above rewrite relation mR, we can define a relation r~R, often called 

narrowing (Hullot, 1980),  such that s ~--~R t holds, if s can be paramodulated to t. This relation is 

of particular importance for universal unification algorithms (see section 3.2.2.). 

2.2. UNIFICATION THEORY 

A substitution ~: ~I' ~ "Ii' is an endomorphism on the term algebra "I1', which is identical 

almost everywhere on V and hence can be represented as a finite set of  pairs ~ = {x1~t 1 ..... xa~ 

tn}. The restriction O[v of  a substitution to a set of variables V is defined as a lv  x = a x  if x e V 

and t~lvx= x otherwise. SUB is the set of substitutions on '11' and e the identity. The application of 

a substitution ~ to a term t is written as o't. The composition of substitutions is defined as the usual 
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compos i t ion  of mappings:  ( o  ~ = o('c t ) for t e '/L Hence SUB is a substitution monoid,  it  is 

the set o f  f ini tely representable  endomorphisms on the term algebra "I" : ~ e SUB and if  o, 'r �9 

S U B  then  c~o'~ e SUB (identi ty and composi t ion ); i f  c �9 F 0, f(t i ..... tn)~ 'it then c;c = c and 

o f ( h  ..... t~) = f(crt 1 ..... crta) (homomorphism);  c a r d ( { w  V: o v  ~ v}) < 0o for  o ~  SUB.  

The domain of a substitution is "1; by a slight abuse of language we define the special "domain" (the 

"codomain3 of a substitution o as the set of  variables actually moved by  o (the terms introduced by 

o): 

DOMcr  = [xE V: o x r  } (domain of  o)  

CODc~ = [ox  : xe DOMe;} (codomain of o) 

V C O D o  = V(CODo)  (variables of codomain of o)  

I f  VCODcr  = O then o is a ground substitution. A subst i tut ion p is cal led a renaming 

substitution iff CODp c V and px = py  implies x = y for x,y e D O M p .  A permutation is a 

bijective renaming substitution. 

Given a set of variables W ~ V,  E-equality in "1 is extended to the set of substitutions SUB by  : 

o =nx [W] iff Vx�9  W ox =E xx 

W e  say cs and x are E.equal on W or the restrictions Olw and x[ w are E-equal.  

A term s is an E-instance of t (or t is more general than s), t <~ s ,  i ff  there exist ~. e SUB with 

%t =Es ; s is E-equivalent to t, s ---E t ,  i ff  s <B t and s >E t. These not ions are extended to 

substi tutions by : A substitution "~ is more general than o on W (or r is an E-instance of  x on 

W): 

x ___~ o [W] iff 3 ~, e SUB with Xx =E o [W]. 

Two substitutions o ,  "c are E-equivalent on W : 

o - ~ x [ W ]  iff  O_<Ex[W] and "c_<Eo[W]. 

Given two terms s, t in "s and an equational theory E, an E.unification problem is denoted as 

<se t>  E . No te  that a unification problem is not only characterized by the equational theory E, but 

also by  the signature out of which s and t are built. In particular the type of  a unification problem, 

as def ined below, depends on both E and T. 

The p rob lem <s = t> E is E.unifiable iff there exists a substitution o � 9  SUB such that os=Eo't, o is 

called an E-under  of  s and t. The set of all E-unifiers of  s and t is written UE(s,t ) , which is a left 

ideal in the  substitution monoid  SUB, since U E =E SUB~ U E [W]. In particular LIE is a filter or an 

(upper) segment  of  SUB, since if r �9 SUB and "~ �9 U E and x _<E o then o e  U E. 

Without  loss  of generali ty we  assume the unifiers of s and t to be idempotent,  i.e. o - o  = o, since 

if not, w e  can always f ind equivalent ones which are. For  a given unification problem <s = t> E , it 

would be of  little avail  to compute the whole set of unifiers UE(s, t), which is always recursively 

enumerable for a decidable theory E, but instead smaller sets useful in representing U E. 
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Therefore we define a generating set of  U E , called cUE(s,0 the complete set of unifiers of s 

and t on W = V(s,t),  as: 

(i) cU  E _G U E (correctness) 

(ii) V 3 ~ U E 3 o a  cUE : 0 -<E 8 [W] (completeness) 

The base I.tUE(S,t), called the set of most general unifiers, is defined as the Ix-set of UE(s,t) 

with respect to <E [W]: 

(iii) V c%x e ~tUE(s,t) : if C~ <nX [W] then c~ = x. (minim~ity) 

A set of substitutions S ___ SUB is said to be separated on W away from Z ,  with W c Z, iff 

the following two conditions are satisfied: 

* DOMc~ = W for all c~e S 

�9 VCODc~ n Z = 0 foral l  a e  S. 

For substitutions o separated on W we have in paticular DOMc~ n VCODc~ = 0 ,  which is 

equivalent to the idempotence of cr. This property is often technically useful and we usually require 

IXU• to be separated on W = V(s,t) away from some Z D W. The set I.tU E does not always exist 

(Fages & Huet, 1983; Schmidt-SchauS, 1986; Baader, 1986); if it does then it is not  unique. 

However it is unique up to the equivalence -~ (see for example (Fages & Huet, 1983)) and hence it 

is sufficient to compute just one IXU E as a representative of the equivalence class [P-UF..]~_.E. 

A possible reason for the non-existence of minimal sets of  unifiers is that the quasi order -<E [W] 

on U E is not well-founded. Obviously if it is well-founded (i.e. every strictly decreasing chain in 

U E is finite), a minimal subset will always exist. More generally, if every decreasing chain of  

unifiers -including infinite ones - has a lower bound in U ~ ,  then UE has a Ix-set. Although 

sufficient, this condition is not necessary for the existence of  minimal sets of E-unifiers. 

The above definitions are given for a unification problem that consists just of  one equation, but 

unfortunately we have the following theorem : there is a theory E, where all single unification 

problems (as defined above) have minimal sets of  unifiers, but for a finite set of  problems this is 

not the case, the minimal set of E-unifiers does not even exist (Biirckert et al., 1986). For  that 

reason we extend the definition of a unification problem to a finite system of equations F = {si=q: 

1 < i < n}. F is called an E.unification problem or an equation system and is then denoted as: 

<si = ti : 1 < i _ < n >  n 

A substitution a is an E-unifier o f F ,  or a solution of F, iff C~si =E Oti, for 1 < i < n. The set of 

E-unifiers is denoted accordingly as UE(I'3, similarily cUE(F) for a complete set of  unifiers and 

gUE(I") for a minimal one. 
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Based on the cardinality of gU, we can classify unification problems and equational theories 

according to the following unification hierarchy, which turned out to be a backbone of 

unification theory. A unification problem Ffor an equational theory E is of type: 

(~) unitary 

(ii) finitary 
(ii) infinitary 
(iv) nutlary (or zero ) 

if ~UE(I3 exists and has at most one element 

if IxUv(I') exists and is finite 

if I.tUB(I') exists and is infinite 

if IXUE(F) does not exist. 

Similarily we say an equational theory E is unitary (is finitary) if for all F, ~tUE(1-) is unitary (is 

finitary), and E is infinitary (is nullary) if there exists some F such that gUE(F) is infinitary (is 

nullary ).The unitary, finitary, infinitary and nullary classes of equational theories are U 1 , U~, 

U ~, and Uo respectively. 

We say that U = U 1 u ~ u U ~ the class of unitary, finitary and infinitary theories is It-based, 

whereas U o is not Ix-based. 

A unification algorithm for a given theory E is an algorithm that takes a set of equations F as 

input and generates some subset of UE(1-). A complete unification algorithm generates a complete 

set cUE(F) and a minimal unification algorithm generates a base gUE(1-). An important task of the 

field is to find minimal unification algorithms for a given theory, however for many applications 

the notion of a minimal algorithra is not strong enough, since it does not imply that the algorithm 

terminates even for a finite gU E . On the other hand for a f'mitary theory the minimality requirement 

is often too strong, since an algorithm which generates a superset of gU may be far more efficient 

than a minimal one and hence sometimes preferable. 

For that reason we say a unification algorithm is type conformal if it generates a set ~F with: 

(i) gU ~ W ~ cU,  i.e. ~F is a complete set of unifiers. 

(ii) If E is fmitary then W is finite and the algorithm terminates. 

(iii) If E is infinitary then �9 -~/#U, i.e. W is a Ix-base. 

The aim of Unification Theory is to give an answer to the following three mayor problems: 

PROBLEM ONE: For a given equational theory E, is it decidable whether two terms 

are unifiable in E ? 

PROBLEM TWO: Given an equational theory E, what is its unification type ? 

PROBLEM THREE: For a given g-based equational theory E find an (efficient) 

unification algorithm that enumerates I, tUg; respectively find an 

algorithm that is type conformal. 
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3. Results 

The development of unification theory into a scientific field of its own was hallmarked by 

the slow emergence of a general theory, that addresses the above mentioned problems in a rather 

general setting. It was motivated inter alia by the comparatively late realization, that unification is 

equation soNing in varieties, however the abstract nature of the theories under investigation as well 

as the computeroriented approach account for its destinct syntactic flavor. 

Typical questions that are asked in this field are: How and under what conditions can unification 

algorithms be combined? Why is the combination of a finitary and an infinitary theory sometimes 

finitary and sometimes infinitary? How is a unification problem influenced by the choice of its 

signature, in particular when order sorted signatures are taken into account? Is it possible to find a 

Universal Unification Algorithm (similar to a Universal Turing Machine), which takes as input a 

pair of terms and an equational theory? What is the exact relationship between matching and 

unification? Is it possible to develop a general theory that classifies equational theories with respect 

to the unification hierarchy? 

For this and other reasons this section is divided into two main subsections: special results and 

results from the general theory. 

3. ] THE SPECIAL THEORY 

"... a general comparative study necessarily presupposes some 

previous separate study, comparison being impossible without 

knowledge." 
N.Whitehead, 1898 

This paragraph is divided into six parts giving separate accounts of first and higher order 

unification, of unification in sorted logics, unification in programming languages, of unification 

grammars and of some complexity results. 

3. I. I FIRST ORDER UNIFICATION 

Unification in the Absolutely Free Termalgebra. 
The historical experience with the early deduction systems clearly revealed that "the 

unification computation occurs at the very heart of most deduction systems. It is the addition and 

multiplication of deduction work. There is accordingly a very strong incentive to design the last 

possible ounce of efficiency into a unification program. The incentive is very much the same as that 

for seeking maximally efficient realizations of the elementary arithmetic operations in numerical 

computing - and the problem is every bit as interesting" (Robinson, p.64, 1971). 

A first and influential paper in this direction was published in 1971 by J.A.Robinson (Robinson, 

1971), who proposed a table-driven implementation technique that derived its strength from an 
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ingenious manipulation of pointer structures, which is - with some improvements - still at the heart 

of many current techniques.The manipulation of pointers, instead of the objects themselves, was 

also proposed by R.Boyer and LS.Moore and became known as structure sharing (*Moore, 

1973). 

The final race for the fastest algorithm however started in 1973 with a proposal by 

L.D.Baxter (Baxter, 1973), that was further improved by M.Venturini-Zilli (Venturini-Zilli, 1975) 

in 1975, by G.P.Huet (Huet,1976) in 1976 and by A.Martelli and U.Montanari (Martelli & 

Montanari, 1979) in 1979, who presented an almost linear algorithm. It is a well-known fact that 

the original unification algorithm is exponential in worst case. The first linear unification algorithm 

was found in 1977 by M.Paterson and W.Wegman and finally published in (Paterson & Wegman, 

1978). They used a particular data structure, directed aeyclie graphs (dags), to represent the terms. 

Linearity is achieved by moving an additional pointer structure through these dags. 

Although this result appeared to settle the problem once and for all, the issue was taken up again, 

when it became apparent that maintaining the dags and the pointer structure can be expensive and 

for most practical cases (i.e. short and usually not deeply nested terms) too inefficient. 

A recent improvement was published by D.Kapur, M.S.Krishnamoorthy and P.Narendran (Kapur 

et al., 1982), other improvements or specific implementation techniques are published among 

others in (Bidoit & Corbin, 1983; Escalada & Ghallab, 1987). A comparison of several algorithms 

in terms of empirical findings was carried out by G.Winterstein (Winterstein, 1977). 

Unification in Equational Theories. 
The following table summarizes most of the results that have been obtained for unification 

problems in special equational theories E. The special theories consist of combinations of the 

following equations: 

A: 

FPAG: 

AG: 

ABS: 

DR: 

DL: 

H: 

eL: 

C~ 

f(f(x,y), z) = f(x, f(y,z)) 

Finitely Presented Abelian Group 

Abelian Groups 

Signed Binary Trees 

f(x, g(y,z)) = g(f(x,y), f(x,z)) 

f(g(x,y), z) = g(f(x,z), f(y,z)) 

(p(xoy) = Cp(x) o ~p(y) I: 

f(g(x,y), g(y,z)) = f(g(x,y), g(x,z)) 

f(f(x,y), z) = f(f(x,z), y) 

f(x, fry,z)) = f(y, fix,z)) 

U: I *x=x* 1 =x 

QG: Quasi-Groups 

H10: Hilbert "sTenthProblem 

BR: Boolean Rings 

C: f(x,y) = f(y,x) 

f(x,x) = x 

MINUS: -(-x) = x; -(x* y) = (-y)*(-x) 

~']-I: l*x = x, q(x*y) = q(y) 
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The column under A~. indicates whether or not a type conformal algorithm is known. 

Theory Type Unification A n References 
of E decidable 

0 U1 Yes 

A q-/oo Yes 

C r Yes 
I ~ Yes 
A+C ~ Yes 

A+I U~ Yes 

C+I ~ Yes 
A+C+I Uo, Yes 
D Uoo ? 

D+A U,,o No 
D+C U~, ? 
D+A+C U~ NO 
D+A+I ? Yes 
H U1 Yes 
T U~ Yes 
T+C ~ Yes 
T+C+C q.~ Yes 

L ~ Yes 
U~ Yes 

AG ~ Yes 
H10 ? No 
FPAG q~o Yes 
FH ~ Yes 
MINUS U~U~ Yes 
ABS U o d ~  Yes 
BR U 1 Yes 
DI+A+U r 
DI,Dr 
U 

Yes (Herbrand, 1930; Robinson, 1965, 1971; Knuth & Bendix, 
1970; Guard, 1964; Prawitz, 1960; Baxter, 1973; Huet, 
1976; Martelli & Montanari, 1979; Paterson & Wegrnann, 
1978; Kapur et al., 1982) 

Yes (Hmelevskij, 1967; Plotkin, 1972; Siekmann, 1975; 
Livesey & Siekmann, 1975; Makanin, 1977) 

Yes (Herold, 1987; Kirchner, 1985; Siekmarm, 1976) 
Yes (Raulefs & Siekmann, 1978; HuUot, 1980; Herold, 1986) 
Yes (Stickel, 1981; Livesey & Siekmann, 1976; Hullot, 1979; 

Fages, 1983; Huet, 1978; I-Ierold & Siekmann, 1986; 
Btlttner, 1985) 

? (Siekmann & Szabo, 1982; Schmidt-SchauB, 1986; 
Baader, 1986) 

Yes (Raulefs & Siekmaun, 1978; Jouannaud et al., 1983) 
Yes (Livesey & Siekmann, 1976; BiJttner, 1986) 
Yes (Szabo ,1982; Arnborg & Tid6n, 1985; Mzali, 1986; Szabo 

& Unvericht, 1978) 
Yes (Szabo, 1982; Siekmann & Szabo, 1986) 
Yes (Szabo, 1982) 
Yes (Szabo, 1982) 

? (Szabo, 1982) 
Yes (Vogel, 1978) 
Yes (Kirchner, 1985) 
Yes (Kirchner, 1985) 
Yes (Kirchner, 1985) 
Yes (Jeanrond, 1980) 
Yes (Hullot, 1980) 
Yes (Lankford, 1979; Lankford et al., 1984) 

? (Matiyasevitch, 1970; Davis, 1973) 
Yes (Lankford, 1980; Kandry-Rody et al., 1985) 

? (Fages & Huet, 1983) 
Yes (Kirchner, 1985) 
Yes (Kirchner, 1982) 
Yes (Martin & Nipkow, 1986, 1987; Btitmer & Simonis, 1986) 
No (Amborg & Tid6n, 1985) 

Yes (Amborg & Tid6n, 1985) 
Yes (Amborg & Tid6n, 1985) 

Except for Hilbert's Tenth Problem, we have not included the classical work on equation 

solving in common structures such as rings and fields, which is well known. Let us comment on a 

few entries in the above table: 

The Robinson Unification Problem, i.e. unification in the absolutely free algebra of 

terms or unification under the empty theory 0, has attracted most attention so far and was already 

discussed in the previous paragraph. 
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Unification under Associativity is the famous monoid problem quoted in section 1.1. 

G.Plotkin gave the first unification algorithm for this theory (Plotkin, 1972) and used it to 

demonstrate the existence of infinitary equational theories. Completeness, correctness and 

minimaIity proofs were presented in (Siekmann, 1978), more recently in (Jaffar, 1985). 

J.Hmelevskij (Hmelevskij, 1967) and others worked on the decidability problem, which was 

finally positively settled by G.S.Makanin (Makanin, 1977). 

Unification under Commutativity has a trivial solution, which is however insufficient 

for practical applications. In particular minimality presents a hard problem; type conformal 

algorithms are presented in (Siekmann, 1976; Herold, 1987; Kirchner, 1985). The main interest in 

this theory derives from its being finitary, wt:ich is in contrast for example to the iafinitary theory 

of associativity. A nice characterization of this difference is possible in terms of the universal 

unification algorithm to be discussed below. However, a deeper theoretical explanation, of  why 

two apparently rather similar theories belong to entirely different unification classes, is still an open 

research problem. 

Terms under Associativity and Commutativity closely resemble the datastructure 

multisets (sets which may contain multiple occurrences of the same element), which is used in the 

matching of patterns (pattern directed invocation) in many programming languages of Artificial 

Intelligence. This pattern matching problem for multisets (often called bags in the AI-literature) 

was investigated by M.Stickel in (Stickel, 1975; Stickel, 1977), who observed that it can be 

reduced to the problem of solving homogeneous linear diophantine equations over positive 

integers, with the additional proviso that only positive linear combinations of the solution set are 

admissible. His results were finally published in (Stiekel, 1981). 

Building upon the work of G.Plotkin (Plotkin, 1972), M.Livesey and J.Siekmann (Livesey & 

Siekmann, 1976) investigated these axioms also, since they so frequently occur in applications of 

automated theorem proving. Independently of M.Stickel they observed the close relationship 

between the AC-unification problem and solving linear diophantine equations and proposed a 

reduction to inhomogeneous linear diophantine equations. 

However art important problem remained open: the extension of the AC-unification algorithm to the 

whole class of first order terms turned out to be more difficult than anticipated. The suggestions for 
such an extension in (Stickel, 1976) as well as the sketch of an extension in (Livesey & Siekmann, 

1976) were missing a crucial point, namely that the subformulas of a term to be AC-unified can 

have more symbols, than the original term. Hence the termination of the extended AC-unification 

procedure became a major problem, which remained open for many years. It was finally positively 
sotved by F. Fages (Fages, 1984), who invented a particular complexity measure for this purpose. 

G.P.Huet (Huet, 1978), A.Fortenbacher (Fortenbacher, 1983), D.Lankford (Lankford, 1985) and 

W.Bfittner (Bfittner, 1985) give efficient algorithms to solve homogeneous linear equations, where 

only positive linear combinations are admissible. Such an algorithm, originally investigated in 

(*Gordan, 1873), is an important component of every AC-unification algorithm. A comparison of 
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the algorithms of G.P.Huet and A.Fortenbacher and an extension of these algorithms to the case of 

inhomogeneous equations can be found in (Guckenbiehl & Herold, 1985). 

J.M.Hullot (HuIlot, 1980), F.Fages (Fages, 1984) and A.Fortenbacher (Fortenbacher, 1983; 

Fortenbacher, 1985) discuss computational improvements of the original Stickel-algorithm. 

Recently another approach to AC-unification based on the decomposition technique of A.Martelli 

and U.Montanari was proposed by C.Kirchner (Kirchner, 1985; Kirchner, 1987) 

G.E.Peterson and M.E.Stickel (Peterson & Stickel, I981) present a generalisation of the Knuth- 

Bendix completion algorithm based inter alia on AC-unification. The practical advantage of a 

special purpose AC-unification algorithm is particularily well demonstrated for term rewriting 

systems in (Stickel, 1984). 

Apart from interest in a practical and fast algorithm, which computes the set of unifiers, there is the 

main theoretical observation that the set of most general unifiers is always finite for AC-unification 

problems. This fact was independently discovered in (Stickel, 1985; Livesey & Siekmann, 1976). 

However, since the set of most general unifiers corresponds to the set of nonnegative solutions of 

certain linear diophantine equations, the finiteness of the ].t-set of unifiers follows immediately from 

a theorem of Dickson (*Dickson, 1913). 

Two recent papers by A.Herold, J.Siekmann (Herold & Siekmann, 1986) and W.Biittner (Bttttner, 

1985) improved on the original work of (Livesey & Siekmarm, 1976). In (Herold & Siekmarm, 

1986) an extension of the algorithm to the whole class of first order terms is presented using a 

modification of the Fages-complexity measure in the proof of termination. 

Since the axioms of associativity and commutativity so frequently occur in practice, the AC- 

unification algorithm has become just as important for most applications as the original Robinson 

algorithm for free terms. However there are still annoying efficiency problems and substantial 

progress is still to be expected (see for example (Btlrckert et al, 1988)). 

Unification under Distributivity and Assoeiativity provides a point in ease that the 

combination of two infinitary theories is an infinitary theory. Is this always the case? The (D+A)- 

Unification Problem is of theoretical interest with respect to Hilbert's Tenth Problem, which is the 

problem of Diophantine solvability of polynomial equations. An axiomatization of Hilbert's Tenth 

Problem would involve the axioms (A) and (D) plus additional axioms for integers, multiplication, 

etc. Calling the union of these axioms H10, Y.Matiyasevich's celebrated result (Matiyasevich, 

1970) shows in fact the undecidability of the H10-unification problem. Now the undecidability of 

the (D+A)-Unification Problem demonstrates that all Hilbert axioms in H10 can be eliminated 

except for (D) and (A) and the problem still remains undecidable. Since A-unification is known to 

be decidable, the race is open as to whether or not (A) can be eliminated as well, such that (D) on 

its own presents an undecidable unification problem. More generally it is an interesting and natural 

question for an undecidable unification problem to ask for its "minimal undecidable substructure". 

Whatever the result may be, the (D+A)-problem already highlights the advantage of the abstract 

nature of unification theory in contrast to the traditional point of view, with its reliance on 

intuitively given entities (like integers) and structures (like polynomials), 
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An important recent discovery is that unification in Boolean Rings is unitary (Biitmer & 

Simonis, 1986; Martin & Nipkow, 1986; Martin & Nipkow, 1987) which is likely to speed up a 

new technology race: Boolean rings are a common datastructure in computer science, e.g. they can 

be used advantageously to describe logical circuits or to build sets as data structure into logic 

programming languages.The fact that the unification of this data structure is unitary holds great 

practical potential in particular for programming languages, however the combination with free 

function symbols is unsealed. 

It is important to realize that the results recorded in the above table do not always hold for the 

whole class of first order terms, but mostly only for some subset. The extension to the whole class 

of terms (assuming the empty theory for every function symbol that is not part of  the known 

unification result ) is nothing but a special case of the Combination Problem of  theories. From 

the above table we already have: 

A infinitary, I fmitary and A+I nullary, 

D infinitary, A infinitary and D+A infinitary, 

D infinitary, C fmitary and D+C infmitary, 

A infinitary, C fmimry and A+C finitary, 

C finitary, I fmitary and C+I finitary, 

H unitary, A infmitary and H+A infinitary, 

D L unitary, C fmitary and DL+C infinitary, 

D L unitary, D R unitary and DL+D R = D infinitary, 

i.e. oo + 0 ) = 0  

1.e.  oo + oo = o o  

l . e . ~  + ~ = o o  

1.e.  oo + 03 = 0,) 

1.e.  ( 0 +  ~ = (0 

I . e .  1 + r  = o o  

1.e. 1 + t 0 = ~  

1.e. l + l = o o  

Here we assume that for example ( C )  and (A) hold for the same function symbol and the 

combination of these axioms is denoted as (C+A). But what happens if (C) and (A) hold for two 

different function symbols, say (C) for f and (A) for g? The known results for these combination 

problems are recorded in section 3.2.1. 

Summarizing we notice that unification algorithms for different theories appear on first sight 

to be based on entirely different techniques. They provide the experimental laboratory for the 

general unification theory and it is paramount to obtain a much larger experimental test bed than is 

currently known. 

Disunif lcat ion 

Given a unification problem <s = t>, we are interested in all unifiers,i.e, all substitutions a 

such that as  = at. Given a disunificationproblem <s ~: t>, we are interested in inequality, i.e. we 

are interested in all substitutions g such that cs ~ o t .  

Such problems are relevant for logic programming, sufficient completeness of algebraic 

specifieations and "inductionless induction" and have been investigated by A.Colmerauer 

(Colmerauer, 1984) and H.Comon (Comon, 1986) and C.Kirchner and P.Lescarme (Kirchner & 

Lescanne, 1987). We say a disequation is satisfied iff ~r as ~ c~t, i.e. s=t is not unifiable. A 

substitution t~ unifies the disequation s ~ t i f f  V&St:~s ~ 8o-t. The problems with disequations are: 
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(i) To find a disunification algorithm for a solution of the disunification problem of uninterpreted 

terms, (ii) How to represent the set of disunifiers. For example the problem <x ~ b>, where x is a 

variable and b a constant, has infimkely many solutions that can not be represented by a single most 

general idempotent unifier (disunifier). But "x not b" is an intuitively satisfactory representation. 

For that reason it has become customary to represent the solutions in "solved form',that is as 

variable/term-pairs of the form x --- t or x ~ t .  Using this more expressive representa'don <x ~ b> is 

now unitary. 

The open research problems in this area are the extension of disunification of uniterpreted terms to 

E-disunification problems. 

3 .1.2 UNIFICATION IN ORDER SORTED LOGICS 

Most  programming languages are typed,i.e, usually a variable declaration ensures that the 

variable ranges over integers, reals, lists or such like. Similarily most practical applications of 

predicate logic utilize some sorted variant. For example we like to write formulas like 

V x:REAL, 3y:COMPLEX. y2 = x 

and treat them formally as an abbreviation for 

V x.real(x) ~ 3y.complex(y) ^ y2 = x, 

since the explicit representation of sorts as unary predicates has many practical disadvantages. 

Hence the sort information should be "built-in". Sorting (or typing) terms also provides a way of 

building taxonomical knowledge into the logic. 

The idea is to represent the sort (or taxonomical ) hierarchy separately and also to provide an 

algorithm,which computes the sort of every term. For example a variable x of sort REAL stands 

for real numbers and can only be instantiated by a term t that also represents a real number or a 

number of a lower type in the sort hierarchy.This restricted instantiation has to be taken into 

account by an extended unification algorithm, which exploits the given information and computes a 

set of  well-sorted unifiers for two terms. The remarkable increase in efficiency of a deduction 

system based on sorted unification is due to the fact that two syntactically unifiable terms may not 

be sort-unifiable and hence many redundant deduction steps can be avoided (Walther, 1983). 

There are different kinds of sorted signatures with respect to their expressiveness. The simplest 

version requires that the sort structure is flat, i.e. the domain is just partitioned into subdomains 

that do not have any subsorts. Such sort structures are called many-sorted and are often used in 

algebraic specifications and also for term rewriting systems. Unification with proper 

sort-hierarchies, but restricted to one assignment f: $1 x S 2 • .... x S n ~ S for every function 

symbol, is called order-sorted unification and was first investigated by Ch.Walther (Walther, 1983) 

and A.G.Cohn (Cohn, 1987), although the idea to build sorts into the logic is older (Herbrand, 

1930; *Oberschelp, 1962). Signatures as considered by Ch.Walther in (Walther, 1985) ensure that 

there is a single and unique most general unifier for two terms, if the sort structure is a semilatdce. 

Otherwise see (Walther, 1986). When more than one sort assignment per function symbol (i.e. 
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polymorphism) is allowed, there may be more than one but at most finitely many most general 

unifiers (Schmidt-SchaulL 1985; Schmidt-Schau~, 1987). Signatures with a sort-hierarchy and 

multiple sort assignment per function symbol are useful for automated reasoning systems, algebraic 

specifications and functional and logic programming languages. If in addition, not only function 

assignments, but also term declarations are used to specify the sort of a term as proposed in 

(*Goguen, I978; *Wadge, 1982) then unification may become undecidable and the set of most 

general unifiers may be in_f'mite (Schmidt-SchauIS, 1985). 

The combination of sorted signatures with equational theories was also first investigated by 

M.Schmidt-Schauss,who showed that, with some restrictions, the unification algorithms for an 

unsorted equational theory can be used to solve unification problems in the sorted equational 

theory. A most recent account of order sorted unification with term declarations is 

(Schmidt-SchauF3, 1987), which also contains a complete bibliography of the work on sorted 

unification. 

3.1.3 UNIFICATION IN LOGIC PROGRAMMING LANGUAGES 

The close relationship between logic and computation (*Hoare & Shepherdson, 1985) and the 

fact that predicate logic itself can be viewed as a programming language, was already discussed in 

section 1.1. 

There are some specific problems for logic programming languages however: Terms like f(x,g(x)) 

and f(y,y) are not unifiable in the classical sense: although both terms are "standardized apart" (i.e. 

have different variables), once the first arguments of f are unified the second arguments share the 

same variable in y and g(y) and the socalled "occur-in-check" reports failure. In order to avoid this 

(expensive) checking two approaches are possible: either to admit infinite terms (Colmerauer, 

1982; Mukai, 1983; Martelli & Rossi, 1984) or else to accept the occasional error as for example in 

most PROLOG implementations (*Clocksin & Mellish, 1981). 

Since unification is the central operation of logic programming languages, more elaborate schemes 

have been designed for speed up. Most prominent is currently the WARREN-Machine (*Warren, 

1983; *Gabriel et at., 1984), which consists of an abstract set of machine instructions into which a 

logic programming language can be compiled. This set constitutes an abstract machine and each 

instruction can then either be supported by actual hardware or else by some sequence of microcode 

instructions of a more or less conventional machine. Using these techniques current LIPS-rates 

(number of unifications per second) are around 100 K LIPS and estimated to be in the order of 104 

to 106 K LIPS in about ten years (*Lusk & Overbeek, 1984; *Gabriel et al., 1984). 

Combining Logical and Functional Programming 
Universal unification algorithms as presented in section 3.2.2. are the basis of an interesting 

new approach to programming languages that combines the virtues of functional programming with 

logic programming. The idea is to have logic with equality (*Goguen & Meseguer, 1986; 



Unification Theory 231 

Dershowitz & Plaisted, 1986; Fribourg, 1985) as a programming language and to use the 

predicates (i.e. the nonequality relations) for the standard logic programming aspects. The 

functional programming aspect is taken care of by an appropriate term rewriting system that 

computes the values of terms and handles the equality relation. In other words the equations are 

used in just the same way as they are used in the narrowing algorithms (see section 3.2.2.) and 

interest is in finding equational classes and narrowing strategies, such that it can be done 

efficiently. 

For example B.Fribourg (Fribourg, 1985) discusses normalized innermost narrowing, whereas 

narrowing for nonterminating rewriting systems based on lazy unification (Barckert, 1987) (lazy 

functional programming) was investigated by J.H.You and P.A.Subrahmanyarn (You & 

Subrahrnanyam, 1986) and S.H611dobler (H611dobler, 1987). A recent improvement was published 

by W.Nutt, R. R6ty and G.Smolka (Nutt et al., 1987). 

Alternatives to narrowing are presented among others by A.Martelli, C. Moiso and G.Rossi 

(Martelli et al., 1987) and also by J.Gallier and S.Raatz (Gallier & Raatz, 1986). 

An interesting recent development called feature unification was motivated by unification 

grammars and knowledge representation schemes.The aim is to build socalled feature terms, an 

important datastmcture that is used in AI to represent taxonomical knowledge as well as certain 

grammars,into a logic programming language (Smolka & Ait-Kaci, 1987) (see section 3.1.4. 

below). 

The field of logic programming was in many ways influential in the development of unification 

theory, not the least important influence is the view that a logic program is in fact a special purpose 

unification algorithm that computes its answer values as appropriate bindings of the output 

variables, i.e. as "most general unifiers'. This view that originated with the question answering 

systems (*Rulifson et al., 1972) of the sixties can be captured by the slogan that "relational 

programming is unification". 

Unification Chips 
Anticipating the upcoming technological demand for ultrafast unification, there were early 

attempts to "compile the unification algorithm into silicon"; for example there was a special 

unification processor called the SUM (Robinson, 1985). 

Similarly, if the Warren instruction set is directly supported by suitable hardware, this can be 

viewed as a unification machine.Current experiments use a pipeline of unification processors or 

else try to marry the Warren machine with a (set of) special unification processor(s). 

3.1.4 UNIFICATION-BASED GRAMMARS 

Recently developed grammar formalisms for natural languages such as Categorical Grammar, 

Head Grammars, Lexical Functional Grammars, Functional Unification Grammars and Definite 

Clause Grammars rely on a feature/value system to represent the linguistic information about some 
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sentence (Shieber, 1986). These approaches to grammar formalisms have been called 

unification.based, since they employ unification as a central operation to manipulate the 

feature/value structures. 

The central idea is the following: Linguistic information such as "the number (of a pronoun) is 

singular and its person feature has the value third" can be expressed in a feature structure as: 

I number: singular 1 
person : third 

Here "number" and "person" are features and "singular" and "third" are their respective values. 

The feature values may themselves be structured as for example in: 

cat: NP 

agreement: [ number : singular 1 

person : third 

There is a natural partial order on such feature structures called subsumpfion, which is based on 

their information content: a feature structure D 1 subsumes a feature structure D z . D 1 ~ D 2, if D 1 

comains a subset of the information in D z. Since there is now a partial order, which was the basic 

concept underlying the formal framework of unification theory as presented above, a unification 

based formalism can be developed for these grammars as well: two feature structures D 1 and D 2 

can be unified, if there exists a feature structure D that contains the information of both D I and D2, 

i.e. if D < D 2 and /3 < D 1. 

Feature structures as introduced above are not only useful for the representation of grammatical and 

linguistic knowledge, but can in fact be used for the representation of arty knowledge (as they are 

nothing but nested records with a particular interpretation). This is a particularily useful 

datastructure, when it is combined with an appropriate inheritance hierarchy (*Touretzky, 1987) as 

used in semantic networks, frames and some programming languages like SMALLTALK. 

Feature unification is then an operation that, given two feature terms A and B, computes a 

feature term C denoting the intersection of the denotations of A and B (Smolka & Ait-Kaci, 1987). 

Feature terms and inheritance have attracted widespread interest recently. LOGIN (Ait-Kaci & 

Nasr, 1986) is an extension of PROLOG, where ordinary terms are replaced by some special 

feature terms, called g-terms, and ordinary unification is replaced by g-unification. K.Mukai's 

language CIL (Mukai, 1985) bears many similarities with LOGIN. L.Cardelli (*Cardelli, 1984) 

gives a semantics of higher order feature types and inheritance in the framework of functional 

programming and denotational semantics.Recent work by W.C.Rounds and R.Kasper (*Rounds 

& Kasper, 1986) gives an automata-theoretic formalization of feature terms. Actual feature 

unification algorithms have been reported by G.Smolka, H.Ait-Kaci and R.Nasr in (Ait-Kaci, 

1984; Ait-Kaci & Nasr, 1986; Smolka & Ait-Kaci, 1987). 
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3.1.5 HIGHER ORDER UNIFICATION 

Higher order logics, most prominently represented in the work of A.Church (*Church, 

1940), have provided a logical basis for many deduction systems: just as mathematics is more 

conveniently based on some higher order calculus, many automated reasoning systems exploit the 

expressiveness of higher order constructs. 

An early higher order deduction system was built under the guidance of J.R.Guard, W.F.Gould 

developped its co-order unification algorithm and presented it in his thesis (Gould, 1966). The 

potential advantages of a higher order deduction system and its mechanization was also discussed 

by LA.Robinson in (*Robinson, 1969). Since the number of unifiers of co-order terms can be 

prolific, O.P.Huet developed an or-order unification algorithm and a deduction system based on a 

"constraint resolution" method (Huet, 1972), whose characteristic is to postpone the computation 

of unifiers as long as possible (lazy unification). The unification algorithm was further elaborated 

in (Huet, 1975) and finally in (Huet, 1976). 

Independently of C.L.Lucchesi (Lucchesi, 1972) G.P.Huet (Huet, 1973) discovered that to-order 

unification is undeeidable for co > 3; later D.Baxter (Baxter, 1978) showed the same result with a 

different proof technique, and D. Goldfarb (Goldfarb, 1981) showed, that in fact t0-order 

unification is undecidable for 0)-2_2, thus providing yet another characterization of the gulf between 

first and higher order logics. 

P.Andrews work (Andrews, 1971) on higher order deduction systems was most influential in this 

area, a most recent account of his work and that of his students D.A.Miller,E.L.Cohen and 

F.Pfenning is given in (Andrews, 1984) 

Another unification algorithm for to-order terms was developped by D.Jensen and T.Pietrzykowsld 

and reported in (Jensen & Pietrzykowski, 1973, 1976; Pietrzykowski, 1971). 

3.1.6 COMPLEXITY RESULTS 

In this section, which is taken from D.Kapur and P.Narendran's survey paper (Kapur & 

Narendran, 1987) we give results obtained in studying the complexity of matching and unification 

problems. Both matching and unification problems for first-order terms built solely from 

uniterpreted function symbols have been known to be linear in the sum of the sizes of the input 

terms (Paterson & Wegman, 1978). When function symbols have properties such as associativity, 

idempotency, etc., both problems turn out to be much harder, in fact intractable in most cases. 

In the following table, symbols are used to stand for theories. The associated axiom(s) with each of 

the symbols is given below. For example, the symbol A implies that some of the function symbols 

in the terms under consideration are associative. 
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A: fix,f(y,z)) = f(fix, y),z) 

C : f(x,y) = f(y,x) 

I : fix,x) -- x 

U:  f(x,1) = x 

D : f(x,g(y,z)) = g(f(x,y),f(x,z)) 

When more than one symbol is used to stand for a theory, it means that the axioms corresponding 

to each of the symbols are conjuncted. For example, ACI, stands for the theory in which some 

function symbols appearing in the theory are assumed to be associative, commutative and 

idempotent. AC matching is an NP complete problem even if each variable in the pattern is 

restricted to have only at most two occurrences. AC1 stands for the theory in which function 

symbols may be associative-commutative and terms under consideration for unification and 

matching have unique occurences of each variable. 

The set matching problem is defined as the problem of checking, given a set of patterns (sp) and a 

set of subjects (ss), whether there exists a substitution o such that the set of terms obtained by 

applying o on sp is the same as the set ss. Similarly, a set umfieation problem is defined as the 

problem of checking, given two sets of  terms st and ss, whether there exists a substitution r such 

that the set of terms obtained after applying ~ on st is the same as the set of terms obtained after 

applying o on ss. Bag matching and bag unification are defined analogously except that bags of 

terms (instead of sets of terms) are considered, i.e., number of occurrences of a term also becomes 

relevant. 

As the table indicates, in most eases, both matching and unification problems turn out to be of the 

same order of complexity. The complexity does not seem to grow even when additional properties' 

of function symbols are assumed in some cases. 

It also appears that for linear terms (terms in which every variable appears uniquely), both 

matching and unification problems are easier than for nonlinear terms (for matching, only the 

pattern has to be linear). This perhaps suggest that one of the main sources of complexity is the 

nonlinearity of terms. 

There is one anomaly in this table, which is with respect to associative matching and unification. 

As the table states, associative matching is NP-complete, whereas associative unification 

(solvability of word equations over free semigroups) is only known to be  decidable. The only 

complexity result known about associative unification is that it is primitive-recursive. A better 

upper bound is not known. 

In the table, results are also given for unification problems over finitely presented algebras. In a 

finitely presented algebra, the presentation consists of a finite set of generators, a finite set of 

relations expressed using generators and the operator symbols of the algebra. Variables are not 

allowed in the relations. Terms under consideration for unification are ,,elementary terms", i.e., 

they can have variables but they do not have any uninterpreted function symbols. For example, 

FPAG is a finite presentation of abelian groups generated by a finite set of generators with a finite 

set of relations expressed in terms of generators and the operators of abelian groups. FPBR stands 
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for finitely presented boolean rings. FPCSG stands for finitely presented commutative semigroups. 
FPA stands for arbitrary finitely presented algebras. If a finitely presented algebra does not have 
any relation, it is said to be freely generated. FCSG stands for finitely generated free commutative 
semigroups; FCSGI stands for finitely generated free commutative semigroups with idempotency; 
similarly, FCMI stands for finitely generated free commutative monoids with idempotency. FBR 
stands for finitely generated free boolean rings. SR is a theory presented by a finite complete 
(canonical) term rewriting system in which for each rule, the right-hand-side is either a ground term 
or a subterm of the left-hand-side. 

Table: Complexity of Matching and Unification Problems 

E Matching Unification 

�9 linear linear (Paterson & Wegmann, 1978) 
U NP-complete (Amborg & Tid6n, 1985)  NP-complete (Arnborg & Tid6n, 1985) 
I NP-complete (Kaput & Narendran, 1987) NP-complete (Kaput & Narendran, 1987) 
C NP-complete (Benanav et al., 1985) NP-complete (Set79) 
A NP-complete (Benanav et al., 1985) decidable (Makanin, 1977) 
CU NP-complete (Kaput & Narendran, 1987) NP-complete (Kaput & Narendran, 1987) 
CI NP-hard (Kaput & Narendran, 1986) NP-hard (Kaput & Narendran, 1986) 
AU NP-complete (Kapur & Narendran, 1987) decidable (Makanin, 1977) 
AI NP-hard (Kaput & Narendran, 1986) NP-hard (Kaput & Narendran, 1986) 
AC NP-complete (Kaput & Narendran, 1986) NP-complete (Kaput & Narendran, 1986) 
ACU NP-complete (Kaput & Narendran, 1986) NP-complete (Kaput & Narendran, 1986) 
ACI Nl'-complete (Kapur & Narendran, 1986) NP-complete (Kaput & Narendran, 1986) 
D NP-hard (Amborg & Tid6n, 1985) NP-hard (Amborg & Tid6n, 1985) 
DU NP-hard (Amborg & Tid6n, 1985) NP-hard (Arnborg & Tid6n, 1985) 
Set NP-complete (Kaput & Narendran, 1986) NP-complete (Kaput & Narendran, 1986) 
Bag N'P-complete (Kaput & Narendran, 1987) NP-complete (Kaput & Narendran, 1987) 
AC1 P (Benanav et aI., 1985) P (Kapur & Narendran, 1986) 
FPCSG decidable (Kaput & Narendran, 1987) decidable (Kaput & Narendran, 1987) 
FCSG NP-complete (Kaput & Narendran, 1986) NP-complete (Kaput & Narendran, 1986) 
FCSGI P (Kapur & Narendran, 1987) P (Kaput & Narendran, 1987) 
FCMI P (Kaput & Narendran, 1987) P (Kaput & Narendran, 1987) 
FPAG P (Kapur et al., 1985) P (Kaput et al., 1985) 
FBR NP-complete (Kaput et al., 1985) NP-complete (Kaput et al., 1985) 
FPBR NP-hard (Kapur et al., 1985) NP-hard (Kaput et al., 1985) 
FPA NP-complete (Kozen, 1976) NP-complete (Kozen, 1976) 
SR NP-complete (Kaput & Narendran, 1987) NP-complete (Kaput & Narendran, 1987) 
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3 .2THEGENERALTHEORY 

"However  to generalize, one neeas experience ..," 

G.Gratzer, 1968 

This section is devided into four parts: an account of the state of the art of the combination 

problem, the relationship between matching and unification, an account of current universal 

unification algorithms and of the classification of equational theories with respect to the unification 

hierarchy. 

It seems premature to have a section on foundations as well, although there is currently interesting 

work in this direction. While this survey presents the "traditional" point of view of unification 

theory, based on ~he terminology of universal algebra and computational logic and centering around 

the notions of the minimal set of unifiers ~tU and of the unification hierarchy, taking a quasi 

ordered set as its most basic concept, it is not at all clear if things arc going to stay that way. For 

example there is recent work that argues that there should be a category theoretical foundations 

(Rydehcard & Burstall, 1985; Rydehcard & Burstall, 1986; Goguen, 1988). There is also currently 

work in my own research group with the aim of a more abstract, axiomatic basis with the potential 

advantage of a more structured view of the whole field. For example the proof of the uniqueness 

lemrna for l.tU and others do not depend on the notion of unifiers at all, but only on a quasi order, 

hence could be generalized and shown in a more general framework. 

Another direction of work, having foundational importance, questions the notion of a It-set as the 

basic cornerstone of the field: empirical evidence from logic programming gives some weight to 

this view. The essential idea of this constraint-oriented framework for unification is the 

following: instead of representing the solutions of a given equation system (a unification problem) 

explicitely as a set of unifiers, some "solved form"of these equations themselves is taken as a 

representation of the solution. For example a given disunification problem is transformed step by 

step until a "solved form" is generated consisting solely of exluafions like x = t or x ~ t, for xe V 

and teT. The interesting point is, that this view can be generalized: the equations do not need to bc 

solved "entirely', but only subject to certain constraints that arise naturally for example in a 

programming task. Among others, this has the advantage that sometimes a unification problem that 

is nonunitary according to the traditional definition, can have a unitary representation according to 

the new definition (Smolka & Ait-Kaci, 198"7). This approach may well develop into an interesting 

alternative, since it provides a more expressive representation for the solutions as compared to 

idempotent unifiers. The problem is that there is as yet no satisfactory foundation for the notion of 

a "solved form"; for example a decidable unification problem would already count on its own as a 

representation of its solutions, given the present state of development. 
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3.2.1 COMBINATION OF UNIFICATION ALGORITHMS 

Given a unification algorithm for an equational theory E t and another algorithm for  a 

theory E2: how can one obtain an algorithm for the theory E = Et~Ez? 

There are two cases to be distinguished: In the first case, if the axioms in E 1 and E 2 involve  the 

same function symbols, there is little hope for a general recipe that constructs a unification 

algorithm for E out of the separate algorithms for E 1 and E 2. For example if E t is the associativity 

axiom (A), a complete and minimal unification algorithm is known and the problem is infinitary, 
Suppose now E 2 is the commutativity axiom (C) for the same function symbol: again  a type 

con.formal algorithm is known and the problem is finitary. The A+C-problem is finitary and in 

particular the A+C-algorithm for the union of (A) and (C) is completely different from the separate 

(A) and (C) cases. As another point in case take E 1 to be the associative axiom as above, but let E 2 

be the idempotent axiom.There is a type con_formal algorithm for idempotence and the prob lem is 

finitary. However the combination of both, the A+I-tmification problem is of type nullary. 
This situation is to be expected in general: solving equations in an algebra defined by  E 1 and E 2 

respectively may have nothing to do with solving equations in the algebra defined by E = E I ~  E 2. 

In the second case however, if E 1 and E 2 involve different function symbols, the si tuat ion is 

different and under certain precautions the separate algorithms for E 1 and F~ can indeed be 

combined, just as decision procedures for different theories can sometimes be combined into a 

decision procedure for their union (*Nelson & Oppen, 1980). There are currently four approaches: 

Building upon the variable abstraction method of M.Stickel, that was already used for the extension 

of the AC-unification algorithm, K.Yelick (Yelick, 1985) and E.Tiddn (Tid6n, 1985) independently 

gave algorithms for a combination of fmitary theories. The essential idea in these algorithms is that 

subterms, that do not belong to the theory of the top function symbol, are temporarily replaced by 

variables, such that one of the given algorithms is applicable.The subterms are taken care of  in a 

recursive call, and the main problem is to show termination of the whole process. K,Yel ick  

restricts her method to regular finitary collapse free theories, whereas E.Tid6n presents his method 

for collapse free theories without the regularity restriction. 

A second approach was developed by A.Herold (I-Ierold, 1986), whose technique is a 

generalization of the constant abstraction method used for the AC-unification a lgor i thm of 

M.Livesey and J.Siekmann. Again his technique is restricted to finitary and regular collapse free 

theories. 

A third approach was taken by C.Kirchner (Kirchner, 1985), who tackles the problem b y  a 

decomposition of the terms to be unified, similar to the technique A.Martelli and U.Montanary used 

for their unification algorithm. Currently his combination only works for a more restrictive class 

than the regular fmitary collapse free theories (kowever this can be generalized). 

A most recent solution of the combination problem for arbitrary equational theories with socalled 

simple theories was announced by M.Schmidt-Schauss (Schmidt-Schaul], 1988), which is not 

restricted to collapse free theories. 
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3.2.2 UNIVERSAL UNIFICATION 

As unification algorithms for different theories are usually based on entirely different 

techniques it would be interesting to have a universal unification algorithm for a whole class of  

theories: a universal unification algorithm for a class of theories E, is an algorithm which 

takes as input a pair o f  terms (s, 0 and a theory E ~ E and generates a complete set of  unifiers for 

<s = t>E. In other words just as a Universal Turing Machine takes as its input the description of a 

special Turing Machine and its arguments, a universal unification algorithm accepts an (equational) 

theory E and two terms to be  unified under E. 

In a sense classical work on the mechanisation of deductive calculi constitutes a "universal 

unification algorithm": for example resolution is complete on pure equations (as long as the equality 

axioms are present) and hence is an undeterministic universal algorithm. Similarily paramodulation, 

E-resolution and the myriad of methods developed for equational reasoning (see (*Blasius & 

Siekmann, 1988) for most references) can be seen as universal algorithms. 

However  in the sequel we shall just concentrate on the more specific techniques that have been 

proposed. There are currently two approaches: 

Narrowing 
To show the essential idea this class of universal algorithms is based upon, suppose 

<s - t> E is the unification problem and R is a canonical rewrite system for E. Let h be a "new" 

binary function symbol then h(s,t ) is a term and we have: 

There exists a e  SUB with os  •E o t  iff there exist terms p, q and 8E SUB such that 

h(s,t) ir R h(p,q) with 8p = 8q ,where t-, R is the narrowing relation as defined above. 

A first move towards an application of this result is a proper organization of the narrowing 

steps ~ R  into a tree, with the additional proviso that variables are never narrowed. Then we have: 

if h(p, q) is a node in the narrowing tree, such that p, q are Robinson-unifiable with o, i.e. op = 

oq  then 8 = oo0 is a correct E-unifier for s and t, where e is the combination of all the narrowing 

substitutions obtained along the path from h(s,t) to h(p,q). And vice versa, for every E-unifier x for 

s and t there exists a node h(p,q) in the narrowing tree, such that p and q are Robinson-unifiable 

with G and ooo -<E x (Hullot, 1980). 

Of  course the set of  unifiers obtained with this tree is far too large to be of  any practical interest and 

the work of D.Lar~kford (Lankford, 1979) and L-M.Hullot (Huller, 1980) based on (Fay, 1979), 

is concerned with prunig this tree while maintaining completeness. J.-M.Hullot (Hullot, 1980) 

shows the close correspondence between rewriting steps and narrowing, some recent literature on 

narrowing algorithms for logic programming is recorded in section 3.1.3. 

Decomposition 
An alternative approach towards a universal algorithm, developed by C. and H.Kirchner, 

is based on a generalisafion of A.Martelli and U.Montanari's decomposition technique that was 

already used for the combination problem.For a given unification problem and an equational theory 
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E, the terms are fed into a cycle of three operations: 

(i) decomposition 

(ii) merging 

(iii) mutation relative to E. 

Essentially, the first step decomposes the terms to be unified as far as possible into its subterms, 

the second step merges those variable/k, alue pairs that eventually constitute the same mapping and 

only the third step is specific for a particular given theory. For a class of equational theories,called 

syntactic theories,there is a general method for this final mutation step (see CKirchner, 1987) for an 

overview and (Kirchner, 1985) for details). 

Right now it appears that narrowing is preferable for certain theories, whereas decomposition is 

good for others: for example the decomposition technique does not work for collapse axioms like 

idempotence, while narrowing does (Herold, 1986). On the other hand narrowing presupposes a 

canonical rewriting system for the equational theory, whereas decomposition does not. 

Minimality 
The set of unifiers U E is recursively enumerable for any decidable theory E: just 

enumerate all substitutions and check if each one unifies the given terms, which is possible as E is 

decidable. Hence there is the important requirement that a universal unification algorithm should 

either generate a minimal set ].tU E or at least should be type conformal. Since such a result is 

unattainable, in general, there is the problem to find classes of theories, such that a universal 

unification algorithm is minimal (is type conformal) for every theory within this class, Ideally such 

a class should be large enough to contain most theories of practical interest, and still admit a 

correct, minimal and complete universal unification algorithm for this class. J.Siekmann and 

P.Szabo proposed a class of equational theories as a first step in this direction (called 

ACFM-theories) in (Siekmann & Szabo, 1981), A.Herold (Herold, 1982) gives an extension Of 

this result, a more recent account is (Nutt & Schmidt-Schaul], 1988). 

The next 700 Unification Algorithms. 
These general results can often be applied in practice for the design of an actual 

unification algorithm. So far the development of a special purpose algorithm was more of an art 

than a science, since for a given theory there was no indication whatsoever, of how the algorithm 

might actually work. 

Using a universal unification algorithm as a starting point, this task is now much easier: first isolate 

the crucial parts and possible sources of inefficiency in the universal algorithm and then extract a 

practical and efficient special solution. A collection of canonical theories (Hullot, 1980) is a 

valuable source for this purpose and has already been used to find the first unification algorithms 

for Abelian group theory and quasi group theory (Lankford, 1979; Hullot, 1980) as well as an 

improvement of the algorithm for idempotence (tIerold, 1986). 
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3.2.3 MATCHING AND UNIFICATION 

An E-matching problem (s >~ t) E is the problem to find a substitution IX with 

DOM([t) c VkV(s) such that s =E g t .  We say t is E-matchable to s and call IX an E-marcher of t 

to s. The set of all E-matchers of t to s is denoted by ME(s >> t). Note that there is a difference 

between the matching relation and the instance relation since f(x) > x but M(f(x) >~ x) = 0 

because V(x)\V(f(x)) = ~3. Again we are interested in finding generating sets or [t-sets for the set 

of matchers. Matchers are compared by -->-E [V(s, t)] in the same way as in the definition of 

unification, and complete and minimal sets of E-marchers of t to s denoted by cMn(s ~ t) 

and [tME(s >~ t) are defined analogously. Again minimal sets of matchers may not exist (Fages & 

Huet, 1986). Analogous to the unification hierarchy we can classify equational theories in unitary 

matching (]3 ~ M1), finitary matching (E e Mco), infinitary matching (EE M,,) and 

nullary matching (E ~ Mo) theories, The class of It-based theories M1 u Mo~ u M~. is 

abbreviated by M. 

An equational theory that is finitary with respect to unification is of course finitary matching, but 

not vice versa: for example stringunification is finitary matching, but infinitary with respect to 

unification. Hence what is the relationship between matching and unification? How axe the two 

respective hierarchies related? 

If we denote the set of substitutions with DOM(~) c W by SUBIw, the set of all matchers is a left 

ideal in the monoid SUBIw, i.e. ME(s >> t) = SUBIw* ME(s >> t), for W = V~,V(s). An equivalent 

definition of generating sets and bases of E-matchers defines the instance relation only in this 

monoid SUBIw: 

>---E X [W-] iff 3 ~, e SUBiwwith ~ =E %'~, where W = V(t )\V(s). 

and completeness and minimality are defined with respect to the quasi-ordering >E [W]. This 

amounts to the same, as if the variables of the instance term s are blocked (or considered as 

constants) and E-unification is then performed for s and t. This definition is equivalent to that of 

'demi-unification' in (Huet, 1976) and to the matching definition in (Szabo, 1982). 

In the literature there are more general definitions of matching, but they are not adequate for the 

definitions of minimal and complete sets of matchers. For example in the definition of 

completeness, matchers could be compared only on W = V(t)\V(s) instead of W = V(s,t), but then 

CME(S >~ t) is not a generating set for ME(s >> t): Consider the theory 

E = [f(f(f(x))) = f(f(x)) } and the matching problem (f(f(y)) >> f(x) )E. 

There are two interesting matchers Ix -- {x e-- f(y)} and "c = [x ~-- f(ffy))}, but both, the 

marcher x and the non-matching substitution "c' = {x ~-- f(f(a))}, are E-instances of IX on 

V(t)\V(s) = {x}, because "c >--E IX [{x}] and x' >E IX [[x]]. 

As mentioned above, there is a difference between the matching relation and the instance relation. 
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The 'instance relation problem' can be reduced to the matching problem, if all variables of the 

instance terms are renamed with new variables: 

{c: c e  SUB and s ~-E o't } -- [~p: ~te ME(S)~ pt)], 

where p is the renaming substitution {x ~ vx: x ~ V(s)) with pairwise differently new variables 

v x e V',V(s, t). Another way to remove the difference between matching and instance relation is 

to drop the reslriction that matchers are in SUBIw and to use the matching definition of F.Fages 

and G.P.Huet (Fages& Huet, 1983). But there are similar difficulties: If the substitutions are 

compared on W = V(s,t) then g = {x ~-- f(y)} is not the only most general matcher of  

(f(y) ~ x) since It' = [x ~ f(y), y ~-- z} is a matcher but ~t~ It'[{x, y}]. On the other hand, 

if the comparison is on V(t)W(s) then the set cME(s >> t) does not generate the set of all marchers 

ME(s >> t) (using the same counterexample as above). 

Matching and unification as defined here are special cases of the general notion of a V-restricted 

unification problem, which is a unification problem where the unifier is allowed to move only the 

variables in the subset V r V. Some general results are shown in (Bfirekert, 1986; Biirckert, 1987) 

in particular it is shown how the most general restricted unifiers can be computed from the 

unrestricted most general unifiers. 

3.2.4 UNIFICATION PROPERTIES OF EQUATIONAL THEORIES 

The Unification Hierarchy 
In the 1970"s many unitary, finitary and infmitary equational theories were discovered. It 

was also wellknown that for higher order logics a minimal set of unifiers IsU does not always exist: 

i.e. for certain problems there are infinitely descending chains of unifiers c t  > c2 > Ca >... with no 

lower bound. Hence the natural problem, which was open for several years: are there first order 

equational theories with the same unpleasant feature? 

G.P.Huet and F.Fages (Fages& Huet, 1983) demonstrated that unfortunately this is the case: they 

construct a special equational theory, which even admits a canonical rewriting system, and showed 

it is of type zero. Recently M.Schmidt-Schauss (Schmidt-Schauf~, 1986) and A.Baader (Baader, 

1986; Bander, 1987) showed independently that idempotent semigroups (called bands in 

semigroup theory) are of type nullary, thus opening up a whole class of natural and quite simple 

theories, all of which are of type zero. 

We may also ask if the unification hierarchy is the finest possible structure or else is it possible to 

refine the hierarchy into subclasses? A natural candidate might be the class of fmitary theories that 

could be decomposed into bounded theories. An equational theory E is bounded by n~ N if for 

every pair of terms s,t the cardinality of ~UE(s,t) is less than n. While it is easy to find particular 

unification problems that are bounded by some n (for certain subclasses of terms) it is shown in 

(Book & Siekrnann, 1986) that equational theories which are not unitary are unbounded. Hence 

this notion can not be used to refine the hierarchy. 
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In particular it can not be used to characterize the borderline between unitary and finitary theories 

nor (considering the limes) the borderline between finitary and infinitary theories. Both of these 

characterization problems are still major open research problems. 

Another attempt to find characterization theorems is due to P.Szabo (Szabo, 1982) who defined a 

local testset for a class of equational theories, in analogy to the Ehrenfeucht constructions. 

Let term(E):- {1, r : l=r ~ E} be the set of terms in the axiomatization of E and let I(E) be the set 

of instances of these terms: 

I(E) = [o't: t ~ term(E), c~SUB}. 

Similarly we define OdE) as the finite set of all generalizations of these terms: 

C_~(E)= {t: t 'E term(E) and t is obtained from t" by a replacement of some subterms by variables}. 

We assume equivalent terms to be discarded, i.e. C~(E)/,. With these two sets the characteristic 

setX(E) of an equational theory E is defined as: 

•(E) = I(E) u G(E) u term(E) 

and the finite local-characteristic set k as: 

k(E) := term(E) u (~(E). 

Let ~CE) be some first order property of an equational theory E. If the property ~: only holds for a 

subset of terms S e T ,  we write E(E)Is,  and say E(E) is X-reducible iff E(E)Ix(E ) implies 

E(E). Similarly theory E is k-reducible iff E(E)Ix0~ ) implies ~E) .  Then we have: 

�9 The matching problem for admissible, canonical and regular theories is X-reducible. 

This theorem Neatly simplifies the test for finitary or infinitary matching, since we only have to 

show that it holds for matching problems on the subset of terms X(E) (Szabo, 1982). Another 

result in this respect is the k-reducibility of unitary matching theories (S zabo, 1982): 

,, There is a test for regular theories to be unitary matching that is ~,-reducible. 

Theorems of this nature are of considerable practical importance since they allow for an easy 

classification of a given theory. For example in 1975 P.Hayes conjectured that unification of free 

terms may well be the only case with at most one most general unifier. The problem turned out to 

be more difficult than anticipated at the time: for example let Taa = {f(a,a) = a} for any constant 

a, then Taa is unitary. Also unification in Boolean rings is unitary. In order to show that a given 
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theory is unitary, it was customary to invent a special algorithm and then prove its completeness 

and correctness for example by structural induction (Robinson, 1965; Knuth & Bendix, 1970). 

A more elegant method is descibed by G.Huet (Huet, 1976): factoring "i~ by - ,  he showed that 

~l'l= is a complete semi-lattice under <. Hence if two terms are unifiable there exists a common 

instance and hence there exists a least lower bound, which is the most general such instance: thus 

follows unification of free terms is unitary. However using a result of P.Szabo (Szabo, 1982): 

�9 The unitary unification theories are ~-reducible. 

this is immediate: For free terms, i.e. the empty theory, ~ (E) is empty hence every test set is 

empty. But then there does not exist a pair in X (E) with more than one mgu, thus follows 

unification of uninterpreted terms is unitary. 

Classes of Equational Theories 
An equation p = q with #(X, p) = #(X, q) for every symbol X e V ~ F ,where 

#(X, p) is the number of occurrences of symbol X in p, is called a permutation equation.. A 
generalization of this notion is regularity: an equation p = q is called regular iff V(p) = V(q). 

An equation is a collapse equation iff it is of the form x = t ,  where t is a non-variable term and 

x is a variable. Collapse equations of the form p(v 1 ..... v i ..... v n) = v i (for some i with 1 < i < n) 

with pairwise different variables v t ..... v n are called projection equations. An equation is called 

subterm collapsing iff one side of the equation is a proper subterm of the other. Of course in a 

consistent theory every collapse equation is subterm collapsing. 

An equational theory E is called permutative iff every equation in E is a permutation equation, 

regular iff every equation in E is regular, and collapse free fff it does not contain any collapse 

equations. In (Yelick, 1985) collapse free theories are called 'confined' and in (Kirchner, 1985) 

theories that contain collapse equations are said to be 'potent'.  Examples for permutative and 

regular theories are associativity or commutativity. The theory of idempotence is an example for a 

theory that is regular but not permutative and not collapse free. A theory E is almost collapse 
free fff for the leading function symbol of every collapse equation in E there is also a projection 

equation in E, with the same top-function. A theory E is called simple iff there is no subterm 

collapsing equation in E. Associativity and commutativity are examples for such theories. 

An equational theory is said to be finite iff every equivalence class of the corresponding 

congruence is finite. An equational theory is Noetherian iff every strictly descending chain of  

substitutions is finite (i.e. in Noetherian theories the strict instance relation on substitutions is 

well-founded). Another class of equational theories defined by the congruence =v is the class of  

I '~-free theories: a theory is O-free iff f(s 1 ..... Sn) =p f(t 1 ..... tn) implies s I =E ti for all 

l~.<.n and all function symbols fe F (Szabo, 1982). 

None of the solutions of the combination problem for unification algorithms handles the class of  

collapse theories. A reason for the difficulty is the fact that in collapse free theories the equivalence 

class of a variable only contains that variable, which is no longer true if there are collapse equations 
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in the theory. One way to eliminate some collapse equations is described by H.J.Btirckert 

(Btirckert, 1986), who shows that every almost collapse free theory can be transformed into a 

collapse free theory with the same unification behaviour. 

In regular theories variables cannot disappear and all the terms of an equivalence class have the 

same variables. An interesting consequence is that for every matching problem in a regular theory a 

minimal set of marchers exists (Szabo, 1982) (i.e. if E is a regular theory then B e M). 

Regularity, collapse freeness, and permutativity of an equational theory can be characterized by 

examination of an arbitrary presentation: it is sufficient to show that some presentation is regular, 

collapse free or permutative. 

The definition of permutative theories is due to D.S. Lankford and A.M. Ballantyne (Lankford & 

Ballantyne, 1977). They introduced these theories in order to extend the Knuth-Bendix completion 

procedure to commutative theories. Some authors (Szabo, 1982; Kirchner, 1985) defined 

permutative theories as finite theories, our definition is consistent with (Btirckert et al., 1987). 

In finite theories the matching problems are always decidable and finitary matching (Szabo, 1982). 

Another important property of finite theories is that the set of most general unifiers always exists 

(Szabo, 1982), the reason is that finite theories are Noetherian. Obviously Noetherianness is 

sufficient for the existence of minimal sets of unifiers, but not necessary: 

�9 Noetherian theories are in U, however the theory of idempotence I is in g/but not 

Noetherian. 

Note, that there exist theories that are finite and hence Noetherian but infinitary unifying (e.g. 

associativity ) and there are theories that are finite and hence Noetherian and finitary unifying (e.g. 

commutativity). 

The class of simple theories plays a prominent role, since they admit a simple occurs-check: a 

variable x and a term t are B-unifiable iff x does not occur in t. Since finite theories are always 

simple, the simple theories are also orthogonal to the unification hierarchy. 

A most interesting result for O-free theories has been shown by P.Szab6: O-f ree  theories are 

regular and unitary matching and vice versa (Szabo, 1982). This result gives a nice algebraic 

characterization of a unification property and was the first result that links algebraic properties with 

the unification hierarchy (just as there is a correspondence between grammars and automata in the 

Chomsky-hierarchy in formal language theory), f~-freeness of an equational theory is undecidable 

in general, but P.Szab6 gave a sufficient condition for checking O-freeness: a theory E is 12-free 

iff for all Robinson-unifiable terms p, q e %(E) the Robinson unifier is the only most general 

E-unifier. Since X(E) is a finite set, this criterion yields a decision procedure for the O-freeness of 

B, if a complete unification algorithm for E is known. O-free theories are again orthogonal to the 

unification hierarchy, i.e., there exist O-f ree  theories that are unitary, finitary and infinitary 

respectively (Szabo, 1982). There exists even a simple, unitary matching (hence O-free) theory of 

unification type nullary. 

The O-f ree  theories are also orthogonal to the other theories, i.e. there are examples of f2-free 

theories being permutative, fmite, simple, collapse free and regular respectively. 
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Up to now we introduced permutative, finite, simple, regular, collapse free, almost  collapse free 

and ~- f ree  theories. These classes are arranged in the following diagram in an inclusion hierarchy 

with examples for each possibility and counterexamples to show the inclusions are strict. For 

example the theory E 9 is simple and ~- f ree  but not finite, hence it is regular, collapse free and 

almost collapse free. These results are due to H.J.Bttrckert, A.Herold and M.Schmidt-Schauf5 

(Btlrckert et al., 1987). 
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A := [ f (x  f (y  z)) = f ( f (x  y) z)} 

C := {f(x y) = f (y  x)} 

I := { f ( x x ) =  x} 

E 1 := [f(a) = f(b) } 

E 2 := { f (g (x ) )=  f(x)} 

E 3 := {f(x f (y  y)) = f ( f (x  x) y)} 

E4 := [x * O= O} 

E 5 := {f(a) = f (b) ,  g(x)  = x} 

E 6 := {g(x y) = x} 

E7 :-'- {f(g(a)) = g(f(a))} 

E 8 := {f(a) -- g(b)} 

E 9 := {f(g(h(x))) = g(x)} 

Elo:= {f(a a) = a} 

El i :=  {f (g(x))  = x, f (x)  = x} 

E12:= {f(g(x))  = x, g ( f (x) )  = x} 
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Noetherian theories are more interesting with respect to the unification hierarchy. Irt order to ge 

some intuition for these theories, here are some relationships between the classes listed above ant 

the Noetherian theories: 

�9 Every finite theory is Noetherian. 

�9 There exists a finitary unifying theory that is not Noetherian. 

* There exists a Noetherian, but not regular theory. 

A simpler characterization of a Noetherian theory appears to be the requirement that there are nc 

infinitely descending chains of terms, but this does not hold in general. The theory E := {g(h(x)) --- 

x, f(h(x)) = fix)} has no infinitely descending chains of terms, but the theory is not Noetherian 

However: 

�9 I rE  is O-free, then E is Noetherian iff every descending chain of terms is f'mite. 

Decidability Results 
The class problem for a class of equational theories is the problem, whether a given 

equational theory belongs to this class. The uniform word problem for a class of equational 

theories is the problem to find art algorithm that decides the word problem for all equational 

theories in that class. Permutativity, regularity and collapse freeness of a theory are easily decidable 

by examining a presentation of the theory. 

Theorem 4.1 in (Nelson & Oppen, 1980) shows that for finite Church-Rosser Semi-Thue-systems 

T the question "Does T admit any infinite congruence classes?" is undecidable. Hence the class 

problem for finite theories is undecidable.We also have: 

�9 Almost collapse freeness, O-freeness and Noetherianness of a theory are undecidable. 

�9 The uniform word problem for ground terms in simple theories is undecidable. 

�9 The class problem for simple theories is undecidable. 

Finally it is shown in (Btirckert et al., 1987), that it is undecidable where an equational theory 

resides in the unification hierarchy, by the asterisk in q/i* and 9,(i* we denote the interserction of 

f-/i and ~ with the class of regular theories: 

�9 It is undecidable whether an equational theory is in UI* , Uo~* , U.**, f/o*, MI*, Moo*, ~Vf***. 

Hence in general: 

�9 The class problem for f-/1, U~, U.~, f3 o, ~c 1, 9~'co, M.. is undecidable. 

Note that ~a4"o* is empty (Szabo, 1982), nevertheless, we have: 

�9 The class problem for ~0  is undecidable. 

Let us close by sum2narizing the results on the word problem in various classes: 

�9 The uniform word problem in finite equational theories is decidable. 

�9 The uniform word problem in simple theories is undecidable 

�9 The uniform word problem for s theories is undecidable. 

The most recent results about unification and equational classes are given by H.J.B~ckert, 

A.Herold and M.Schmidt-Schauss in (Btirckert et al., 1987), from which most of this section has 

beer~ taken. 
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Although the comparative study of theories and classes of theories has uncovered interesting 

algebraic structures, this is without doubt nothing but the tip of an iceberg of still unknown results. 
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