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Inheritance hierarchies are introduced as a means of representing taxonomically 
organized data. The hierarchies are built up from so-called feature types that 
are ordered by subtyping and whose elements are records. Every feature type 
comes with a set of features prescribing fields of its record elements. So-called 
feature terms are available to denote subsets of feature types. Feature unification 
is introduced as an operation that decides whether two feature terms have a 
nonempty intersection and computes a feature term denoting the intersection. 

We model our inheritance hierarchies as algebraic specifications in order- 
sorted equational logic using initial algebra semantics. Our framework integrates 
feature types whose elements are obtained as records with constructor types 
whose elements are obtained by constructor application. Unification in these 
hierarchies combines record unification with order-sorted term unification and is 
presented as constraint solving. We specify a unitary unification algorithm by a 
set of simplification rules and prove its soundness and completeness with respect 
to the model-theoretic semantics. 

I .  I n t r o d u c t i o n  

This paper presents inheritance hierarchies as a means of representing taxonomically 
organized data. In our approach, an inheritance hierarchy is built up from so-called 
feature types, which are ordered by subtyping and whose elements are records. Every 
feature type comes with a set of features prescribing fields of its record elements. 

Figure 1.1 shows an inheritance hierarchy consisting of the feature types o b j e c t ,  
house ,  vehicle ,  m a c h i n e ,  car ,  o ther_car ,  gas_car, e lec t r ic_car ,  fue l_ type ,  
gasol ine,  and e lec t r ic i ty .  Subtypes are given below their supertypes. The type o b j e c t  
has the feature age of type na t .  The type vehicle  has two features-- the feature age: n a t  
inherited from the supertype o b j e c t  and the feature speed:nat explicitly specified. 
The type car  has three features--age:nat inherited from both veh ic le  and m a c h i n e ,  
speed: na t  inherited from vehicle ,  and fuel: fue l_ type  inherited from m a c h i n e .  (The 
fact that a subtype inherits features fl'om more than one supertype could be referred 
to as multiple inheritance.) The type o the r_ca r  has the same features as car .  The 

t This paper is a revised version of the MCC Technical Report AI-057-87, Microelectronics and 
Computer Technology Corporation, Austin, Texas 78759, May 1987. 
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ob jec t [ age :na t ]  

house[toweL: s t r ing]  vehicle[speed: nat]  machine~uel: fuel_type]  

c a r  

o t h e r _ c a r g o _ e a r [ f u e l :  e lec t r ic i ty]  

f u e l_ ty p e  

gaso l ine  e l e c t r i c i t y  

FIGuaE 1.1. An inheritance hierarchy. 

type gas_ca r  illustrates a fllrther concept: the feature fuel is inherited from car, but  
is restr icted from f u e l _ t y p e  to gasol ine.  The feature types fue l_ type ,  gasoline,  and 
e l e c t r i c i t y  don't  have features. 

Semantically, feature types are interpreted as sets and subtyping is interpreted as set 
iaclusion. Minimal feature types are assumed to be pairwise disjoint and nonminimal 
feature types are assumed to be the union of their subtypes. Consequently, the types 
veh ic le ,  m a c h i n e  and car  of the hierarchy in Figure 1.1 all denote the same set, and 
every element of the type o b j e c t  is either an element of h o u s e  or car .  To allow for 
machines tha t  aren ' t  cars, one could equip m a c h i n e  with a subtype o t h e r _ m a c h i n e .  

A minima] feature type ( is interpreted as the set of all records labeled with ~ and pos- 
sessing exactly the fields declared for or inherited by ~. Consequently, the type gasol ine 
is in terpre ted  as a singleton consisting of the empty record labeled with gasoline,  and 
every element of the type h o u s e  is a record labeled with h o u s e  and having exactly the 
fields age and town. 

With so-called feature terms one can describe subsets of feature types. The feature 
term 

house[age ~ 155; town :=~ 'Austin'] 

denotes all elements of the feature type h o u se  whose feature age is 150 and whose 
feature town is 'Austin'. Given the hierarchy in Figure 1.1, this feature term denotes the 
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singleton consisting of the record labeled with house and having the fields age =~ 150 
and ~own =~ 'Austin'. The feature term 

vehicle[speed ::~ N; age =~ N] 

denotes all elements of the feature type vehicle whose features speed and age agree. 
Feature unification is an operation that, given two feature terms R and S, computes a 

feature term T denoting the intersection of the denotations of R and S; if the inters ection 
is empty, feature unification fails. Given the hierarchy in Figure 1.1, unification of the 
two feature terms 

vehicle[speed :=~ N; age =:~ N] 

'machine[age =~ 30] 

yields the ~ature term 

car[age =~ 30; speed =~ 30], 

while unification of the terms 

vehicle[speed :~ N; age ==~ N] 

vehicle[speed =~ 120; age =~ 2] 

fails. 
Unification of feature terms is investigated in (A'it-Kaci, 1984, 1986; Ait-Kaci & Nasr, 

1986). In this approach, a class of feature terms, called e-terms, is formally defined 
together with a preorder, called subsumption. Intuitively, a e-term S is subsumed by a 
e-term T if S contains more information than T, or, equivalently, S denotes a subset of 
T. Under this subsumption order, the set of all e-terms is a prelattice, provided the sort 
symbols are ordered as a lattice. Unification is then defined as computing greatest lower 
bounds in the prelattice of e-terms. 

The main purpose of this paper is to reconcile feature terms and their unification 
with the algebraic approach to abstract data types (Goguen et al., t978; Ehrig & Mahr, 
1985), where data types are specified in many-sorted equational logic and are defined as 
the initial algebras of their specifications. Using order-sorted equational logic (Goguen, 
1978; Goguen & Meseguer, 1987b; Smolka et al., 1987), it is straightforward to specify 
inheritance hierarchies such that the right initial algebras are obtained. It is less obvious, 
however, how to accommodate feature terms and their unification. Feature terms are 
different from ordinary terms in that they denote subsets of sorts rather than elements of 
sorts. We will solve the problem by formalizing a containment x: S, which constrains a 
variable z to the elements of a feature term S, as a solved equation system constraining 
x. Unification of two feature terms S and T will then mean to solve the combined 
equation system z :S  ~= z:T,  where solving an equation system means to compute an 
equivalent system that is in solved form and to decide thereby whether the given system 
is satisfiable. 

Our formulation of inheritance hierarchies as algebraic specifications yields a frame- 
work which naturally accommodates feature types as well as ordinary algebraic types 
whose elements are obtained by constructor application. We will restrict our interest 
to constructor types that are defined without equations. We will present a constraint 
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solving method for solving equation systems over specifications consisting of feature and 
constructor types and prove its soundness and completeness. This constraint solving 
method generalizes both tb-term unification (A~t-Kaci, 1984, 1986), which applies to 
feature types, and order-sorted unification (Walther, 1984, 1988), which applies ~o con- 
structor types. 

Our account of feature unification as equation solving, or, more general, as constraint 
solving, shows its compatibility and relationship with ordinary term unification (Her- 
brand, 1930; Robinson, 1965). The view of ordinary term unification as equation solving 
goes back to tIerbrand (1930), was lost by Robinson (1965), and was later reestablished 
by Colmerauer (1982, 1984) and Martelli and Montanari (1982). In the equation solving 
paradigm, the notion of a most general unifier is replaced by the more general notion of 
a solved form, and unification is the stepwise transformation of an equation system to 
solved form by the application of simplification rules. 

Our framework prepares the ground for the integration of inheritance hierarchies and 
feature terms into typed logic-based programming languages such as OBJ (Futatsugi~ 
1985) and Eqlog (Goguen &: Meseguer, 1986). LOGIN (A~t-Kaci &: Nasr, 1986) is an 
already implemented elaboration of Prolog, where ordinary terms are replaced with e- 
terms and ordinary unification is replaced with e-unification. The research presented in 
this paper contributes to the theoretical foundation of LOGIN and shows its compati- 
bility with the ideas underlying the language proposal Eqlog. Mukai's (1987) language 
CIL bears many similarities with LOGIN. Cardelli (1984) investigates the semantics of 
inheritance hierarchies similar to ours in the framework of higher-order functional pro- 
gram_ruing where there is no need for unification. 

Several variants of feature descriptions are being used in computational linguistics 
(see (Shieber, 1986; Pereira, 1987; Pollard & Sag, 1987) for introductory expositions). In 
so-called unification grammars, unification of feature descriptions is the basic operation 
for parsing and generating natural language. Rounds and Kasper (1986) were the first to 
come up with a logical formalization of feature descriptions. In their approach, a feature 
description denotes a set of so-called feature structures, which correspond roughly to 
our feature terms. For building complex feature descriptions, set intersection and union 
are available. A unification method for feature descriptions consists of a normal form 
that exhibits inconsistency and an algorithm that, given two normal feature descriptions, 
computes a normal feature description denoting their intersection. Recent work (Moshier 
& Rounds, 1987; Johnson, 1987; Smolka, 1988; Kasper, 1988) studies feature descriptions 
with set complements and negations. 

The paper is organized as follows. In Section 2 we discnss informally how inheritance 
hierarchies and feature unification can be expressed in order-sorted equational logic. In 
Section 3 we review the necessary notations and results for this logic, which we use in 
Section 4 to formalize feature and constructor types. In Section 5 we devise a frameworlc 
for unification that is general enough to accommodate feature unification, which is finally 
presented in Section 6. 

2. Fea tu re  Types  as Algebraic Types  

2.1. CONSTRUCTOR TYPES AND SUBTYPING 

A basic method of introducing a data type is to define its elements by a set of free 
constructors. For instance, the type of natural numbers can be defined by the signature 
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equation 

n a t  : -  {o, s: na t}  

saying that  every natural  number can be obtained with the two constructors 

o: --+ nat 
s: n a t  --+ nat .  

The  symbol o is a constructor with no arguments representing the  number zero. Positive 
numbers are obtained by  applying the constructor s repeatedly to zero; for instance, one 
is represented as s(o) and two as s(s(o)). We speak of free constructors since there  are 
no laws associated with the constructors. Two ground terms denote the same number  if 
and only if they are constructed in exactly the same way. 

We call types that are defined by free constructors constructor types. Const ructor  
types have been popular  for a long time (Landin, 1964; Burstall, 1969; Hoare, I975) and 
are employed, for instance, in the functional programming languages ML (Milner, 1984). 

Constructor types are a special case of algebraic types, which enjoy a well-established 
mathematical  foundation (Goguen et al., 1978; Nivat & Reynolds, 1985; Ehrig & Mahr, 
1985). Algebraic types are specified in many-sorted equational logic by a signature and 
equational axioms, and their semantics is given by an initiM model, which always uniquely 
exists. Constructor types are free algebraic types, that  is, they can be specified wi thout  
equational axioms. 

Many-sorted logic can be generalized to order-sorted logic (Goguen, 1978) by  intro- 
ducing the notion of subtyping. Semantically, ~ being a subtype of ~ means tha t  the 
denotat ion of ~ is a subset of the denotation of 7- Subtypes arise naturally when we 
define a type as the union of other types. The specification and programming language 
OB:]2 (Futatsugi et al., 1985) is based on order-sorted logic. 

The  notion of subtyping applies to constructor types. For instance, an a l ternat ive  way 
to declare the natural  numbers is 

nat  := ze ro  U p o s l n t  
z e r o  := {o} 
posint := {s: nat}. 

The  first signature equation says that  ze ro  and p o s i n t  are subtypes of n a t  and that  
the elements of n a t  are obtained as the union of the elements of zero  and p o s i n t .  
The  second equation says that ze ro  has exactly one element, which is obtained by the 
constructor o:-+ zero.  The  third equation says that all elements o f p o s i n t  are obtained 
by applying the constructor s: nat --+ pos in t  to natural numbers. To define the negative 
integers, we can add the equation 

ne g in t  := { - :  pos int} ,  

which declares the constructor - :  p o s i n t  --+ negint .  With that  we finally can define the 
integers 

int  :-- neg in t  t2 nat 

as the union of the negative integers and the natural numbers. 
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i n t  

negint[absvalue: pos in t ]  n a t  

z e ro  posint[pred:  nat ]  

FIGURE 2.1. The  integers as inheritance hierarchy. 

2.2. FEATURES AS SELECTORS 

Free constructors are complemented by so-called selectors that  recover their argu- 
ments.  In our last example, the selectors for the constructors s :na t - -~  p o s i n t  and 
- :  p o s i n t  ~ n e g i n t  are their inverses in the initial model and can be specified as fol- 
lows: 

pred: p o s i n t  --+ n a t  
= N 

absvalue: n e g i n t  --+ p o s i n t  
absvalue(-P) = P. 

Now observe that  it makes sense to say that  positive integers have the feature pred: nat ,  
and tha t  negative integers have the feature absvalue: pos in t .  Taking this idea further, 
it turns out that  the integers can be represented by the inheritance hierarchy shown in 
Figure 2.1. (See Goguen and Meseguer (1987a) for a thorough discussion of constructors 
and selectors in order-sorted algebraic specifications.) 

Now observe that  every constructor term can be represented as a feature term, for 
instance: 

0 

8(0) 

-8(0) 

z e r o  

posint[10red :~z zero]  

posint[pred =V poslnt[pred =~ X]]. 

negint[absvalue =~ poslnt[pred =2z zero]] 

This suggests that  feature types and constructor types are dual concepts. Constructor 
types are defined by giving their constructors, while feature types are defined by giving 
their selectors. From the definition of a constructor type we can uniquely determine the 
corresponding selectors (not their names, of course); vice versa, from the definition of a 
feature type  we can uniquely determine the corresponding constructors. 

In other  words, feature types can be expressed as algebraic types if we supply the miss- 
ing constructors,  which we will call implicit constructors. Figure 2.2 gives an algebraic 
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o b j e c t  := h o u s e  u v e h i c l e  U m a c h i n e  
h o u s e  := {con_house: n a t  x s t r ing}  
veh ic l e  := ca r  
m a c h i n e  := ca r  
c a r  := o t h e r _ c a r  U gas_car  o e lec t r i c_car  
o t h e r _ c a r  := { con_other_car: n a t  • n a t  • fue l_ type}  
gas_car  := { con_gas_car: n a t  x n a t  x gasol ine} 
e lec t r i c_car  := { con_electric_car: n a t  x n a t  x e l e c t r i c i t y }  
f u e l _ t y p e  := gaso l ine  O e l e c t r i c i t y  
gaso l ine  := {con_gasoline} 
e l e c t r i c i t y  : -  { con_electricity} 

variables A:nat, T: s t r ing ,  S: na t ,  
F: f ue l_ type ,  G: gasol ine ,  E: e l e c t r i c i t y  

age: o b j e c t  --~ n a t  
age( con_ho se(A, T)) = A 
age(con_other_car(A, S, F) ) = A 
age(con_gas_car(A, S, G)) - A 
age( con_electric_car( A, S, E) ) = A 

town: h o u s e  -+ s t r i n g  
tow ( co _ho se( A, T) ) = T 

speed: veh ic l e  --+ n a t  
speed( con_o*her_car( A, S, T') ) = S 
speed(con_gas_car(A, S, a)) = S 
speed( con_elec*ric_car( A, S, E) ) = S 

fuel: m a c h i n e  -* f u e l _ t y p e  
fuel: gas_car  --* gaso l ine  
fuel', e l ec t r i c_ca r  --~ e l e c t r i c i t y  

fuel(con.other_car(A, S, F) ) = F 
fuel(con_gas_car(A, S, G) ) = G 
f el( co _ele  ric_car( A, S, E) ) = E 

FIGURE 2.2. An algebraic specification of the inheritance hierarchy in Figure 1.1. 

specification of the inheritance hierarchy in Figure 1.1. In accordance with our discussion 
ill Section 1, only minimal feature types are equipped with implicit constructors. This 
is in fact necessary to make feature types and constructor types dual concepts, since 
otherwise not every constructor term could be expressed as a feature term. Fur thermore ,  
if one would like, for instance, to have other machines than cars, one could accomplish 
this by adding o t h e r _ m a c h i n e  as an additional subtype of m a c h i n e .  

There are three declarations for the selector fuel to express the restrictions for the 
subtypes gas_car  and e lec t r i c_car .  Semantically, the selector fuel is a single funct ion 
m a c h i n e  -~ f u e l _ t y p e  that ,  when applied to an element of gas_car ,  yields an element 
of gasol ine ,  and, when applied to an element of e l ec t r i c_ca r ,  yields an element of 
e l ec t r i c i t y .  

The following signature equations are a possible textual  representat ion of the inheri- 
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tanee hierarchy in Figure 1.1: 

ob j ec t  := [age: nat] 
h o u s e  := object[~own: string] 
vehic le  := object[speed: nat] 
m a c h i n e  := object[fuel:  fuel_type] 
ca r  := (vehicle �9 machine)[] 
o the r_ca r  := car[] 
gas_car := car[fuel: gasoline] 
electr ic_car := car[fuel: electricity] 

fue l_ type  := [] 
gaso l ine  := fuel_type[] 
e l ec t r i c i ty  :----- fuel_type[]. 

Note that  these type equations uniquely determine the specification in Figure 2.2. 
Figure 2.3 further clarifies the duality of constructor and feature types by defining 

the natural numbers and their addition in both the constructor and the feature-oriented 
approach. 

2.3. EQUATION SOLVING IN INHERITANCE HIERARCHIES 

A main benefit obtained from expressing inheritance hierarchies as algebraic specifica- 
tions is the provision of a well understood notion of equality. For instance, consider 
the inheritance hierarchy of Figures 1.1 and 2.2 and the equation (capital letters are 
variables) 

V = M  

where V: vehicle[speed =:~ N: nat;  age ::*, N], (1) 

M: machine[age  ~ 30; fuel ~ gasoline]. 

We will consider this equation whose variables are constrained by feature terms to be 
syntactic sugar for the "ordinary" equation system 

speed(V)  = N Lc age(V) = N &: 

age(M)  ---- 30 &:fuel(M) -- G 8r 

V - - M  

where V: vehicle, M: machine,  N: nat,  G: gasoline. 

(2) 

One of the two solutions of this system is 

V = con_other_car(30, 30, con_gasoline) 

M = con_oZher_car(30, 30, con_gasoline) 

N = 3 0  

G = con_gasoline. 

Solving an equation system means deciding whether the system has a solution and, 
if so, to compute a compact representation of the solution space. Usually, it is not a 
good idea to enumerate all solutions since there can be infinitely many. For instance, 
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n a t  := zero U p o s l n t  
z e r o  :=  { o }  
p o s i n t  := {s: na~:) 

+:  na t  X na t  --~ n a t  (variables N: nat ,  M: n a t )  
o + N = N  
s(N) + M : s (N  + M) 

FIGURE 2.3. a. Constructor-oriented definition of the natural  numbers and their  
addition. 

n a t  := [] 
z e r o  : -  na t [ ]  
p o s i n t  := nat[pred: nat]  

+:  na t  x n a t  -+ n a t  (variables N: nat ,  M: na t )  
zero[]  + N = N 
posint[pred ~ N] + M - posint[pred ~ N + M] 

FIGUI~E 2.3. b. Feature-oriented definition of the natural  numbers and their addi- 
tion, 

+ : n a t  x n a t  - -+nat  (variables Z:ze ro ,  N : n a t ,  P, P q p o s l n t )  
Z + N - N  
P + N = P '  i f  p r e d ( P ' ) = p r e d ( P ) + g  

FIGu~tE 2.3. c. Feature-oriented definition of addition not using feature term syn- 
tax. The second equation of + must now be formulated conditionally. 

the equation N =- pred(P) has infinitely many solutions in the inheritance hierarchy in 
Figure 2.1. 

We will introduce feature unification as a solution method for equations over construc- 
tor  and feature types. Let  us illustrate how feature unification works by applying it to 
the equation system (2). The equation V = M in (2) requires tha t  the value of V and 
M be an element of a common subtype of veh ic le  and m a c h i n e .  A glance at Figure 
1.1 tells us that the greatest common subtype of veh ic l e  and m a c h i n e  is car.  Hence, 
by introducing an auxiliary variable C: car ,  we can simplify system (2) to 

V = C & M = C &  

speed(C) = g & age(C) = N & age(C) = 30 &fuel(G) = G (3) 

where V'. vehic le ,  M:  m a c h i n e ,  C: car ,  N: na t ,  G: gasol ine .  

Note that  system (2) and (3) have the same solutions for the "pr imary variables" V, M,  
and N.  
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System (3) has two constraints age(C) = N and age(C) -- 30 for the feature age of 
C. This information can be represented equivalently by age(C) = 30 and N -- 30, which 
yields the simplified system 

V = C  & M = C  & N = 3 0  & 

sve d(C) = 30 a g e ( C )  = 30 fu l(C) = a (4)  

where V: vehicle, M: machine ,  C: car, N: na t ,  G: gasoline, 

which is in solved form. Since all simplification steps kept the solutions for the primary 
variables V, M, and N invariant, system (4) represents the solution space of system (1). 
Using again feature terra syntax, system (4) becomes 

V - ' C  & M - - - C  & N =  30 

where C: ear[speed ~ 30; age ~ 30; fuel ~ gasoline]. 

Note that  the feature term car[speed ~ 30; age ~ 30; fuel ~ gasoline] represents 
the set consisting of the two constructor terms con_olher_car(30, 30, con_gasoline) and 
con_gas_car(30, 30, con_gasoline). 

3. Order -Sor ted  Equa t iona l  Logic 

In this section we review the necessary notations and results of order-sorted equational 
logic following (Smolka et al., 1987). 

Every specification in equational logic has an initial model, which is unique up to 
isomorphism. Goguen et al. (1978) discovered that data types can be understood as the 
initial models of their specifications in many-sorted equational logic and thus started a 
field of research now known as Algebraic Specification (Ehrig & Mahr, 1985). Although 
already (Goguen, 1978) advocated the use of subsorts for the algebraic specification of 
data types, technically mature accounts of order-sorted equational logic appeared only 
recently (Goguen & Meseguer, 1987; Smolka et a]., 1987). 

3 .1 .  SYNTAX 

We assume three pairwise disjoint, countablyinfinite sets of symbols: 
Sort Symbols (~, 77, ~). We use ( ,  • and ( to denote possibly empty strings of sort 

symbols. 
Function Symbols ( f ,  g, h). Every function symbol f comes with an arity Ifl specifying 

the number of arguments it takes. Function symbols having arity zero are called constant 
symbols. 

Variables (x, y, z). Every variable z comes with a sort r which is a sort symbol. 
For every sort symbol there exist infinitely many variables having this sort. 

REMARK. In this paper "type" is used as a synonym of "sort". 

A subsort declaration has the form ( < 7, where ~ and ~ are sort symbols. 
A function declaration has the form f: ~1"'" ~n --+ ~, where n is the arity of f and 

~1, . . . ,  ~n and ~ are sort symbols. 
A signature ~ is a set of subsort and function declarations. We say that a sort or 

function symbol is a ~,-symbol if it occurs in a declaration of ~. A variable is a ~- 
variable if its sort is a ~-symbol. 
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The  subsort order "~ __<~. ~" of E is the least quasi-order <~  on the sort  symbols  of E 
such tha t  ~ <D ~ if the subsort  declaration ~ < 7? is in E. The  subsort  order is extended 
componentwise to strings of  sort symbols. If the signature is clear f rom the context,  we 
will drop the index E in ~ _<~ ~/. 

Let E be a signature. 
A E- t e rm of  sort  ~ is either a variable z such tha t  c z  < z  ~, or has the fo rm 

f ( s l  . . . .  ,s,~), where there is a declaration ( f :Th- . . 7 / ,  --+ 7) E E such tha t  ~ _<z 
and sl is a S - t e rm of sort  ~/i for i = 1 . . . .  ,n .  The letters s, t, u and v will a lways 
denote terms. The size [sl of  a t e rm s is 1 if s is a variable and 1 § [sl[ + . . .  + [s~[ if  
s = 

A E-equation has the form s --'- t, where s and t are E-terms. The  letter P will a lways 
range over equations. 

A E-equation system is either the empty equation system @ or has the form 
P1 & ' " & P~, where P1, �9 . . ,  P ,  are E-equations. To ease our notation,  we assume tha t  
the conjunction operator & is associative and commutat ive and satisfies E & @ - E.  The  
letter E will always range over equation systems. 

A E-implication has the form E --~ E'  where E and E' are ~-equat ion systems. 
Sometimes we will write an implication E --4 E' in backward notat ion as E'  +--- E. 

A syntactic E-object  is either a E-term, E-equation, ~-equat ion system, or a E- 
implication. A syntactic object  is called ground if it doesn ' t  contain variables. We 
use V(O) to denote the set of all variables occurring in a syntactic object  O. 

A signature Z is reguIar if every E- te rm s has a least sort us, tha t  is, there is a unique 
function cr from the set of all E- te rms  to the set of E-sort  symbols such tha t  (1) s is a 
t e rm  of sort ~s and (2) c r s <  ~ if s is a te rm of sort ~. In regular signatures the sort  
function "~s" extends the sort function "~z" from E-variables to E-terms. 

Regularity is a p roper ty  needed to make order-sorted te rm unification well-behaved 
(see (Smolka et al., 1987) for a discussion). 

THEOREM 3.1. A signature E is regular if and only i f  for every function symbol f and 
every string ( of sort symbols the set {~7 [ (f :  77 -+ ~) 6 E and ~ < ~) is either empty or 
has a minimum with respect to the subsort order o f~ .  

CO1%OLLAl%Y 3.2. Regularity of finite signatures is decidable. 

COROLLARY 3.3. Every signature without multiple function declarations is regular. 

The signature {a:-+ A,  a: ~ B )  isn' t  regular since the constant  a doesn' t  have a least 
sort. Multiple constant declarations don ' t  make sense in regular signatures. 

A specification ,9 = (E, E) consists of a signature E and a set E of ~-equations.  The  
equations in E are called the axioms of,9. We don' t  require that  E or E be finite since 
most  definitions and results apply to infinite specifications as well. If  E is a signature,  
we call (E, #) the free specification orE. Given a specification `9, it is convenient to refer 
to S-objects  as ,9-objects. 

3.2. SUBSTITUTIONS AND INSTANCES 

An impor tan t  technicality of order-sorted logic is that  only substi tut ions are admi t ted  
tha t  map well-sorted terms to well-sorted terms. 

A E-substitution is a function f rom E-terms to E- terms such t h a t  

1. if s is a E- t e rm of sort  ~, then 8s is a E- te rm of sort 
2.  :(sl . . . . .  = f ( 0 s l , . . . ,  0 s , )  
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3. V~ :-- {x ] 0x # z} is finite. 

Following the usual abuse of notation, we call :D8 the domain ofO, ~ := {Oz Ix  ~ ~ }  
the codomain o f  8, and ZO := ];(C8) the set of variabies introduced by O. The letters 
~, r  and r will always range over substitutions. The identi ty function on E-terms is 
called the  emp ty  substitution and is denoted by e. The  composition of E-substitutions 
is again a E-substitution. E-substitutions are extended to syntact ic  E-objects as usual. 
h subst i tu t ion 8 is idempo~ent if 88 --- 8. Note that  this is the case ff and only if Z~ and 
:Z'P are disjoint. 

The  equational representation [0] of a substi tut ion 8 is the equation system 

zl '-- Sxl ~ . . . b: z~ "-: 8xn, 

where {xz . . . .  ,xn}  = 98.  Two substitutions are equal if and only if their equational 
representat ions are equal (recall tha t  the conjunction operator  & is associative and com- 
mutat ive) .  Every equation system xl  "-- sl & . . .  & z n  ~- sn such that  x l , . . . , x n  are 
dis t inct  variables and si is a E- term of sort crz~ for all i is the equational representation 
of some E-substi tut ion,  which we denote by (zl  -- sl & . . .  & z~ --" s~/. Note that 
8 = ([8]} for every substitution ~. 

Let  0 be a E-subst i tut ion and V be a set of E-variables. The restriction O[v of  8 to V 
is defined by: 8Iv(x) := 8z i f2  e V, otherwise 8Iv(x) := x. Furthermore,  if s is a term 
of sor t  ~y, the update  O[y +-- s] of  O at y with s is defined by: ~[y ~-- s](x) := s i f z  = y, 
otherwise 8[y ~ s](x) := Oz. 

A E - t e r m  s is called a E-instance of a E- term t if there is a E-subst i tut ion 6 such that 
s ---- St. Note  that ,  if t is a term of sort 4, every E-instance of t is a E- term of sort ~. 

3.3. SEMANTICS 

Let E be a signature, A E-algebra .A consists of denotations ~A and f A  for the sort and 
function symbols of E such that: 

1. f.4 is a set 
2. i f ( 4 < U )  E E  then~A_c~A 
3. CA :-- U {~A [ ~ is a sort symbol of E} is called the carrier o s  

4. f .4 is a mapping D) ~ --~ CA whose domain DJ t is a subset of C~ i 

5. if ( f  : ~ l . . . ~ n  "--~ ~) e E and a i e  4~ for i = 1 . . . .  ,n, then (az . . . . .  an) e D) 4 and 

/ " ( a l  . . . .  , an) e 

C~ 1 denotes the cartesian product  CA x .-.  • CA having one factor for every argument 
of f .  Note  that  a function symbol has only one denotat ion although there can be several 
declarations for it in the signature. Thus having several declarations for a function 
symbol does not mean that  the function symbol is overloaded. 

Let  M and 13 be E-algebras, A mapping 7: CA --* CB is called a homomorphism A --~ B 
if 

1. 7(~ A) C_ s for every E-sort symbol 
2. 7(D~ t) C_ ~9[ for every E-function symbol f 

3. 7 ( f A ( a l , . . . ,  an)) "- f • (7(a l )  . . . . .  "/(an)) for every E-function symbol f and every 
tuple ( a l , . . . ,  a,~) ~ D) ~. 



Inheritance Hierarchies 355 

PROPOSITION 3.4. Let E be a signature. Then the ~-algebras together with their ho- 
momorphisms comprise a category. 

A homomorphism 7:,4 --+/~ is called an isomorphism if there exists a homomorph i sm 
7~: B --~ A such tha t  77 ~ = idc~ and "/7 - idcB, Two E-algebras are called isomorphic 
if there  exists an isomorphism from one to the other. 

Let  ,4 be a E-algebra and V be a set of ~-variables. A (V, A)-assignment is a mapping  
e~: V --+ Cx such tha t  a (x)  E (g~)~ for all variables x E V. Given a (V, A)-ass ignment  
a and a ~ - t e rm s containing only variables in V, the denotation ~s L ors  in `4 under 
is defined as follows: 

= 

If s is ground, we write [s]A rather than [ s ~  since then the denotation only depends on 
A. 

VMidity with respect to a 2-algebra  A and a (V, A)-assignment ~ is defined as follows 
(s, t, P ,  E, and E I are ~,-objects containing only variables in V): 

�9 `4, c ~ P & E  :r A , c ~ P  and `4, a ~ E  
�9 `4, a ~ (~ always holds ($ is the empty equation system) 
�9 , 4 , ~ E - - + E  t :< :. if `4, a ~ E ,  t h e n A ,  c ~ E  ~. 

Validity with respect to a ~-algebra ,4 is defined as follows: 

�9 `4 ~ E : r V (])(E), A)=assignment 4. A, c~ ~ E 
�9 `4 ~ E --~ E '  : r V (Y(E --+ E ' ) ,  &-ass ignment  c~. A, ~ ~ E --+ E ' .  

Let  S = (N, g) be a specification and A be a ~-algebra. We say tha t  A is an S-algebra 
or `4 is a model o r s  if every equation of E is valid in A. We say tha t  a ~-equation sys t em 
E is wand in S or S satisfies E if E is valid in every S-algebra; in this case we write 
S ~ E .  The relation S ~ E --+ E ~ is defined accordingly. We write E ~ E if the free 
specification (~., 0) satisfies E.  

THEOREM 3.5. Let s and t be two E-terms. Then ~. ~ s - t i f  and only i f  s = t. 

THEOREM 3.6. A specification satisfies an equation s -: t i f  and only i f  it satisfies every 
instance ors - ~. 

A model Z of a specification S is called an initial model of S if, for every model A of 
S, there  exists a unique homomorphism Z --* A. 

THEOREM 3.7. Every specification has an initial model, which is unique up to isomor- 
phism. 

THEOREM 3.8. Let S be a specification. A model Z o r s  is an initial model o r s  i f  and 
only i f  

�9 Z has no junk, that  is, 
�9 for every sor~ symbol ~ o r s  every element o f (  z can be obtained as the denotation 

of  a ground S- te rm of sort 
�9 for every function symbol f o r s  every elemen~ of~)~ can be obtained as ~he 

denotation of a tuple of  ground S-terms 
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�9 Z has no confusion, that is, a ground E-equation is valld in Z i f  and only i f  it is 
valid in every  model  of S. 

3.4. CONGI~UENCE CHARACTERIZATION OF EQUALITY 

We use TER~. to denote the set of  all T-terms.  A congruence on T E R z  is an equivalence 
relat ion ~ on T E R ~  tha t  is closed under replacement,  tha t  is, 

s l ~ h  ^ . - -  ^ s , ~ t ,  

provided,  tha t  f ( s l , . . . ,  s~) and f ( t l  . . . .  , tn) are Z-terms.  A congruence ~ on TER~ is 
s table  if it is closed under instantiation, that  is, if s --~ t and 8 is a ~.-substitution, then 
8s ,.~ Or. 

Let  6" = (N, E) be a specification. S-equal i tyon ~-terms and P,-subst i tut ions is defined 
as follows: 

0 = s  r : e=~  Vx, O~ = s  ez .  

One would expect tha t  "s - ' s  t" is a stable congruence on T E K s ,  as it is the case for 
un typed  equat ional  logic. In general, however, this is not the case since "s = s  t" might 
not  be  transi t ive.  To see this, consider the specification S 

~rue:-- ,  h e e l ,  f a l s e : ~  hee l ,  foe :vo id  -+ b o o l  
foo(xvoid) '-- ~rue, foO(Xvola) -- false 

where Zvold is a variable having the sort vo id .  Then t~ae =s  foo(x,~old) and 
foo(Zvold) =S false, but  not true =s  false since ~ r u e -  false isn ' t  valid in the initial 
mode l  of S. The  problem is obviously caused by the  sort v o i d  whose denotation in the 
initial model  is empty .  

We say tha t  a sort  symbol  ~ of a signature ~ is inhabited if there exists at  least one 
ground ~3-term of sort  (. A signature is called fully inhabited if each of its sort  symbols 
is inhabi ted .  

We say tha t  a congruence -~ on T E R n  satist~es a Z-equat ion s - t if s ~ t. Congruences 
on T E R n  are par t ia l ly  ordered by set inclusion. 

TI-IEO~tEM 3.9. Le t  8 = (~,  E) be a specification whose signature is fully inhabited. Then 
"s =s  ~" is the 1east stable congruence on TElZn satisfying every equation in g. 

COROLLARY 3.10. Let  8 = (N, E) be a specification whose signature is fully inhabited. 
Then: 

�9 "0 =s  r  is an equivalence relation on t~e set of  all ~-substitu~ions 
�9 i f s  =s ~ and 0 ----s r then Os =8 ~bt 
.. ifO =s  r and 0 ~ = s e t ,  then O0 ~ = s  r 1 6 2  

Pt~OPOSITION 3.11. Let ,S be a specification whose signature is fully inhabited. If 
S N E--+ E '  and S I= E'  -+ E",  ~hen S ~ E --+ E" .  Furthermore, N ~ E i f  and 
only i f  S ~ ~) --+ E.  

4. A l g e b r a i c  S p e c i f i c a t i o n  o f  I n h e r i t a n c e  H i e r a r c h i e s  

In this section we show how inheritance hierarchies consisting of constructor  and feature 
types  c~n be specified in order-sorted equational logic. The initial model of such a 
specification is t aken  as the formalization of the specified hierarchy. 
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We s tar t  by assuming the  following subclasses of sort and function symbols:  

�9 There is a subclass of sort symbols whose elements are called feature sort symbols. 
�9 There are two disjoint subclasses of function symbols whose elements are called 

constructor symbols and feature symbols. Every feature symbol  is a unary  funct ion 
symbol. The letters l and k will always range over feature symbols.  

�9 There are two disjoint subclasses of constructor symbols whose elements are called 
explicit constructor symbols and implici~ constructor symbols. Every  constructor  
symbol is either an explicit or an implicit constructor symbol.  

To be able to relate features to implicit constructors, we assume a total  order "l < k" 
on the set of all feature symbols.  We will write l < k i l l  _< k and I r k. To make  
our notation less tedious, we will often write feature sort  instead of feature sort  symbol,  
constructor instead of constructor  symbol, and so on. 

Given a signature E, we say tha t  f is a constructor of ( if f is a constructor and 
contains a declaration f :  ff -+ ~ such that  ~/_< (. We say tha t  1 is a feature of ~ if  1 is 
a feature and E contains a declaration t: ~ ~ ~ such tha t  ( _~ ~/. We say tha t  l is the 
i~th feature os i f l  is a feature o f (  and the set {k [ k is a feature of ( and k <_ l} has 
i elements. A te rm is called canonical if it is built only from variables and constructors  
(explicit or implicit). A t e rm l(x) consisting of a feature I and a variable x is called a 
quasi-variable. 

A basic signature is a signature E satisfying the following conditions: 

1. every function symbol  of E is either a constructor or a feature 
2. every constructor of E has exactly one declaration and is a constructor of a minimal  

sort  of E 
3. ~ is fully inhabited 
4. only feature sorts have features 
5. every subsort of a feature sort  is a feature sort 
6. every minimal feature sort ~ has exactly one (implicit) constructor 
7. a constructor is implicit if and only if it is the constructor of a minimal feature sort  
8. i f l i s  a feature o f ( ,  then the set {r [ (I:v ~ )  e E A (_<  ~/} has a min imum 

(denoted by or(l, ~)) with respect to the subsort order of E; we call o-(l, ~) the sort  
o f l  for ~. 

9. if ~ is a minimal feature sort and 11 < . . .  < In are ~he features of ~, then E contains 
the declaration ~: =(11, ( ) . . .  ~r(ln, ~) --+ (. 

We will only admit  inheritance hierarchies that can be specified wi~h a basic signature. 
You might  find it helpful to  write down the signatures for the examples discussed in the 
previous sections and check that  all conditions are satisfied. 

PROPOSITION 4.1. Every basic signature is regular. Furthermore, every canonical 
ground term of  a basic signature has a minimM sort. 

PROPOSITION 4.2. Let ~ be a basic signature and l ( f ( s l ,  . . ., sn)) be a Z-term such that 
1 is a feature and f is a constructor. Then ( := o ' f ( s l , . . . ,  Sn) is a minimal feature sort 
and f is the implicit constructor o f ( ,  ~hat is, f = ~. 

To relate features and implicit constructors, we need equations. Let ~ be a basic 
signature. A ~-projection is a ~-equation of the form 
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where ~ l , . . . ,  zn are distinct variables, ~ is a minimal feature sort, I is the i - th  feature 
of ~, and ~z  i = o'(k, ~) if k is the j - th  feature of ~. Note that,  up to variable renaming, 
there is exactly one projection for every pair (~, l) such that  ~ is a minimal feature  sort 
and l is a feature of ~. With 7~(E) we denote some set of E-projections I, ha t  contains 
exactly one projection for every such pair (~, l). Furthermore, we call S (~)  := (E, P(P.)) 
the specification associated with E. 

We will regard S (~)  as a rewriting system by orienting its equations from left to right. 
The  corresponding rewriting relation - -~  is defined on E-terms and can be characterized 
as follows: s ---*~. Z if and only if s has a subterm l(~(sl . . . .  , sn)) and t can be obtained 
from s by replacing this subterm with sl, where I is the i-th feature o f ( .  

For  the proof of the next  theorem, we need some basic results on order-sorted rewriting, 
which we borrow from (Smolka et al., 1987). 

THEOREM 4.3. Let  ~ be a basic signature. Then we have: 

2. --+I: is sort decreasing, that is, i f  z ~-+~. t, then ~t <_ ~8 
2. --+~ is terminating and confluent 
3. ~q(E) ~ s "-- t i f  and only i t s  and t have the same normal form with respect to --+~ 
4. a ground E- term is normal wi~h respect to --+E i f  and only i f  it is canonical. 

PI~OOF. 1. It  suffices to show that  every instance l ( ~ ( s , , . . . ,  sr~)) ":- sl of a projection 
is sort  decreasing, tha t  is, ~rs~ < ~rl(~(s~ . . . . .  s,~)). This follows from the conditions 9, 
10, and 2 for basic signatures. 

2. The  rewriting relation ---+~. is terminating since rewriting with a project ion de- 
creases the size of a term. The confluence follows from a critical pair theorem in (Smolka 
et ah, 1987) using that  ---,~. is sort decreasing and terminating and that  the left hand 
sides of the  generating projections don' t  overlap. 

3. For untyped rewriting (that  is, there is just  one sort), it is well-known that  the 
claim holds if the  rewriting relation --*~. is confluent and terminating. Smolka et al. 
(1987) give an analogous result for sort decreasing order-sorted rewriting. 

4. A canonical t e rm is normal since it doesn't  contain feature symbols. To show the 
other direction~ suppose there is a normal ground term s that  isn't canonical. Then s 
must  contain a feature symbol and without loss of generality we can assume tha t  s has 
the form l ( f ( s l , . . . , s n ) )  where f ( s l  . . . .  ,sa) is canonical. Hence, ~ := off(s1 . . . . .  s , )  
must be a minimal feature sort such that ~ = f .  This implies tha t  l ( f ( s l , . . . ,  s , ) )  can 
be rewri t ten  with respect to ---+~, which contradicts our assumption. [] 

COROLLAI~Y 4.4. Let E be a basic signature and f ( s l , . . . ,  sin) and g(t l ,  . . . .  tn) be two 
~- terms  such that  f and g are constructors. Then S(E)  ~ / ( s l , . . . ,  sin) - g ( t z , . . . ,  t . )  
i f  and only  i f  f = # and S (E )  ~ si - ti for every i. 

COROLLARY 4.5. Let E be a basic signature and s and Z be two canonical E-terms. 
Then S(E)  ~ s -- t i f  and oniy i t s  = t. 

This  completes our formalization of inheritance hierarchies. A system of constructor 
and feature  types can now be specified by a basic signature E, which provides bo th  syntax 
(syntact ic  E-objects) and semantics (the isomorphism class of initial models of  $ (~) ) .  

To make feature unification work, we need three additional requirements. We call a 
basic signature admissible if it satisfies the following conditions: 

1. for e v e r y f e a t u r e  sort ~ such tha t  I~ , . . . ,  In are the features of ~ and for every 
minimal ~ <_ cr(l~, ~ ) . . .  g(In, ~) there exists a minimal feature sort 77 _< ~ such that 
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2. there are no infinite descending sort chains . . .  (3 _< ~2 _< ~1 
3. if two sorts have a common subsort, then they have a greatest common subsort. 

Condition 1 is needed to ensure that every solved system (will be defined in Section 
6) has a unifier. Condition 2 and 3 aren't really restrictions for practical applications: 
condition 2 is satisfied by every finite signature and condition 3 can always be satisfied by 
introducing the missing greatest common subsorts, which, semantically, don't introduce 
new elements since ~hey are just the unions of already existing sorts. 

5. U n i f i c a t i o n  w i t h  Solved Forms 

To formalize feature unification, we need a framework making a clear distinction between 
unifiers and solved systems representing unifiers. In the standard framework (Fages 
& Huet, 1986; Siekmann, 1984, 1988), the assumption that solved systems are (most 
general) unifiers is hard-wired in. Keeping apart conceptually unifiers and solved forms 
simplifies the framework, since the rather technical notion of a subsumption order on 
substitutions turns out to be superfluous. 

GENBI~AL ASSUMPTION. 1/1 this section we consider only fully inhabited regular signa- 
tures. Thus, "s =5 t"  and "~ =s r  are equivalence re]ations. 

Let S = (~, g) be a specification and E be a ~,-equation system. The set of S-unifiers 
o r e  is defined as 

us(z) : :  {e �9 S U B s  I s b 

where SUB~ is the set of all E-substitutions. A E-equation system E is called S-unit~able 
or consistent in S if it has at least one S-unifier. 

Technically, things work out nicely if we have the possibility of restricting unifiers to 
some set V of "primary variables", for instance, the variables actually occurring in the 
equation system E. Thus, we define the set of,.q-unifiers o r e  wrt V as 

UV (E)  := {Olv 1 0 � 9  {OIv I S b OE ^ 0 �9 SUB~}. 

We say that E ,_q-subsumes E t wr~ V if u v ( E  ') C NV(E); we say that E and E'  are 
S-equivalent V if (E)  = 

In our view, unification is the process of deciding whether an equation system E is 
unifiable; if E is unifiable, then unification tries to represent the unifiers of E by so- 
called solved systems. What a solved system precisely is cannot be said in general since 
the solved form depends on the specification and the unification technique to be applied. 
However, the literature on unification offers a variety of possibilities: the standard fl'ame- 
work (Fages &t tue t ,  1986; Siekmann, 1984, 1988) employs idempotent substitutions as 
solved form; Martelli and Montanari (1982) and later Kirchner (1986) use acyclic sys- 
tems of multiequations as solved form; Colmezauer's (1982, 1984) work on unification 
with "infinite terms" employs the equational representation of possibly nonidempotent 
substitutions as solved form; and work on disunification (Colmerauer, 1984; Kirchner 
Lescanne, 1987) uses a disjunctive normal form. 

The minimal requirements for a solved form are (1) that every solved system S deter- 
mine a nonempty set UV(S) of substitutions, and (2) that it be decidable (to be practical, 
in polynomial time) whether a system is solved. 
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A set V of variables is called admissible if for every sort ~ there are infinitely many 
variables of sort ~ that  are not in V. We assume that  there are sufficiently many variables 
so tha t  every finite set of variables is admissible. Note that  the set of all variables is 
not ~dmiasible. The letter V will always denote an ~dmissible set of variables. The 
admissibility restriction on V is necessary since many solved forms, for instance the one 
for feature  unification, require the introduction of new auxiliary variables. 

Next we generMize the notions of unitary and finitary unification (Siekmann, 1984, 
1988) to unification with solved forms. Suppose a specification S and a solved form 
~re givem Then we call S u n i ~ z y  uni~/ing (wrt the given solved form) if for every S- 
unifiable equation system E and every admissible V there exisgs a solved system S such 
thug 5~v (E)  = / , / v  (S). We call S finitary unifying (wrt the given solved form) if for every 
equation system E and e'~ery admissible V there exist solved systems $ 1 , . . . ,  S,~ such 
tha t  

U~(E) = u~(s~) u . . .  u u~'(s~). 

An S-approximation of an equation system E wrt  V is a set A of solved systems such 
that  

Uf(A)  := U u~(s )  c u2(~) .  
S e A  

k n  8-approximat ion A of E wrt V is complete if/,/V(A) = gts v (E) .  An 8-approximation 
A is minimal  wrt 5 and V if graY(A) # zIV(A - {S}) for every S E A. 

A unification calculus for a specification $ is a formal system that  allows us, for every 
E and V, to enumerate complete S-approximations of E wrt V. A unification algorithm 
for a specification 8 computes, for every E and V, ~ complete (possibly minimal) S- 
approximation of E wrt  V. 

A major  motivation for employing a nonstandard solved form is the fact tha t  for some 
applicat ions--for  instance, feature unification or disunification--the "right" solved form 
results in uni tary unification while the standard approach results in nonunitary unifica- 
tion. For practical applications, unitary unification is very desirable since nonunitary 
unification adds a source of nondeterminism blowing up the involved search spaces. 

The  next  two propositions will be used in proofs. 

PROPOSITION 5.1. Let 8 he a specification. Then: 

�9 i f0  e U~(E) ,  then (CO)Iv ~ U ~ ( E )  for ever r r 

Uy(E) c U~(E') .: '., VO e Us(E) 30' e Us(E'). OI. = 0% 
<.. :. vo e us(E) 3e' e us(E'), o]v = s  o% 

Let @ -- s} be ~n idempotent substi tution and E be an equation system containing 
the variable x. Then  we say that  E & a: '-- s can be obtained from (x -- s}E by unfolding. 

PROPOSITION 5.2. (Unfolding) Let E & z - s be obtainable from (z -:" s}E b y  unfold- 

P ~ o o F .  The claim follows from S ~ (m -- s )E  ~ <m "-- s}(E &r -- s) ~nd 
S ~- ( 6  & x --" s) ---+ (x -- s}E by the third part of the previous proposition. [] 
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We end this section with a few definitions and propositions showing that  our unification 
framework is equivalent to the standard one if we employ idempotent  substi tutions as 
solved form. 

An equation s -" t is trivial if s - t; an equation system is trivial if all of its equations 
are trivial. 

PI~OPOSITION 5.3. Let $ = (E ,g)  be a specificaLion and r be an idempotent  E-  
substitution. Then: 

�9 r162 is a trivial equation system; in par~icuIar, r is an S-unlfier of  [r 

�9 0 e Us([r :, s , = ,  0 = s 0 r  r  3r r162 

PROOF. The only not  obviously valid claim is 0 = s r 1 6 2  =~ 0 = s  0r Suppose, we 
have 0 = s r 1 6 2  Then 0 = s  r162  = s  r 1 6 2 1 6 2  = s  0r by the assumption, the idempotence of r 
and again the assumption. [] 

PROPOSITION 5.4. Let r = (E,E)  be a specit~cation and r be an idempotent  E- 
substitution. Then 0 E Uff([r i f  and only i f 3 r  Vx e V. Ox =8 r 1 6 2  

PROOF. "=*," Suppose 0 = 0q~, and 0' e L/s([r Then O' = ~  0'r by the previous 
proposition, which yields the claim. 

"r Suppose 0 = O'lv and O' = s r 1 6 2  Then 6' e Z/s([r by the previous proposition, 
which yields the claim. [] 

Another point, where we feel the standard notion of unification is not general enough, 
is the syntactic notion of a unifier, which should be replaced by the semantic notion of a 
solution. Given a signature E, a E-algebra A, and a E-equation system E, an A-solution 
of  E can be defined as a (~(/~), A)-assignment ce such that  A, c~ ~ E.  As iong as we 
want to  solve with respect to some "no junk" mode l~for  instance, the initial m o d e l ~  
substitutions and thus unifiers suffice to represent all solutions. However, if we want 
to solve with respect to a model containing elements not denotable by ground terms 
(for instance, "infinite terms"),  which in fact would be necessary to exactly capture Ait- 
Kaei's (1984, 1986) C-unification, substitutions and thus unifiers don' t  suffice anymore 
to express all solutions. 

We would like to remark that Colmerauer (1984) uses a nonstandard solved form and 
also solves with respect to a noninitial model providing for "infinite terms". 

6. F e a t u r e  Unificat : ion 

Feature unification is a method for deciding whether an equation system over an admissi- 
ble basic signature E is unifiable in S(E). This is done by simplifying the given equation 
system with a collection of unification rules. If the simplified system is in a certain solved 
form, then the original system is unifiable and its unifiers are exactly the unifiers of the 
simplified system; if the simplified system isn't in solved form, then the original system 
isn't unifiable. 

6.1. THE SOLVED FORM 

We call an equation s '- t trimmed ff it contains no implicit constructors, the right- 
hand side t is a canonical term, and the left-hand side s is either a canonical te rm or a 
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quasi-variable. A trimmed equation system is an equation sys tem whose equat ions  are 
all trimmed. The letter T will always range over t r immed equat ion sys tems.  

A tr immed equation system T is called quasi-solved if it has the f o r m  

xl - s~ & . . . &  x,~ - srn & li(y~) "- t~ & . . . &  l , (yn)  -- ~,, 

where m, n > 0 and 

1. xl . . . . .  xm are pairwise distinct variables different from ill, . . . .  Yn (where  Yl, . . . ,  Y~ 
are not necessarily distinct) 

2. l l ( y l ) , . . . ,  In(Y,O are pairwise distinct quasi-variables 
3. if s~ is a variable, then xl occurs only once in T 
4. ~si < ~x~ and crtj < trlj(yj) for all i and j .  

On the variables of a quasi-solved equation sys tem T we define a dependency  relation 
--*T as follows: r -'~T Y if and only if T contains an  equation s -- t such  t h a t  z occurs in 

s and y occurs in t. A quasi-solved equation sys tem T is called solved if its dependency  
relation is acyclic. The letter S will always range over solved equat ion sys tems.  Sys tem 
(4) in Section 2.3 is an example of a solved equation system. 

A canonical substitution is a substitution 0 such that  Oz is a canonical  t e r m  for every 
x E 7)8. A ground substitution is a substi tution 8 such tha t  0z is a ground t e rm  for 
every x E ~98. 

THEOREM 6.1. Let ~ be a basic signature. Then a ~-equation sys t em has an S ( ~ ) -  
unifier i f  and only i f  i~ has a canonical ground S(E)-unifier. 

PROOF. Let 8 (E)  ~ BE. We have to show tha t  E has a canonical  ground S (E) -  
unifier. Since E is fully inhabited, there exists a subst i tut ion r such t h a t  r  is a ground 
substitution. Let r be obtained from r by normalization with respec t  to --+~., that  is, 
e z  is the normal form of r for all x. Then r is a canonical ground subs t i tu t ion  such 
that  r  =s(~.) r Hence, r is an S(E)-unifier of t3, which yields the claim. [] 

THEOt~EM 6.2. Le~ ~ be an admissible basic signature. Then, a quasi-solved ~-equat ion 
system is S(E)-unifiable i f  and only if  i~ is solved. 

PI~OOF. 1. Let 5" be an S(E)-unifiable quasi-solved equation sys tem.  We have to 
show that  the dependency relation of T is acyclic. Suppose the dependency  relat ion of 
T is cyclic. Since T is S(E)-unifiable, there exists a canonical subs t i tu t ion  0 such tha t  
S(E) ~ ST. Furthermore, there must be an edge x -'+T Y of a cycle and an  equa t ion  s -- t 
in T such that  x occurs in s, y occurs in L and either s or t is not a variable.  To  obtain  
a contradiction, it suffices to show that  18x I > 18yl. There are two cases: 

1.1. s --" t has the form x -" f ( s l , . . . , s n )  and y E 1)(s~). Since ,if(E) ~ 8~F and 
both sides of 8z - 0 f ( s l , . . . , s n )  are canonical, we have 8x -- f ( S s l , . . . ,  8 s , ) .  Hence, 
18 I = 8s,,)l > 18s l >_ 18vl. 

1.2. s --" t has the f o r m l ( x )  -'- u and y E Y(u). Since S (E)  ~ l(0x) - #u and 
8u is canonical, 8u must  be the normal form of l(Ox). Since 8r is canonical ,  we have 
l(Ox) - l (~ ( s l , . . . ,  s , ) ) ,  where 4 is a minimal subsort  of ~rx. Thus,  s~ = 8u for some i, 
which yields I~xl > Isil = 10ul _> 10yl. 

2. Let S be a solved equation system. We prove by induction on the  n u m b e r  n of  
quasi-variables in S tha t  S is S(E)-unifiable. 

n = 0. Then S -- [0] for some substitution 8. Since the dependency  relat ion of S is 
acyclic, we have 8rn8 = 8 rn for some m > 0. Thus, 0,n is an S(~)-unif ier  of  S. 
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n > 0. Then S = [~] & S1, where S1 is a solved system whose left-hand sides are all 
quasi-variables. From the base case we know that there exists a natural  number rn such 
that ~rn =/?m0. Let $2 := OmSx. It is easy to verify that  5'2 is solved and that  S is S(E)- 
unifable if $2 is 8(E)-unifiable. Thus it suffices to show that  $2 is 8(E)-unifiable. Since 
$2 is solved and every left-hand side of 5"2 is a quasi-variable, there exists a variable x 
occurring in a left-hand side of $2 such that for every equation l(x) -" t in $2 no variable 
occurring in t occurs in a left-hand side of $2. Recall that  every canonical term that  
is not a variable has a minimal sort. Hence there exists a E-substitution r mapping 
variables to variables such that Ss := r is solved, x 6 :De, and for every equation 
l(x) - s in $3 the right-hand side s has a minimal sort. Since $2 is 8(E)-unifiable if 
$3 is 8(E)-unifiable, it suffices to show that  $3 is S(E)-unifiable. Since E is admissible, 
we know by the first admissibility condition that  there exists a minimal feature sort 

_< cx such that  crt _ c~(l,~) for every (l(x) - '  t) e $3. Let 11 < -.. < Irn be the 
features of ~ and choose pairwise distinct variables xl . . . .  , xm not occurring in Ss such 
that c~x~ = r 4). Define E4 := (x - ~(Xl, . . . ,  xm)}S3 and observe that  $3 is S(E)- 
unifiable if E4 is S(E)-unifiable. Now obtain $5 from E4 by rewriting all left-hand sides 
that aren't  quasi-variables and observe that E4 is S(E)-unifiable if $5 is S(E)-unifiable. 
One can verify that  $5 is solved. With that the induction hypothesis applies and yields 
that $5 is 8(E)-unifiable, which proves the claim. [] 

If a basic signature doesn't  satisfy the first admissibility condition, there can be solved 
systems that are not unifiable. To see this, consider the signature defined by the equations 

A : = [ / : C ] ,  B : = A [ I : D ] ,  C : = D t _ J E ,  D : = { d } ,  E : = { e } .  

In this signature, the solved system l(zA) ----" e (x.~ is a variable of sort A) has no unifier 
since the implicit constructor of the feature sort B cannot take e as an argument. 

We could get rid of the admissibility condition (1) by adding a "type consistency" 
requirement to the definition of a solved system. However, such an extra-condition would 
blow up the worst-case complexity of deciding whether an equation system is solved. 

6.2. THE UNIFICATION RULES 

Let E be an admissible basic signature. In this subsection we will show that an equation 
system E not containing implicit constructors is S(E)-unifiable if and only if there exists 
a solved system S such t h a t / / y  (E) = /4s  y (S). Furthermore, we will give a method, called 
feature unitication, with which we can decide whether E is $(E)-unifiable, and, in case 
it is, compute a solved system representing its ,~(E)-unifiers. 

Let us first discuss the significance of this result. Feature unification is a form of 
E-unification since the unifiers are defined with respect to a specification with equational 
axioms. Since S(E) is a sort decreasing, confluent and terminating rewriting system, 
(order-sorted) narrowing would be a complete unification method for S(E). In contrast 
to feature unification, however, narrowing employs idempotent substitutions as solved 
form, thus resulting in nonunitary unification. For instance, consider the hierarchy in 
Figures 1.1 and 2.2 and the equation age(O) = 5, which is in solved form with respect 
to feature unification. Narrowing, however, will produce four independent most general 
unifiers: 

0 = con_house(5, T) 

0 = con_other_car(5, S, F) 

0 = con.gas_car(5, S, G) 

0 = con_electric_car(5, S, E). 
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Since narrowing with respect to S(~)  strictly reduces the number of feature symbol occur- 
rences, all narrowing trees must be finite. Thus, order-sorted narrowing yields a finitary 
unification method for S(E).  Narrowing could be used to postprocess a solved system 
produced by feature unification, but age(O) = 5 certainly is a far bet ter  representation 
of the  obtained result  than the four most general unifiers. 

T h e  following proposition, which follows from the unfolding proposition, allows us to 
compile equation systems into tr immed ones. 

PROPOSITION 6.3. Let  P, be a basic signature and E be a ~-equat ion  s y s t em  not contain- 
ing impl ic i t  constructors.  Then  we can obtain b y  unfolding a t r i m m e d  equation s y s t e m  
r E such t h a t  = 

The  unification rules shown in Figure 6.1 apply to tr immed equation systems over 
admissible basic signatures. To solve a trimmed equation system, the rules are applied 
as long as a rule is applicable. If the so obtained final equation system is solved, then 
the initial system is unifiable and its unifiers are represented by the final system; if the 
final sys tem is not  solved, then the initial system is not unifiable. 

Note  tha t  the rules W1, W2, and I depend on the underlying signature. If T is a 
~rimmed equation system and E is obtained from T by one of the unification rules, then 
E is again a t r immed equation system. 

THEOREM 6.4. (Feature Unification) Let  E be a admissible basic signature. T h e n  the 
following holds: 

( varia,c ) T',  then = 

2. (Termina t ion )  There  are no infinRe derivations T1 ~ ~v T2 ~ ' v  "" ". 
3, (Comple t eness )  T is S(E)-uni f iable  i f  and only  i f  there exists a solved system S such 

~hat T u ,*r S .  

P R o o F .  I. (I~variance) Let T u 'v  T ' .  Then its easy to verify that  S (~ )  ~ T '  --~ 
uv ~Tt~ T, which yields the  direction b/v(~)(T0 _C Nv~() (T).  To show ldV(~.)(T) C_ s(m), , ,  let 

the unification rule employed in T u 'v  T' be: 
D. Then  the claim follows from Corollary 14 in Section 4. 
M1, M2,  I, O, or E. Then it's easy to verify tha t  S(E) ~ T --+ T' ,  which yields the 

claim. 
W1. Then  T = (x  "- y & T") ,  T '  : (x  "-- z & y -- z & (r -- z & y  '-  z } T " ) ,  

z ~ V U Y(z - y & T ' ) ,  and ~z is the greatest common subsort of t z  and ay. Let 
/9 e Ms(~.)(T) be normal. Then 8z = ~gy since S(~)  ~ 0r --" ~y and 0 is normal. Thus, 
n o t  < r  since crSz < c,x and crOz = cr~y < cry. Define r := ~[z ~- ~x]. Now one verifies 
easily tha t  ~b e bls(~.)(T O, which yields the claim. 

rcV2. Then T : ( l (x)  - y & T"),  T'  = (y - z & ( y  -- z ) ( l ( x )  -- y ~ T " ) ) ,  
z f~ V 0 W(I(z)  -~ y & T") ,  and crz is the greatest eorramon sabsort of r162 and cry. Let 
# ~/.r be normal. Then Oy is the normal form of Ol(z) since S(~,) ~ ~gl(z) -;" #y. 
Thus,  c~Oy < o'z since soy  < ay and o'Oy < ~rOl(:c) <_ ~rl(x). Define ~b :=/9[z ~-- Oy]. Now 
one verifies easily tha t  r ~ Us(~)(TO,  which yields the claim. 

2. (Termina t ion )  Suppose there is an infinite derivation Tt u ~v Tz ~ ~v �9 "'. 
2.1. Consider the number of quasi-variable occurrences in T~. This number is increased 

by no rule and decreased by M2. Thus, we can assume that  the infinite derivation doesn' t  
employ M2. 

2.2. Let us call a variable r isolated in an equation system E if ~ occurs only once in 
E and E contains an equation z - s such that  crs < ~rz. Now consider the number of 
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D e c o m p o s i t i o n  

(D) f(s1,...,sa) "-- f(h ..... tn) & T 

if f is a cons t ruc to r  

M e r g i n g  

( M I )  x - s ~ : x - t & T  ~v a - - s ~ s - - t & T  

i f s  and t a r en ' t  variables and Isl < Itl 

U,v sl ~ h  ~ z . - . & s n - - t n  & T  

(M2) l(x)&s &l(;c) "--t&T _U,v l(a)-s&s '-t & T 

W e a k e n i n g  

(W1) x-yAT ~v x " - : z A y ' - z & ( ~ - z A y : - z ) T  

if not  cry < c a  and z is a variable not occurr ing  in V or x -:-" y A T 
such tha t  c z  is the grea tes t  common subsor t  of  ax  a n d  cry 

( w 2 )  ~(~) e y ~ T - - ~ V  y --' Z ~ (y = z ) q ( ~ )  -'- y ~ T)  

if not  gy <_ ~l(x) and z is a variable not  occurr ing in V or l(x) --  y A T 
such t h a t  cz is the greates t  common subsor t  of  crl(z) and cry 

I s o l a t i o n  

(I) x-'--y&T U,v x "--y&(x--" y)T 

if x is different f~om y, x occurs in T, and cry < ux 

O rientation 

(0) s - x A T  " , v  x - s & T  

if s is neither a variable nor  a quasi-variable 

Elimination 

(E) x-x A T u..~v T 

FIGURE 6.1. The  fea ture  unif icat ion rules. The  no ta t ion  assumes t h a t  the  con junc -  
tion symbol  T & T '  is associative,  commutat ive ,  and satisfies T &= 0 = T.  
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nonisolated variables in 7"1. This number  is increased by no rule and decreased by W1 
and I (W1 introduces a new nonisolated variable and isolates two variables t ha t  were 
nonisolated before). Thus,  we can assume that  the infinite derivation employs only the 
rules D, MI, W2, O, and E. 

2.3. Let  k be a fixed natural  number greater than the ar i ty  of every function symbo l  oc- 
curring in T1. Let  us call an equation nonfiat if one of its sides is a canonical, nonvariable 
term. Fur thermore ,  define the complexity of an equation system E as )--]~1 kmax{I*d'ltH}, 
where sl - t l , . . . ,  s ,  - t~ are the nonfiat equation occurrences of E.  I t  is easy to verify 
tha t  the  complexi ty  of  an equation system is not changed by the rules M1, W2, O, or E. 
The  decomposi t ion rule D, however, decreases this complexity since 

> E kma~{IsH'ltH} 
/=1  

for n < k. Thus,  we can assume that  the infinite derivation employs only the rules M1, 
W2, O, and E. 

2.4, Consider the number  of equation occurrences in Tz whose one side is a var iable  and 
whose other  side is neither a variable nor a quasi-variable. This number  is decreased by 
~I1 and not  changed by  W2, O, and E. Thus, we can assume tha t  the infinite derivation 
employs only the rules W2, O, and E. 

2.5. Consider the number  of equation occurrences in T1 whose left-hand side is neither 
a var iable  nor a quasi-variable. This number is not changed by W2 and E and decreased 
by O. Thus,  we can assume that  the infinite derivation employs only the rules W2 and 
E. 

2.6. Let [] a II be the maximal length of a descending sort chain issuing fl'om ~x. Since 
there are no infinite descending sort chains by the admissibility conditien 2, we know 
tha t  n x ]] is always finite. Now consider the sum E l ]  Y n over all equation occurrences 
in 3"1 tha t  have the form l(x) - y. This sum is decreased by W2 and not changed by 
E. Thus,  we can assume tha t  the infinite derivation employs only the rule E, which is 
imp ossible. 

3. (Completeness) Suppose no unification rule applies to T and 0 is a canonical ,.q(~)- 
unifier of T. To prove the claim, it suffices to show that  T is quasi-solved. We show this 
in eight steps. 

3.]. T contains no equation x -- y such that not  ~ry _< c~m. To see this, suppose T 
contains such an equation. Since S(E) ~ ~x '-- ~y and both sides are canonical, we have 
~m = Oy, which implies that  cr6z is a common subsort of ~x and gy. Thus,  ~rx and 
cry have a greatest  common subsort by the admissibility condition 3. This, however, is 
impossible since the weakening rule W1 isn't  applicable. 

3.2. T contains no equation m - f ( s l  . . . . .  sn) such that not c~f(sl, . . . , s ~ )  < ~m. 
To see this, suppose T contains such an equation. Since S(~)  ~- 8m - 8 f ( s ~ , . . . , s n )  
and bo th  sides are canonical, we have ~m = ~f (s l  . . . . .  sn). This yields c~x  = 
r  ~sn) = e f ( s l , . . . ,  s , )  since in basic signatures no constructor has more  than  
one declaration. This, however, implies err(s1 . . . . .  s~) = cr~m _< crm, which contradicts  
our assumptions.  

3.3. T contains no equation/(m) ~ s such that not ~s <_ ~l(~). To see this, suppose  T 
contains such an equation. Since 5 (~ )  ~ 8l(z) - 8s and 8s is canonical, we know tha t  @s 
is the normal  form of #/(m). Thus, ~Ss S ~ l ( m )  <_ ~l(z) since rewriting and subst i tut ion 
appl icat ion are sort decreasing. Now we distinguish two cases. (a) If  s isn't  a variable, 
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then ~rs = c~s since in basic signatures no constructor has more than one declaration. 
Thus  ors < ~rl(x), which contradicts our assumptions. (b) If s is a variable, then crl(x) 

and ors have a greatest  common subsort  by the admissibility condition 3 since they have 
the common subsort  ~#s. This, however, is impossible since the weakening rule W2 isn ' t  
applicable. 

3.4. E v e r y  equa t ion  o f  T has  e i ther  the  form x "-" s or l (x)  "-- s where  s is c a n o n -  

ical. To see this, note first that  T can ' t  contain an equation f ( s l , . . . ,  sin) --  �9 where 
f is a constructor, since the orientation rule isn't applicable. Now suppose T contains 
an equation f ( s l  . . . . .  sin) - g ( t l ,  . . . .  tn) such tha t  f and g are constructors. Since 
S(E)  ~ f ( ~ s l  . . . . .  ~sm) - g ( S t l , . . . ,  tgt,), we know that  f -= g. This, however, is impos-  
sible since the decomposition rule isn' t  applicable. 

3.5. No left h a n d  side l (x )  occurs  more t han  once in T ,  since otherwise the merging 
rule M2 were applicable. 

3.6. T con ta ins  no  equa t ion  x - y such tha t  x occurs  more  t h a n  once in T .  To see 
this, suppose T contains such an equation. Since the elimination rule isn't  applicable, we 
know tha t  z is different from y. Because of 3.1 we know that  cry _< ca .  This, however, 
is impossible since the isolation rule isn' t  applicable. 

3.7. No two l e f t -hand  sides of  T are equal. To see this, suppose T contains two 
equations whose left-hand sides are equal. Because of 3.5 and 3.6 we know tha t  T mus t  
contain two equations x -- s and x - t such that  neither s nor t is a variable. This,  
however, is impossible since the merging rule M1 isn't applicable. 

3.8 T doesn ' t  conta in  t w o  equa t i ons  x --  s and /(x) - t. To see this, suppose T 
contains two equations x - s and l (x )  - "t. Because of 3.6, we know that  s has the form 
f ( s l , .  � 9  s , ) .  Since T is t r immed,  we know that f is an explicit constructor. Because 
of 3.2, we know tha t  f is an explicit constructor of c~z. Because l ( x )  is well-formed, we 
also know that  crx is a feature sort. This, however, is impossible since feature sorts have 
no explicit constructors. [] 

Our  feature unification rules extend Colmerauer 's (1982) rules for unification with 
infinite terms. To deal with subsorts,  we had to add the weakening rule W1, and  to 
deal with features, we had to add the merging rule M2 and the weakening rule W2. The 
completeness of Colmerauer 's  rules for infinite terms suggests tha t  feature unification is 
complete  for infinite terms as well, provided, we employ quasi-solved systems as solved 
form. Feature unification with infinite terms is more efficient than  feature unification 
wi thout  infinite terms since it doesn ' t  require testing the produced quasi-solved sys tem 
for cycles. 

The  check Isl < It] in the merging rule M1 is necessary to ensure termination, as the 
following example of Colmerauer (1982) shows: 

x "- y & y - h ( h ( y ) )  & y - h ( y )  u ' v  b y  M1 w i t h o u t  tes t  

x - y & y -  h (h ( y ) )  & h ( h ( y ) )  -A h (y )  u ' v  b y D  
: U 

- y & y - h(h(y))  h(y) - y by  O 

= y y - h(h(y) )  y =" h(y).  

However,  the check Isl < Itl can  be avoided if we unfold the equation system to be solved 
such t h a t  every nonvariable right-hand side has the form f ( x l ,  . . . ,  xn). 

Fea ture  unification in signatures without feature sorts is order-sorted unification 
(Whither,  1984, 1988; Meseguer et al., 1988; Smolka e ta l . ,  1987), which generalizes un- 
sorted te rm unification. Feature unification in signatures without explicit constructors  
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( E l )  z - s & S  e-a--~v S 

if z doesn ' t  occur in V or S 

(E2) z - y & S  e---*v S 

if crz = o'y and y doesn ' t  occur in V or S 

(E3)  l (z)  - 8 & S --a-'+v S 

if x doesn ' t  occur in V or a r igh t -hand  side of S 

(E4) l(x)-y & S --~-~v S 

if el(z) -- cry and y doesn't occur in V or S 

FIGUKE 6.2. The elimination rules. The rules are applicable to solved equation 
systems over admissible basic signatures. 

is e-unif icat ion (A'/t-Kaci 1984, 1986; A'/t-Kaci & Nasr  1986), where,  however ,  " infini te  
e - t e rms"  aren ' t  admi t ted .  Thus,  feature  unif icat ion clarifies the  r e l a t i onsh ip  be tween  
order-sorted and e-unif icat ion,  an open quest ion originally m o t i v a t i n g  our  research .  

Figure 6.2 shows some rules for the e l iminat ion of r e d u n d a n t  e q u a t i o n s  in solved 
equation systems. For instance, the new equat ions  in t roduced  b y  the  w e a k e n i n g  ru les  
may  become redundant  after  some fur ther  s implif icat ion steps.  No te  t h a t  t h e  de le t ion  of 
an equation in a solved sys tem yields again a solved equa t ion  sys tem.  

THEOREM 6.5. Let  E be an admissible basic signature and S ~ be  a so l ved  equat ion  

PRoof".  Since S ( E )  ~ S '  --* S,  we have uv(~,)(S ') C_ U~(~.)(S). To  s h o w  the  o the r  

direction, suppose 8 is an S(P,)-unifier of S. Let  the rule employed  in S ~ e ' v  S be: 
EI.  Then  S ~ =  (z A S & S )  and X doesn ' t  occur  in V or S. Since t he  d e p e n d e n c y  

relation of S '  is acyclic, we know tha t  z doesn ' t  occur  in s. Thus ,  8Ix *-- 88] is an  
S(P,)-unifier of S ~, which yields the  claim. 

E2. Then  S '  = (~ A y & S ) ,  ~C = ~y, ~nd y doesn ' t  occur  in V or S. T h e n  8[y *-- ~ ]  
is an S(~)-unif ier  of  S ~, which yields the claim. 

17,3. Then  S '  = (l(~) - s ~ S) and z doesn ' t  occur in V or a r i g h t - h a n d  side of  S. 
Since S ~ is solved, we also know tha t  z occurs in no r igh t -hand  side of  S ~, a n d  t h a t  e v e r y  
left-hand side of S ~ in which z occurs is a quas i -var iable  k(x) .  Le t  ll < . . .  < l~ be the  
features of crz. By the admissibil i ty condit ion 1 we know t h a t  there  is a m i n i m a l  f e a t u r e  
sort ~ < ~x such tha t  tr(li, [)  --- cr(l~, ~ )  -- crl~(*) for all i. Now define s l  . . . .  , sn as 
follows: si : -  li(x) if li(r doesn ' t  occur in St; otherwise,  let si be  the  t e r m  such t h a t  
l~(z) - si occurs in S ' .  Then 8Ix *-- ~(sl ,  . . . .  8 , )]  is an S(~,)-unif ier  of S ' ,  w h i c h  yields 
the claim. 

E4. Then  S '  = ( l (z )  - y & S) ,  ~rl(r ~- ey ,  and  y doesn ' t  occur  in V or  S .  Since S '  



Inheritance Hierarchies 369 

is solved, we know that  so is different from y. Thus, #[y ~-/(so)] is an S(E)-unifier of S', 
which yields the claim. [] 

The research reported in this paper started while Gert Smolka was visiting the AI Program 
of MCC in the summer of 1986. Gert Smolka~s research was also funded by the Bundesminister 
ffir Forschung und Technologie under grant ITR8501A. We are grateful to the members cf the 
Unification Group at Kaiserslautern for many discussions on the topic of this paper. 
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