
J. Symbolic Computation (1989) 7, 343-370

Inheritance Hierarchies: Semantics and Unificationt

GERT SMOLKA AND HASSAN AIT-KACI~:

FB Informatik, Universitiit Kaiserslau~ern,
6750 Kaiserslau~ern, Wes~ Germany

and

$ Microelec~ronics and Computer Technology Corporafion,
3500 West Balcones Cen~er Drive, Austin, Tezas 78759, U.S.A.

Inheritance hierarchies are introduced as a means of representing taxonomically
organized data. The hierarchies are built up from so-called feature types that
are ordered by subtyping and whose elements are records. Every feature type
comes with a set of features prescribing fields of its record elements. So-called
feature terms are available to denote subsets of feature types. Feature unification
is introduced as an operation that decides whether two feature terms have a
nonempty intersection and computes a feature term denoting the intersection.

We model our inheritance hierarchies as algebraic specifications in order-
sorted equational logic using initial algebra semantics. Our framework integrates
feature types whose elements are obtained as records with constructor types
whose elements are obtained by constructor application. Unification in these
hierarchies combines record unification with order-sorted term unification and is
presented as constraint solving. We specify a unitary unification algorithm by a
set of simplification rules and prove its soundness and completeness with respect
to the model-theoretic semantics.

I . I n t r o d u c t i o n

This paper presents inheritance hierarchies as a means of representing taxonomically
organized data. In our approach, an inheritance hierarchy is built up from so-called
feature types, which are ordered by subtyping and whose elements are records. Every
feature type comes with a set of features prescribing fields of its record elements.

Figure 1.1 shows an inheritance hierarchy consisting of the feature types o b j e c t ,
house , vehicle , m a c h i n e , car , o ther_car , gas_car, e lec t r ic_car , fue l_ type ,
gasol ine, and e lec t r ic i ty . Subtypes are given below their supertypes. The type o b j e c t
has the feature age of type na t . The type vehicle has two features-- the feature age: n a t
inherited from the supertype o b j e c t and the feature speed:nat explicitly specified.
The type car has three features--age:nat inherited from both veh ic le and m a c h i n e ,
speed: na t inherited from vehicle , and fuel: fue l_ type inherited from m a c h i n e . (The
fact that a subtype inherits features fl'om more than one supertype could be referred
to as multiple inheritance.) The type o the r_ca r has the same features as car . The

t This paper is a revised version of the MCC Technical Report AI-057-87, Microelectronics and
Computer Technology Corporation, Austin, Texas 78759, May 1987.

343
0747-7171/89/010343 +28 $03.00/0 �9 1989 Academic Press Limited

344 G. Smolka and t-t. Ait-Kaci

ob jec t [age :na t]

house[toweL: s t r ing] vehicle[speed: nat] machine~uel: fuel_type]

c a r

o t h e r _ c a r g o _ e a r [f u e l : e lec t r ic i ty]

f u e l_ ty p e

gaso l ine e l e c t r i c i t y

FIGuaE 1.1. An inheritance hierarchy.

type gas_ca r illustrates a fllrther concept: the feature fuel is inherited from car, but
is restr icted from f u e l _ t y p e to gasol ine. The feature types fue l_ type , gasoline, and
e l e c t r i c i t y don't have features.

Semantically, feature types are interpreted as sets and subtyping is interpreted as set
iaclusion. Minimal feature types are assumed to be pairwise disjoint and nonminimal
feature types are assumed to be the union of their subtypes. Consequently, the types
veh ic le , m a c h i n e and car of the hierarchy in Figure 1.1 all denote the same set, and
every element of the type o b j e c t is either an element of h o u s e or car . To allow for
machines tha t aren ' t cars, one could equip m a c h i n e with a subtype o t h e r _ m a c h i n e .

A minima] feature type (is interpreted as the set of all records labeled with ~ and pos-
sessing exactly the fields declared for or inherited by ~. Consequently, the type gasol ine
is in terpre ted as a singleton consisting of the empty record labeled with gasoline, and
every element of the type h o u s e is a record labeled with h o u s e and having exactly the
fields age and town.

With so-called feature terms one can describe subsets of feature types. The feature
term

house[age ~ 155; town :=~ 'Austin']

denotes all elements of the feature type h o u se whose feature age is 150 and whose
feature town is 'Austin'. Given the hierarchy in Figure 1.1, this feature term denotes the

Inheritance Hierarchies 345

singleton consisting of the record labeled with house and having the fields age =~ 150
and ~own =~ 'Austin'. The feature term

vehicle[speed ::~ N; age =~ N]

denotes all elements of the feature type vehicle whose features speed and age agree.
Feature unification is an operation that, given two feature terms R and S, computes a

feature term T denoting the intersection of the denotations of R and S; if the inters ection
is empty, feature unification fails. Given the hierarchy in Figure 1.1, unification of the
two feature terms

vehicle[speed :=~ N; age =:~ N]

'machine[age =~ 30]

yields the ~ature term

car[age =~ 30; speed =~ 30],

while unification of the terms

vehicle[speed :~ N; age ==~ N]

vehicle[speed =~ 120; age =~ 2]

fails.
Unification of feature terms is investigated in (A'it-Kaci, 1984, 1986; Ait-Kaci & Nasr,

1986). In this approach, a class of feature terms, called e-terms, is formally defined
together with a preorder, called subsumption. Intuitively, a e-term S is subsumed by a
e-term T if S contains more information than T, or, equivalently, S denotes a subset of
T. Under this subsumption order, the set of all e-terms is a prelattice, provided the sort
symbols are ordered as a lattice. Unification is then defined as computing greatest lower
bounds in the prelattice of e-terms.

The main purpose of this paper is to reconcile feature terms and their unification
with the algebraic approach to abstract data types (Goguen et al., t978; Ehrig & Mahr,
1985), where data types are specified in many-sorted equational logic and are defined as
the initial algebras of their specifications. Using order-sorted equational logic (Goguen,
1978; Goguen & Meseguer, 1987b; Smolka et al., 1987), it is straightforward to specify
inheritance hierarchies such that the right initial algebras are obtained. It is less obvious,
however, how to accommodate feature terms and their unification. Feature terms are
different from ordinary terms in that they denote subsets of sorts rather than elements of
sorts. We will solve the problem by formalizing a containment x: S, which constrains a
variable z to the elements of a feature term S, as a solved equation system constraining
x. Unification of two feature terms S and T will then mean to solve the combined
equation system z :S ~= z:T, where solving an equation system means to compute an
equivalent system that is in solved form and to decide thereby whether the given system
is satisfiable.

Our formulation of inheritance hierarchies as algebraic specifications yields a frame-
work which naturally accommodates feature types as well as ordinary algebraic types
whose elements are obtained by constructor application. We will restrict our interest
to constructor types that are defined without equations. We will present a constraint

346 o . Smolka and H. Ait~Kaci

solving method for solving equation systems over specifications consisting of feature and
constructor types and prove its soundness and completeness. This constraint solving
method generalizes both tb-term unification (A~t-Kaci, 1984, 1986), which applies to
feature types, and order-sorted unification (Walther, 1984, 1988), which applies ~o con-
structor types.

Our account of feature unification as equation solving, or, more general, as constraint
solving, shows its compatibility and relationship with ordinary term unification (Her-
brand, 1930; Robinson, 1965). The view of ordinary term unification as equation solving
goes back to tIerbrand (1930), was lost by Robinson (1965), and was later reestablished
by Colmerauer (1982, 1984) and Martelli and Montanari (1982). In the equation solving
paradigm, the notion of a most general unifier is replaced by the more general notion of
a solved form, and unification is the stepwise transformation of an equation system to
solved form by the application of simplification rules.

Our framework prepares the ground for the integration of inheritance hierarchies and
feature terms into typed logic-based programming languages such as OBJ (Futatsugi~
1985) and Eqlog (Goguen &: Meseguer, 1986). LOGIN (A~t-Kaci &: Nasr, 1986) is an
already implemented elaboration of Prolog, where ordinary terms are replaced with e-
terms and ordinary unification is replaced with e-unification. The research presented in
this paper contributes to the theoretical foundation of LOGIN and shows its compati-
bility with the ideas underlying the language proposal Eqlog. Mukai's (1987) language
CIL bears many similarities with LOGIN. Cardelli (1984) investigates the semantics of
inheritance hierarchies similar to ours in the framework of higher-order functional pro-
gram_ruing where there is no need for unification.

Several variants of feature descriptions are being used in computational linguistics
(see (Shieber, 1986; Pereira, 1987; Pollard & Sag, 1987) for introductory expositions). In
so-called unification grammars, unification of feature descriptions is the basic operation
for parsing and generating natural language. Rounds and Kasper (1986) were the first to
come up with a logical formalization of feature descriptions. In their approach, a feature
description denotes a set of so-called feature structures, which correspond roughly to
our feature terms. For building complex feature descriptions, set intersection and union
are available. A unification method for feature descriptions consists of a normal form
that exhibits inconsistency and an algorithm that, given two normal feature descriptions,
computes a normal feature description denoting their intersection. Recent work (Moshier
& Rounds, 1987; Johnson, 1987; Smolka, 1988; Kasper, 1988) studies feature descriptions
with set complements and negations.

The paper is organized as follows. In Section 2 we discnss informally how inheritance
hierarchies and feature unification can be expressed in order-sorted equational logic. In
Section 3 we review the necessary notations and results for this logic, which we use in
Section 4 to formalize feature and constructor types. In Section 5 we devise a frameworlc
for unification that is general enough to accommodate feature unification, which is finally
presented in Section 6.

2. Fea tu re Types as Algebraic Types

2.1. CONSTRUCTOR TYPES AND SUBTYPING

A basic method of introducing a data type is to define its elements by a set of free
constructors. For instance, the type of natural numbers can be defined by the signature

Inheritance Hierarchies 347

equation

n a t : - {o, s: na t}

saying that every natural number can be obtained with the two constructors

o: --+ nat
s: n a t --+ nat .

The symbol o is a constructor with no arguments representing the number zero. Positive
numbers are obtained by applying the constructor s repeatedly to zero; for instance, one
is represented as s(o) and two as s(s(o)). We speak of free constructors since there are
no laws associated with the constructors. Two ground terms denote the same number if
and only if they are constructed in exactly the same way.

We call types that are defined by free constructors constructor types. Const ructor
types have been popular for a long time (Landin, 1964; Burstall, 1969; Hoare, I975) and
are employed, for instance, in the functional programming languages ML (Milner, 1984).

Constructor types are a special case of algebraic types, which enjoy a well-established
mathematical foundation (Goguen et al., 1978; Nivat & Reynolds, 1985; Ehrig & Mahr,
1985). Algebraic types are specified in many-sorted equational logic by a signature and
equational axioms, and their semantics is given by an initiM model, which always uniquely
exists. Constructor types are free algebraic types, that is, they can be specified wi thout
equational axioms.

Many-sorted logic can be generalized to order-sorted logic (Goguen, 1978) by intro-
ducing the notion of subtyping. Semantically, ~ being a subtype of ~ means tha t the
denotat ion of ~ is a subset of the denotation of 7- Subtypes arise naturally when we
define a type as the union of other types. The specification and programming language
OB:]2 (Futatsugi et al., 1985) is based on order-sorted logic.

The notion of subtyping applies to constructor types. For instance, an a l ternat ive way
to declare the natural numbers is

nat := ze ro U p o s l n t
z e r o := {o}
posint := {s: nat}.

The first signature equation says that ze ro and p o s i n t are subtypes of n a t and that
the elements of n a t are obtained as the union of the elements of zero and p o s i n t .
The second equation says that ze ro has exactly one element, which is obtained by the
constructor o:-+ zero. The third equation says that all elements o f p o s i n t are obtained
by applying the constructor s: nat --+ pos in t to natural numbers. To define the negative
integers, we can add the equation

ne g in t := { - : pos int} ,

which declares the constructor - : p o s i n t --+ negint . With that we finally can define the
integers

int :-- neg in t t2 nat

as the union of the negative integers and the natural numbers.

348 G. Smolka and H. Ait-Kaci

i n t

negint[absvalue: pos in t] n a t

z e ro posint[pred: nat]

FIGURE 2.1. The integers as inheritance hierarchy.

2.2. FEATURES AS SELECTORS

Free constructors are complemented by so-called selectors that recover their argu-
ments. In our last example, the selectors for the constructors s :na t - -~ p o s i n t and
- : p o s i n t ~ n e g i n t are their inverses in the initial model and can be specified as fol-
lows:

pred: p o s i n t --+ n a t
= N

absvalue: n e g i n t --+ p o s i n t
absvalue(-P) = P.

Now observe that it makes sense to say that positive integers have the feature pred: nat ,
and tha t negative integers have the feature absvalue: pos in t . Taking this idea further,
it turns out that the integers can be represented by the inheritance hierarchy shown in
Figure 2.1. (See Goguen and Meseguer (1987a) for a thorough discussion of constructors
and selectors in order-sorted algebraic specifications.)

Now observe that every constructor term can be represented as a feature term, for
instance:

0

8(0)

-8(0)

z e r o

posint[10red :~z zero]

posint[pred =V poslnt[pred =~ X]].

negint[absvalue =~ poslnt[pred =2z zero]]

This suggests that feature types and constructor types are dual concepts. Constructor
types are defined by giving their constructors, while feature types are defined by giving
their selectors. From the definition of a constructor type we can uniquely determine the
corresponding selectors (not their names, of course); vice versa, from the definition of a
feature type we can uniquely determine the corresponding constructors.

In other words, feature types can be expressed as algebraic types if we supply the miss-
ing constructors, which we will call implicit constructors. Figure 2.2 gives an algebraic

Inheritance Hierarchies 349

o b j e c t := h o u s e u v e h i c l e U m a c h i n e
h o u s e := {con_house: n a t x s t r ing}
veh ic l e := ca r
m a c h i n e := ca r
c a r := o t h e r _ c a r U gas_car o e lec t r i c_car
o t h e r _ c a r := { con_other_car: n a t • n a t • fue l_ type}
gas_car := { con_gas_car: n a t x n a t x gasol ine}
e lec t r i c_car := { con_electric_car: n a t x n a t x e l e c t r i c i t y }
f u e l _ t y p e := gaso l ine O e l e c t r i c i t y
gaso l ine := {con_gasoline}
e l e c t r i c i t y : - { con_electricity}

variables A:nat, T: s t r ing , S: na t ,
F: f ue l_ type , G: gasol ine , E: e l e c t r i c i t y

age: o b j e c t --~ n a t
age(con_ho se(A, T)) = A
age(con_other_car(A, S, F)) = A
age(con_gas_car(A, S, G)) - A
age(con_electric_car(A, S, E)) = A

town: h o u s e -+ s t r i n g
tow (co _ho se(A, T)) = T

speed: veh ic l e --+ n a t
speed(con_o*her_car(A, S, T')) = S
speed(con_gas_car(A, S, a)) = S
speed(con_elec*ric_car(A, S, E)) = S

fuel: m a c h i n e -* f u e l _ t y p e
fuel: gas_car --* gaso l ine
fuel', e l ec t r i c_ca r --~ e l e c t r i c i t y

fuel(con.other_car(A, S, F)) = F
fuel(con_gas_car(A, S, G)) = G
f el(co _ele ric_car(A, S, E)) = E

FIGURE 2.2. An algebraic specification of the inheritance hierarchy in Figure 1.1.

specification of the inheritance hierarchy in Figure 1.1. In accordance with our discussion
ill Section 1, only minimal feature types are equipped with implicit constructors. This
is in fact necessary to make feature types and constructor types dual concepts, since
otherwise not every constructor term could be expressed as a feature term. Fur thermore ,
if one would like, for instance, to have other machines than cars, one could accomplish
this by adding o t h e r _ m a c h i n e as an additional subtype of m a c h i n e .

There are three declarations for the selector fuel to express the restrictions for the
subtypes gas_car and e lec t r i c_car . Semantically, the selector fuel is a single funct ion
m a c h i n e -~ f u e l _ t y p e that , when applied to an element of gas_car , yields an element
of gasol ine , and, when applied to an element of e l ec t r i c_ca r , yields an element of
e l ec t r i c i t y .

The following signature equations are a possible textual representat ion of the inheri-

350 G. Smolka and H. Ait-Kaci

tanee hierarchy in Figure 1.1:

ob j ec t := [age: nat]
h o u s e := object[~own: string]
vehic le := object[speed: nat]
m a c h i n e := object[fuel: fuel_type]
ca r := (vehicle �9 machine)[]
o the r_ca r := car[]
gas_car := car[fuel: gasoline]
electr ic_car := car[fuel: electricity]

fue l_ type := []
gaso l ine := fuel_type[]
e l ec t r i c i ty :----- fuel_type[].

Note that these type equations uniquely determine the specification in Figure 2.2.
Figure 2.3 further clarifies the duality of constructor and feature types by defining

the natural numbers and their addition in both the constructor and the feature-oriented
approach.

2.3. EQUATION SOLVING IN INHERITANCE HIERARCHIES

A main benefit obtained from expressing inheritance hierarchies as algebraic specifica-
tions is the provision of a well understood notion of equality. For instance, consider
the inheritance hierarchy of Figures 1.1 and 2.2 and the equation (capital letters are
variables)

V = M

where V: vehicle[speed =:~ N: nat; age ::*, N], (1)

M: machine[age ~ 30; fuel ~ gasoline].

We will consider this equation whose variables are constrained by feature terms to be
syntactic sugar for the "ordinary" equation system

speed(V) = N Lc age(V) = N &:

age(M) ---- 30 &:fuel(M) -- G 8r

V - - M

where V: vehicle, M: machine, N: nat, G: gasoline.

(2)

One of the two solutions of this system is

V = con_other_car(30, 30, con_gasoline)

M = con_oZher_car(30, 30, con_gasoline)

N = 3 0

G = con_gasoline.

Solving an equation system means deciding whether the system has a solution and,
if so, to compute a compact representation of the solution space. Usually, it is not a
good idea to enumerate all solutions since there can be infinitely many. For instance,

Inheritance Hierarchies 351

n a t := zero U p o s l n t
z e r o := { o }
p o s i n t := {s: na~:)

+: na t X na t --~ n a t (variables N: nat , M: n a t)
o + N = N
s(N) + M : s (N + M)

FIGURE 2.3. a. Constructor-oriented definition of the natural numbers and their
addition.

n a t := []
z e r o : - na t []
p o s i n t := nat[pred: nat]

+: na t x n a t -+ n a t (variables N: nat , M: na t)
zero[] + N = N
posint[pred ~ N] + M - posint[pred ~ N + M]

FIGUI~E 2.3. b. Feature-oriented definition of the natural numbers and their addi-
tion,

+ : n a t x n a t - -+nat (variables Z:ze ro , N : n a t , P, P q p o s l n t)
Z + N - N
P + N = P ' i f p r e d (P ') = p r e d (P) + g

FIGu~tE 2.3. c. Feature-oriented definition of addition not using feature term syn-
tax. The second equation of + must now be formulated conditionally.

the equation N =- pred(P) has infinitely many solutions in the inheritance hierarchy in
Figure 2.1.

We will introduce feature unification as a solution method for equations over construc-
tor and feature types. Let us illustrate how feature unification works by applying it to
the equation system (2). The equation V = M in (2) requires tha t the value of V and
M be an element of a common subtype of veh ic le and m a c h i n e . A glance at Figure
1.1 tells us that the greatest common subtype of veh ic l e and m a c h i n e is car. Hence,
by introducing an auxiliary variable C: car , we can simplify system (2) to

V = C & M = C &

speed(C) = g & age(C) = N & age(C) = 30 &fuel(G) = G (3)

where V'. vehic le , M: m a c h i n e , C: car , N: na t , G: gasol ine .

Note that system (2) and (3) have the same solutions for the "pr imary variables" V, M,
and N.

352 G. Smolka and H. Ait-Kaci

System (3) has two constraints age(C) = N and age(C) -- 30 for the feature age of
C. This information can be represented equivalently by age(C) = 30 and N -- 30, which
yields the simplified system

V = C & M = C & N = 3 0 &

sve d(C) = 30 a g e (C) = 30 fu l(C) = a (4)

where V: vehicle, M: machine , C: car, N: na t , G: gasoline,

which is in solved form. Since all simplification steps kept the solutions for the primary
variables V, M, and N invariant, system (4) represents the solution space of system (1).
Using again feature terra syntax, system (4) becomes

V - ' C & M - - - C & N = 30

where C: ear[speed ~ 30; age ~ 30; fuel ~ gasoline].

Note that the feature term car[speed ~ 30; age ~ 30; fuel ~ gasoline] represents
the set consisting of the two constructor terms con_olher_car(30, 30, con_gasoline) and
con_gas_car(30, 30, con_gasoline).

3. Order -Sor ted Equa t iona l Logic

In this section we review the necessary notations and results of order-sorted equational
logic following (Smolka et al., 1987).

Every specification in equational logic has an initial model, which is unique up to
isomorphism. Goguen et al. (1978) discovered that data types can be understood as the
initial models of their specifications in many-sorted equational logic and thus started a
field of research now known as Algebraic Specification (Ehrig & Mahr, 1985). Although
already (Goguen, 1978) advocated the use of subsorts for the algebraic specification of
data types, technically mature accounts of order-sorted equational logic appeared only
recently (Goguen & Meseguer, 1987; Smolka et a]., 1987).

3 .1 . SYNTAX

We assume three pairwise disjoint, countablyinfinite sets of symbols:
Sort Symbols (~, 77, ~). We use (, • and (to denote possibly empty strings of sort

symbols.
Function Symbols (f , g, h). Every function symbol f comes with an arity Ifl specifying

the number of arguments it takes. Function symbols having arity zero are called constant
symbols.

Variables (x, y, z). Every variable z comes with a sort r which is a sort symbol.
For every sort symbol there exist infinitely many variables having this sort.

REMARK. In this paper "type" is used as a synonym of "sort".

A subsort declaration has the form (< 7, where ~ and ~ are sort symbols.
A function declaration has the form f: ~1"'" ~n --+ ~, where n is the arity of f and

~1, . . . , ~n and ~ are sort symbols.
A signature ~ is a set of subsort and function declarations. We say that a sort or

function symbol is a ~,-symbol if it occurs in a declaration of ~. A variable is a ~-
variable if its sort is a ~-symbol.

Inheritance Hierarchies 353

The subsort order "~ __<~. ~" of E is the least quasi-order <~ on the sort symbols of E
such tha t ~ <D ~ if the subsort declaration ~ < 7? is in E. The subsort order is extended
componentwise to strings of sort symbols. If the signature is clear f rom the context, we
will drop the index E in ~ _<~ ~/.

Let E be a signature.
A E- t e rm of sort ~ is either a variable z such tha t c z < z ~, or has the fo rm

f (s l ,s,~), where there is a declaration (f :Th- . . 7 / , --+ 7) E E such tha t ~ _<z
and sl is a S - t e rm of sort ~/i for i = 1 ,n . The letters s, t, u and v will a lways
denote terms. The size [sl of a t e rm s is 1 if s is a variable and 1 § [sl[+ . . . + [s~[if
s =

A E-equation has the form s --'- t, where s and t are E-terms. The letter P will a lways
range over equations.

A E-equation system is either the empty equation system @ or has the form
P1 & ' " & P~, where P1, �9 . . , P , are E-equations. To ease our notation, we assume tha t
the conjunction operator & is associative and commutat ive and satisfies E & @ - E. The
letter E will always range over equation systems.

A E-implication has the form E --~ E' where E and E' are ~-equat ion systems.
Sometimes we will write an implication E --4 E' in backward notat ion as E' +--- E.

A syntactic E-object is either a E-term, E-equation, ~-equat ion system, or a E-
implication. A syntactic object is called ground if it doesn ' t contain variables. We
use V(O) to denote the set of all variables occurring in a syntactic object O.

A signature Z is reguIar if every E- te rm s has a least sort us, tha t is, there is a unique
function cr from the set of all E- te rms to the set of E-sort symbols such tha t (1) s is a
t e rm of sort ~s and (2) c r s < ~ if s is a te rm of sort ~. In regular signatures the sort
function "~s" extends the sort function "~z" from E-variables to E-terms.

Regularity is a p roper ty needed to make order-sorted te rm unification well-behaved
(see (Smolka et al., 1987) for a discussion).

THEOREM 3.1. A signature E is regular if and only i f for every function symbol f and
every string (of sort symbols the set {~7 [(f : 77 -+ ~) 6 E and ~ < ~) is either empty or
has a minimum with respect to the subsort order o f~ .

CO1%OLLAl%Y 3.2. Regularity of finite signatures is decidable.

COROLLARY 3.3. Every signature without multiple function declarations is regular.

The signature {a:-+ A, a: ~ B) isn' t regular since the constant a doesn' t have a least
sort. Multiple constant declarations don ' t make sense in regular signatures.

A specification ,9 = (E, E) consists of a signature E and a set E of ~-equations. The
equations in E are called the axioms of,9. We don' t require that E or E be finite since
most definitions and results apply to infinite specifications as well. If E is a signature,
we call (E, #) the free specification orE. Given a specification `9, it is convenient to refer
to S-objects as ,9-objects.

3.2. SUBSTITUTIONS AND INSTANCES

An impor tan t technicality of order-sorted logic is that only substi tut ions are admi t ted
tha t map well-sorted terms to well-sorted terms.

A E-substitution is a function f rom E-terms to E- terms such t h a t

1. if s is a E- t e rm of sort ~, then 8s is a E- te rm of sort
2. :(sl = f (0 s l , . . . , 0 s ,)

354 O. Smolka and H. Ait-Kaci

3. V~ :-- {x] 0x # z} is finite.

Following the usual abuse of notation, we call :D8 the domain ofO, ~ := {Oz Ix ~ ~ }
the codomain o f 8, and ZO :=];(C8) the set of variabies introduced by O. The letters
~, r and r will always range over substitutions. The identi ty function on E-terms is
called the emp ty substitution and is denoted by e. The composition of E-substitutions
is again a E-substitution. E-substitutions are extended to syntact ic E-objects as usual.
h subst i tu t ion 8 is idempo~ent if 88 --- 8. Note that this is the case ff and only if Z~ and
:Z'P are disjoint.

The equational representation [0] of a substi tut ion 8 is the equation system

zl '-- Sxl ~ . . . b: z~ "-: 8xn,

where {xz ,xn} = 98. Two substitutions are equal if and only if their equational
representat ions are equal (recall tha t the conjunction operator & is associative and com-
mutat ive) . Every equation system xl "-- sl & . . . & z n ~- sn such that x l , . . . , x n are
dis t inct variables and si is a E- term of sort crz~ for all i is the equational representation
of some E-substi tut ion, which we denote by (zl -- sl & . . . & z~ --" s~/. Note that
8 = ([8]} for every substitution ~.

Let 0 be a E-subst i tut ion and V be a set of E-variables. The restriction O[v of 8 to V
is defined by: 8Iv(x) := 8z i f2 e V, otherwise 8Iv(x) := x. Furthermore, if s is a term
of sor t ~y, the update O[y +-- s] of O at y with s is defined by: ~[y ~-- s](x) := s i f z = y,
otherwise 8[y ~ s](x) := Oz.

A E - t e r m s is called a E-instance of a E- term t if there is a E-subst i tut ion 6 such that
s ---- St. Note that , if t is a term of sort 4, every E-instance of t is a E- term of sort ~.

3.3. SEMANTICS

Let E be a signature, A E-algebra .A consists of denotations ~A and f A for the sort and
function symbols of E such that:

1. f.4 is a set
2. i f (4 < U) E E then~A_c~A
3. CA :-- U {~A [~ is a sort symbol of E} is called the carrier o s

4. f .4 is a mapping D) ~ --~ CA whose domain DJ t is a subset of C~ i

5. if (f : ~ l . . . ~ n "--~ ~) e E and a i e 4~ for i = 1 ,n, then (az an) e D) 4 and

/ " (a l , an) e

C~ 1 denotes the cartesian product CA x .-. • CA having one factor for every argument
of f . Note that a function symbol has only one denotat ion although there can be several
declarations for it in the signature. Thus having several declarations for a function
symbol does not mean that the function symbol is overloaded.

Let M and 13 be E-algebras, A mapping 7: CA --* CB is called a homomorphism A --~ B
if

1. 7(~ A) C_ s for every E-sort symbol
2. 7(D~ t) C_ ~9[for every E-function symbol f

3. 7 (f A (a l , . . . , an)) "- f • (7(a l) "/(an)) for every E-function symbol f and every
tuple (a l , . . . , a,~) ~ D) ~.

Inheritance Hierarchies 355

PROPOSITION 3.4. Let E be a signature. Then the ~-algebras together with their ho-
momorphisms comprise a category.

A homomorphism 7:,4 --+/~ is called an isomorphism if there exists a homomorph i sm
7~: B --~ A such tha t 77 ~ = idc~ and "/7 - idcB, Two E-algebras are called isomorphic
if there exists an isomorphism from one to the other.

Let ,4 be a E-algebra and V be a set of ~-variables. A (V, A)-assignment is a mapping
e~: V --+ Cx such tha t a (x) E (g~)~ for all variables x E V. Given a (V, A)-ass ignment
a and a ~ - t e rm s containing only variables in V, the denotation ~s L ors in `4 under
is defined as follows:

=

If s is ground, we write [s]A rather than [s ~ since then the denotation only depends on
A.

VMidity with respect to a 2-algebra A and a (V, A)-assignment ~ is defined as follows
(s, t, P , E, and E I are ~,-objects containing only variables in V):

�9 `4, c ~ P & E :r A , c ~ P and `4, a ~ E
�9 `4, a ~ (~ always holds ($ is the empty equation system)
�9 , 4 , ~ E - - + E t :< :. if `4, a ~ E , t h e n A , c ~ E ~.

Validity with respect to a ~-algebra ,4 is defined as follows:

�9 `4 ~ E : r V (])(E), A)=assignment 4. A, c~ ~ E
�9 `4 ~ E --~ E ' : r V (Y(E --+ E ') , &-ass ignment c~. A, ~ ~ E --+ E ' .

Let S = (N, g) be a specification and A be a ~-algebra. We say tha t A is an S-algebra
or `4 is a model o r s if every equation of E is valid in A. We say tha t a ~-equation sys t em
E is wand in S or S satisfies E if E is valid in every S-algebra; in this case we write
S ~ E . The relation S ~ E --+ E ~ is defined accordingly. We write E ~ E if the free
specification (~., 0) satisfies E.

THEOREM 3.5. Let s and t be two E-terms. Then ~. ~ s - t i f and only i f s = t.

THEOREM 3.6. A specification satisfies an equation s -: t i f and only i f it satisfies every
instance ors - ~.

A model Z of a specification S is called an initial model of S if, for every model A of
S, there exists a unique homomorphism Z --* A.

THEOREM 3.7. Every specification has an initial model, which is unique up to isomor-
phism.

THEOREM 3.8. Let S be a specification. A model Z o r s is an initial model o r s i f and
only i f

�9 Z has no junk, that is,
�9 for every sor~ symbol ~ o r s every element o f (z can be obtained as the denotation

of a ground S- te rm of sort
�9 for every function symbol f o r s every elemen~ of~)~ can be obtained as ~he

denotation of a tuple of ground S-terms

356 G. Smolka and H. Ait-Kaci

�9 Z has no confusion, that is, a ground E-equation is valld in Z i f and only i f it is
valid in every model of S.

3.4. CONGI~UENCE CHARACTERIZATION OF EQUALITY

We use TER~. to denote the set of all T-terms. A congruence on T E R z is an equivalence
relat ion ~ on T E R ~ tha t is closed under replacement, tha t is,

s l ~ h ^ . - - ^ s , ~ t ,

provided, tha t f (s l , . . . , s~) and f (t l , tn) are Z-terms. A congruence ~ on TER~ is
s table if it is closed under instantiation, that is, if s --~ t and 8 is a ~.-substitution, then
8s ,.~ Or.

Let 6" = (N, E) be a specification. S-equal i tyon ~-terms and P,-subst i tut ions is defined
as follows:

0 = s r : e=~ Vx, O~ = s ez .

One would expect tha t "s - ' s t" is a stable congruence on T E K s , as it is the case for
un typed equat ional logic. In general, however, this is not the case since "s = s t" might
not be transi t ive. To see this, consider the specification S

~rue:-- , h e e l , f a l s e : ~ hee l , foe :vo id -+ b o o l
foo(xvoid) '-- ~rue, foO(Xvola) -- false

where Zvold is a variable having the sort vo id . Then t~ae =s foo(x,~old) and
foo(Zvold) =S false, but not true =s false since ~ r u e - false isn ' t valid in the initial
mode l of S. The problem is obviously caused by the sort v o i d whose denotation in the
initial model is empty .

We say tha t a sort symbol ~ of a signature ~ is inhabited if there exists at least one
ground ~3-term of sort (. A signature is called fully inhabited if each of its sort symbols
is inhabi ted .

We say tha t a congruence -~ on T E R n satist~es a Z-equat ion s - t if s ~ t. Congruences
on T E R n are par t ia l ly ordered by set inclusion.

TI-IEO~tEM 3.9. Le t 8 = (~, E) be a specification whose signature is fully inhabited. Then
"s =s ~" is the 1east stable congruence on TElZn satisfying every equation in g.

COROLLARY 3.10. Let 8 = (N, E) be a specification whose signature is fully inhabited.
Then:

�9 "0 =s r is an equivalence relation on t~e set of all ~-substitu~ions
�9 i f s =s ~ and 0 ----s r then Os =8 ~bt
.. ifO =s r and 0 ~ = s e t , then O0 ~ = s r 1 6 2

Pt~OPOSITION 3.11. Let ,S be a specification whose signature is fully inhabited. If
S N E--+ E ' and S I= E' -+ E", ~hen S ~ E --+ E" . Furthermore, N ~ E i f and
only i f S ~ ~) --+ E.

4. A l g e b r a i c S p e c i f i c a t i o n o f I n h e r i t a n c e H i e r a r c h i e s

In this section we show how inheritance hierarchies consisting of constructor and feature
types c~n be specified in order-sorted equational logic. The initial model of such a
specification is t aken as the formalization of the specified hierarchy.

Inheritance Hierarchies 357

We s tar t by assuming the following subclasses of sort and function symbols:

�9 There is a subclass of sort symbols whose elements are called feature sort symbols.
�9 There are two disjoint subclasses of function symbols whose elements are called

constructor symbols and feature symbols. Every feature symbol is a unary funct ion
symbol. The letters l and k will always range over feature symbols.

�9 There are two disjoint subclasses of constructor symbols whose elements are called
explicit constructor symbols and implici~ constructor symbols. Every constructor
symbol is either an explicit or an implicit constructor symbol.

To be able to relate features to implicit constructors, we assume a total order "l < k"
on the set of all feature symbols. We will write l < k i l l _< k and I r k. To make
our notation less tedious, we will often write feature sort instead of feature sort symbol,
constructor instead of constructor symbol, and so on.

Given a signature E, we say tha t f is a constructor of (if f is a constructor and
contains a declaration f : ff -+ ~ such that ~/_< (. We say tha t 1 is a feature of ~ if 1 is
a feature and E contains a declaration t: ~ ~ ~ such tha t (_~ ~/. We say tha t l is the
i~th feature os i f l is a feature o f (and the set {k [k is a feature of (and k <_ l} has
i elements. A te rm is called canonical if it is built only from variables and constructors
(explicit or implicit). A t e rm l(x) consisting of a feature I and a variable x is called a
quasi-variable.

A basic signature is a signature E satisfying the following conditions:

1. every function symbol of E is either a constructor or a feature
2. every constructor of E has exactly one declaration and is a constructor of a minimal

sort of E
3. ~ is fully inhabited
4. only feature sorts have features
5. every subsort of a feature sort is a feature sort
6. every minimal feature sort ~ has exactly one (implicit) constructor
7. a constructor is implicit if and only if it is the constructor of a minimal feature sort
8. i f l i s a feature o f (, then the set {r [(I:v ~) e E A (_< ~/} has a min imum

(denoted by or(l, ~)) with respect to the subsort order of E; we call o-(l, ~) the sort
o f l for ~.

9. if ~ is a minimal feature sort and 11 < . . . < In are ~he features of ~, then E contains
the declaration ~: =(11, () . . . ~r(ln, ~) --+ (.

We will only admit inheritance hierarchies that can be specified wi~h a basic signature.
You might find it helpful to write down the signatures for the examples discussed in the
previous sections and check that all conditions are satisfied.

PROPOSITION 4.1. Every basic signature is regular. Furthermore, every canonical
ground term of a basic signature has a minimM sort.

PROPOSITION 4.2. Let ~ be a basic signature and l (f (s l , . . ., sn)) be a Z-term such that
1 is a feature and f is a constructor. Then (:= o ' f (s l , . . . , Sn) is a minimal feature sort
and f is the implicit constructor o f (, ~hat is, f = ~.

To relate features and implicit constructors, we need equations. Let ~ be a basic
signature. A ~-projection is a ~-equation of the form

358 O. Smotka and H. Ait-Kaci

where ~ l , . . . , zn are distinct variables, ~ is a minimal feature sort, I is the i - th feature
of ~, and ~z i = o'(k, ~) if k is the j - th feature of ~. Note that, up to variable renaming,
there is exactly one projection for every pair (~, l) such that ~ is a minimal feature sort
and l is a feature of ~. With 7~(E) we denote some set of E-projections I, ha t contains
exactly one projection for every such pair (~, l). Furthermore, we call S (~) := (E, P(P.))
the specification associated with E.

We will regard S (~) as a rewriting system by orienting its equations from left to right.
The corresponding rewriting relation - -~ is defined on E-terms and can be characterized
as follows: s ---*~. Z if and only if s has a subterm l(~(sl , sn)) and t can be obtained
from s by replacing this subterm with sl, where I is the i-th feature o f (.

For the proof of the next theorem, we need some basic results on order-sorted rewriting,
which we borrow from (Smolka et al., 1987).

THEOREM 4.3. Let ~ be a basic signature. Then we have:

2. --+I: is sort decreasing, that is, i f z ~-+~. t, then ~t <_ ~8
2. --+~ is terminating and confluent
3. ~q(E) ~ s "-- t i f and only i t s and t have the same normal form with respect to --+~
4. a ground E- term is normal wi~h respect to --+E i f and only i f it is canonical.

PI~OOF. 1. It suffices to show that every instance l (~ (s , , . . . , sr~)) ":- sl of a projection
is sort decreasing, tha t is, ~rs~ < ~rl(~(s~ s,~)). This follows from the conditions 9,
10, and 2 for basic signatures.

2. The rewriting relation ---+~. is terminating since rewriting with a project ion de-
creases the size of a term. The confluence follows from a critical pair theorem in (Smolka
et ah, 1987) using that ---,~. is sort decreasing and terminating and that the left hand
sides of the generating projections don' t overlap.

3. For untyped rewriting (that is, there is just one sort), it is well-known that the
claim holds if the rewriting relation --*~. is confluent and terminating. Smolka et al.
(1987) give an analogous result for sort decreasing order-sorted rewriting.

4. A canonical t e rm is normal since it doesn't contain feature symbols. To show the
other direction~ suppose there is a normal ground term s that isn't canonical. Then s
must contain a feature symbol and without loss of generality we can assume tha t s has
the form l (f (s l , . . . , s n)) where f (s l ,sa) is canonical. Hence, ~ := off(s1 s ,)
must be a minimal feature sort such that ~ = f . This implies tha t l (f (s l , . . . , s ,)) can
be rewri t ten with respect to ---+~, which contradicts our assumption. []

COROLLAI~Y 4.4. Let E be a basic signature and f (s l , . . . , sin) and g(t l , tn) be two
~- terms such that f and g are constructors. Then S(E) ~ / (s l , . . . , sin) - g (t z , . . . , t .)
i f and only i f f = # and S (E) ~ si - ti for every i.

COROLLARY 4.5. Let E be a basic signature and s and Z be two canonical E-terms.
Then S(E) ~ s -- t i f and oniy i t s = t.

This completes our formalization of inheritance hierarchies. A system of constructor
and feature types can now be specified by a basic signature E, which provides bo th syntax
(syntact ic E-objects) and semantics (the isomorphism class of initial models of $ (~)) .

To make feature unification work, we need three additional requirements. We call a
basic signature admissible if it satisfies the following conditions:

1. for e v e r y f e a t u r e sort ~ such tha t I~ , . . . , In are the features of ~ and for every
minimal ~ <_ cr(l~, ~) . . . g(In, ~) there exists a minimal feature sort 77 _< ~ such that

Inheritance Hierarchies 359

2. there are no infinite descending sort chains . . . (3 _< ~2 _< ~1
3. if two sorts have a common subsort, then they have a greatest common subsort.

Condition 1 is needed to ensure that every solved system (will be defined in Section
6) has a unifier. Condition 2 and 3 aren't really restrictions for practical applications:
condition 2 is satisfied by every finite signature and condition 3 can always be satisfied by
introducing the missing greatest common subsorts, which, semantically, don't introduce
new elements since ~hey are just the unions of already existing sorts.

5. U n i f i c a t i o n w i t h Solved Forms

To formalize feature unification, we need a framework making a clear distinction between
unifiers and solved systems representing unifiers. In the standard framework (Fages
& Huet, 1986; Siekmann, 1984, 1988), the assumption that solved systems are (most
general) unifiers is hard-wired in. Keeping apart conceptually unifiers and solved forms
simplifies the framework, since the rather technical notion of a subsumption order on
substitutions turns out to be superfluous.

GENBI~AL ASSUMPTION. 1/1 this section we consider only fully inhabited regular signa-
tures. Thus, "s =5 t" and "~ =s r are equivalence re]ations.

Let S = (~, g) be a specification and E be a ~,-equation system. The set of S-unifiers
o r e is defined as

us(z) : : {e �9 S U B s I s b

where SUB~ is the set of all E-substitutions. A E-equation system E is called S-unit~able
or consistent in S if it has at least one S-unifier.

Technically, things work out nicely if we have the possibility of restricting unifiers to
some set V of "primary variables", for instance, the variables actually occurring in the
equation system E. Thus, we define the set of,.q-unifiers o r e wrt V as

UV (E) := {Olv 1 0 � 9 {OIv I S b OE ^ 0 �9 SUB~}.

We say that E ,_q-subsumes E t wr~ V if u v (E ') C NV(E); we say that E and E' are
S-equivalent V if (E) =

In our view, unification is the process of deciding whether an equation system E is
unifiable; if E is unifiable, then unification tries to represent the unifiers of E by so-
called solved systems. What a solved system precisely is cannot be said in general since
the solved form depends on the specification and the unification technique to be applied.
However, the literature on unification offers a variety of possibilities: the standard fl'ame-
work (Fages &t tue t , 1986; Siekmann, 1984, 1988) employs idempotent substitutions as
solved form; Martelli and Montanari (1982) and later Kirchner (1986) use acyclic sys-
tems of multiequations as solved form; Colmezauer's (1982, 1984) work on unification
with "infinite terms" employs the equational representation of possibly nonidempotent
substitutions as solved form; and work on disunification (Colmerauer, 1984; Kirchner
Lescanne, 1987) uses a disjunctive normal form.

The minimal requirements for a solved form are (1) that every solved system S deter-
mine a nonempty set UV(S) of substitutions, and (2) that it be decidable (to be practical,
in polynomial time) whether a system is solved.

366 G. Smolka and I-t, Ait-Kaci

A set V of variables is called admissible if for every sort ~ there are infinitely many
variables of sort ~ that are not in V. We assume that there are sufficiently many variables
so tha t every finite set of variables is admissible. Note that the set of all variables is
not ~dmiasible. The letter V will always denote an ~dmissible set of variables. The
admissibility restriction on V is necessary since many solved forms, for instance the one
for feature unification, require the introduction of new auxiliary variables.

Next we generMize the notions of unitary and finitary unification (Siekmann, 1984,
1988) to unification with solved forms. Suppose a specification S and a solved form
~re givem Then we call S u n i ~ z y uni~/ing (wrt the given solved form) if for every S-
unifiable equation system E and every admissible V there exisgs a solved system S such
thug 5~v (E) = / , / v (S). We call S finitary unifying (wrt the given solved form) if for every
equation system E and e'~ery admissible V there exist solved systems $ 1 , . . . , S,~ such
tha t

U~(E) = u~(s~) u . . . u u~'(s~).

An S-approximation of an equation system E wrt V is a set A of solved systems such
that

Uf(A) := U u~(s) c u2(~) .
S e A

k n 8-approximat ion A of E wrt V is complete if/,/V(A) = gts v (E) . An 8-approximation
A is minimal wrt 5 and V if graY(A) # zIV(A - {S}) for every S E A.

A unification calculus for a specification $ is a formal system that allows us, for every
E and V, to enumerate complete S-approximations of E wrt V. A unification algorithm
for a specification 8 computes, for every E and V, ~ complete (possibly minimal) S-
approximation of E wrt V.

A major motivation for employing a nonstandard solved form is the fact tha t for some
applicat ions--for instance, feature unification or disunification--the "right" solved form
results in uni tary unification while the standard approach results in nonunitary unifica-
tion. For practical applications, unitary unification is very desirable since nonunitary
unification adds a source of nondeterminism blowing up the involved search spaces.

The next two propositions will be used in proofs.

PROPOSITION 5.1. Let 8 he a specification. Then:

�9 i f0 e U~(E) , then (CO)Iv ~ U ~ (E) for ever r r

Uy(E) c U~(E') .: '., VO e Us(E) 30' e Us(E'). OI. = 0%
<.. :. vo e us(E) 3e' e us(E'), o]v = s o%

Let @ -- s} be ~n idempotent substi tution and E be an equation system containing
the variable x. Then we say that E & a: '-- s can be obtained from (x -- s}E by unfolding.

PROPOSITION 5.2. (Unfolding) Let E & z - s be obtainable from (z -:" s}E b y unfold-

P ~ o o F . The claim follows from S ~ (m -- s)E ~ <m "-- s}(E &r -- s) ~nd
S ~- (6 & x --" s) ---+ (x -- s}E by the third part of the previous proposition. []

Inheritance Hierarchies 361

We end this section with a few definitions and propositions showing that our unification
framework is equivalent to the standard one if we employ idempotent substi tutions as
solved form.

An equation s -" t is trivial if s - t; an equation system is trivial if all of its equations
are trivial.

PI~OPOSITION 5.3. Let $ = (E ,g) be a specificaLion and r be an idempotent E-
substitution. Then:

�9 r162 is a trivial equation system; in par~icuIar, r is an S-unlfier of [r

�9 0 e Us([r :, s , = , 0 = s 0 r r 3r r162

PROOF. The only not obviously valid claim is 0 = s r 1 6 2 =~ 0 = s 0r Suppose, we
have 0 = s r 1 6 2 Then 0 = s r162 = s r 1 6 2 1 6 2 = s 0r by the assumption, the idempotence of r
and again the assumption. []

PROPOSITION 5.4. Let r = (E,E) be a specit~cation and r be an idempotent E-
substitution. Then 0 E Uff([r i f and only i f 3 r Vx e V. Ox =8 r 1 6 2

PROOF. "=*," Suppose 0 = 0q~, and 0' e L/s([r Then O' = ~ 0'r by the previous
proposition, which yields the claim.

"r Suppose 0 = O'lv and O' = s r 1 6 2 Then 6' e Z/s([r by the previous proposition,
which yields the claim. []

Another point, where we feel the standard notion of unification is not general enough,
is the syntactic notion of a unifier, which should be replaced by the semantic notion of a
solution. Given a signature E, a E-algebra A, and a E-equation system E, an A-solution
of E can be defined as a (~(/~), A)-assignment ce such that A, c~ ~ E. As iong as we
want to solve with respect to some "no junk" mode l~for instance, the initial m o d e l ~
substitutions and thus unifiers suffice to represent all solutions. However, if we want
to solve with respect to a model containing elements not denotable by ground terms
(for instance, "infinite terms"), which in fact would be necessary to exactly capture Ait-
Kaei's (1984, 1986) C-unification, substitutions and thus unifiers don' t suffice anymore
to express all solutions.

We would like to remark that Colmerauer (1984) uses a nonstandard solved form and
also solves with respect to a noninitial model providing for "infinite terms".

6. F e a t u r e Unificat : ion

Feature unification is a method for deciding whether an equation system over an admissi-
ble basic signature E is unifiable in S(E). This is done by simplifying the given equation
system with a collection of unification rules. If the simplified system is in a certain solved
form, then the original system is unifiable and its unifiers are exactly the unifiers of the
simplified system; if the simplified system isn't in solved form, then the original system
isn't unifiable.

6.1. THE SOLVED FORM

We call an equation s '- t trimmed ff it contains no implicit constructors, the right-
hand side t is a canonical term, and the left-hand side s is either a canonical te rm or a

362 G. Smolka and H. Ait-Kaci

quasi-variable. A trimmed equation system is an equation sys tem whose equat ions are
all trimmed. The letter T will always range over t r immed equat ion sys tems.

A tr immed equation system T is called quasi-solved if it has the f o r m

xl - s~ & . . . & x,~ - srn & li(y~) "- t~ & . . . & l , (yn) -- ~,,

where m, n > 0 and

1. xl xm are pairwise distinct variables different from ill, Yn (where Yl, . . . , Y~
are not necessarily distinct)

2. l l (y l) , . . . , In(Y,O are pairwise distinct quasi-variables
3. if s~ is a variable, then xl occurs only once in T
4. ~si < ~x~ and crtj < trlj(yj) for all i and j .

On the variables of a quasi-solved equation sys tem T we define a dependency relation
--*T as follows: r -'~T Y if and only if T contains an equation s -- t such t h a t z occurs in

s and y occurs in t. A quasi-solved equation sys tem T is called solved if its dependency
relation is acyclic. The letter S will always range over solved equat ion sys tems. Sys tem
(4) in Section 2.3 is an example of a solved equation system.

A canonical substitution is a substitution 0 such that Oz is a canonical t e r m for every
x E 7)8. A ground substitution is a substi tution 8 such tha t 0z is a ground t e rm for
every x E ~98.

THEOREM 6.1. Let ~ be a basic signature. Then a ~-equation sys t em has an S (~) -
unifier i f and only i f i~ has a canonical ground S(E)-unifier.

PROOF. Let 8 (E) ~ BE. We have to show tha t E has a canonical ground S (E) -
unifier. Since E is fully inhabited, there exists a subst i tut ion r such t h a t r is a ground
substitution. Let r be obtained from r by normalization with respec t to --+~., that is,
e z is the normal form of r for all x. Then r is a canonical ground subs t i tu t ion such
that r =s(~.) r Hence, r is an S(E)-unifier of t3, which yields the claim. []

THEOt~EM 6.2. Le~ ~ be an admissible basic signature. Then, a quasi-solved ~-equat ion
system is S(E)-unifiable i f and only if i~ is solved.

PI~OOF. 1. Let 5" be an S(E)-unifiable quasi-solved equation sys tem. We have to
show that the dependency relation of T is acyclic. Suppose the dependency relat ion of
T is cyclic. Since T is S(E)-unifiable, there exists a canonical subs t i tu t ion 0 such tha t
S(E) ~ ST. Furthermore, there must be an edge x -'+T Y of a cycle and an equa t ion s -- t
in T such that x occurs in s, y occurs in L and either s or t is not a variable. To obtain
a contradiction, it suffices to show that 18x I > 18yl. There are two cases:

1.1. s --" t has the form x -" f (s l , . . . , s n) and y E 1)(s~). Since ,if(E) ~ 8~F and
both sides of 8z - 0 f (s l , . . . , s n) are canonical, we have 8x -- f (S s l , . . . , 8 s ,) . Hence,
18 I = 8s,,)l > 18s l >_ 18vl.

1.2. s --" t has the f o r m l (x) -'- u and y E Y(u). Since S (E) ~ l(0x) - #u and
8u is canonical, 8u must be the normal form of l(Ox). Since 8r is canonical , we have
l(Ox) - l (~ (s l , . . . , s ,)) , where 4 is a minimal subsort of ~rx. Thus, s~ = 8u for some i,
which yields I~xl > Isil = 10ul _> 10yl.

2. Let S be a solved equation system. We prove by induction on the n u m b e r n of
quasi-variables in S tha t S is S(E)-unifiable.

n = 0. Then S -- [0] for some substitution 8. Since the dependency relat ion of S is
acyclic, we have 8rn8 = 8 rn for some m > 0. Thus, 0,n is an S(~)-unif ier of S.

Inheritance Hierarchies 363

n > 0. Then S = [~] & S1, where S1 is a solved system whose left-hand sides are all
quasi-variables. From the base case we know that there exists a natural number rn such
that ~rn =/?m0. Let $2 := OmSx. It is easy to verify that 5'2 is solved and that S is S(E)-
unifable if $2 is 8(E)-unifiable. Thus it suffices to show that $2 is 8(E)-unifiable. Since
$2 is solved and every left-hand side of 5"2 is a quasi-variable, there exists a variable x
occurring in a left-hand side of $2 such that for every equation l(x) -" t in $2 no variable
occurring in t occurs in a left-hand side of $2. Recall that every canonical term that
is not a variable has a minimal sort. Hence there exists a E-substitution r mapping
variables to variables such that Ss := r is solved, x 6 :De, and for every equation
l(x) - s in $3 the right-hand side s has a minimal sort. Since $2 is 8(E)-unifiable if
$3 is 8(E)-unifiable, it suffices to show that $3 is S(E)-unifiable. Since E is admissible,
we know by the first admissibility condition that there exists a minimal feature sort

_< cx such that crt _ c~(l,~) for every (l(x) - ' t) e $3. Let 11 < -.. < Irn be the
features of ~ and choose pairwise distinct variables xl , xm not occurring in Ss such
that c~x~ = r 4). Define E4 := (x - ~(Xl, . . . , xm)}S3 and observe that $3 is S(E)-
unifiable if E4 is S(E)-unifiable. Now obtain $5 from E4 by rewriting all left-hand sides
that aren't quasi-variables and observe that E4 is S(E)-unifiable if $5 is S(E)-unifiable.
One can verify that $5 is solved. With that the induction hypothesis applies and yields
that $5 is 8(E)-unifiable, which proves the claim. []

If a basic signature doesn't satisfy the first admissibility condition, there can be solved
systems that are not unifiable. To see this, consider the signature defined by the equations

A : = [/ : C] , B : = A [I : D] , C : = D t _ J E , D : = { d } , E : = { e } .

In this signature, the solved system l(zA) ----" e (x.~ is a variable of sort A) has no unifier
since the implicit constructor of the feature sort B cannot take e as an argument.

We could get rid of the admissibility condition (1) by adding a "type consistency"
requirement to the definition of a solved system. However, such an extra-condition would
blow up the worst-case complexity of deciding whether an equation system is solved.

6.2. THE UNIFICATION RULES

Let E be an admissible basic signature. In this subsection we will show that an equation
system E not containing implicit constructors is S(E)-unifiable if and only if there exists
a solved system S such t h a t / / y (E) = /4s y (S). Furthermore, we will give a method, called
feature unitication, with which we can decide whether E is $(E)-unifiable, and, in case
it is, compute a solved system representing its ,~(E)-unifiers.

Let us first discuss the significance of this result. Feature unification is a form of
E-unification since the unifiers are defined with respect to a specification with equational
axioms. Since S(E) is a sort decreasing, confluent and terminating rewriting system,
(order-sorted) narrowing would be a complete unification method for S(E). In contrast
to feature unification, however, narrowing employs idempotent substitutions as solved
form, thus resulting in nonunitary unification. For instance, consider the hierarchy in
Figures 1.1 and 2.2 and the equation age(O) = 5, which is in solved form with respect
to feature unification. Narrowing, however, will produce four independent most general
unifiers:

0 = con_house(5, T)

0 = con_other_car(5, S, F)

0 = con.gas_car(5, S, G)

0 = con_electric_car(5, S, E).

364 (3. Smolka and H. Ait-Kaci

Since narrowing with respect to S(~) strictly reduces the number of feature symbol occur-
rences, all narrowing trees must be finite. Thus, order-sorted narrowing yields a finitary
unification method for S(E). Narrowing could be used to postprocess a solved system
produced by feature unification, but age(O) = 5 certainly is a far bet ter representation
of the obtained result than the four most general unifiers.

T h e following proposition, which follows from the unfolding proposition, allows us to
compile equation systems into tr immed ones.

PROPOSITION 6.3. Let P, be a basic signature and E be a ~-equat ion s y s t em not contain-
ing impl ic i t constructors. Then we can obtain b y unfolding a t r i m m e d equation s y s t e m
r E such t h a t =

The unification rules shown in Figure 6.1 apply to tr immed equation systems over
admissible basic signatures. To solve a trimmed equation system, the rules are applied
as long as a rule is applicable. If the so obtained final equation system is solved, then
the initial system is unifiable and its unifiers are represented by the final system; if the
final sys tem is not solved, then the initial system is not unifiable.

Note tha t the rules W1, W2, and I depend on the underlying signature. If T is a
~rimmed equation system and E is obtained from T by one of the unification rules, then
E is again a t r immed equation system.

THEOREM 6.4. (Feature Unification) Let E be a admissible basic signature. T h e n the
following holds:

(varia,c) T', then =

2. (Termina t ion) There are no infinRe derivations T1 ~ ~v T2 ~ ' v "" ".
3, (Comple t eness) T is S(E)-uni f iable i f and only i f there exists a solved system S such

~hat T u ,*r S .

P R o o F . I. (I~variance) Let T u 'v T ' . Then its easy to verify that S (~) ~ T ' --~
uv ~Tt~ T, which yields the direction b/v(~)(T0 _C Nv~() (T). To show ldV(~.)(T) C_ s(m), , , let

the unification rule employed in T u 'v T' be:
D. Then the claim follows from Corollary 14 in Section 4.
M1, M2, I, O, or E. Then it's easy to verify tha t S(E) ~ T --+ T' , which yields the

claim.
W1. Then T = (x "- y & T") , T ' : (x "-- z & y -- z & (r -- z & y '- z } T ") ,

z ~ V U Y(z - y & T ') , and ~z is the greatest common subsort of t z and ay. Let
/9 e Ms(~.)(T) be normal. Then 8z = ~gy since S(~) ~ 0r --" ~y and 0 is normal. Thus,
n o t < r since crSz < c,x and crOz = cr~y < cry. Define r := ~[z ~- ~x]. Now one verifies
easily tha t ~b e bls(~.)(T O, which yields the claim.

rcV2. Then T : (l (x) - y & T"), T' = (y - z & (y -- z) (l (x) -- y ~ T ")) ,
z f~ V 0 W(I(z) -~ y & T") , and crz is the greatest eorramon sabsort of r162 and cry. Let
~/.r be normal. Then Oy is the normal form of Ol(z) since S(~,) ~ ~gl(z) -;" #y.
Thus, c~Oy < o'z since soy < ay and o'Oy < ~rOl(:c) <_ ~rl(x). Define ~b :=/9[z ~-- Oy]. Now
one verifies easily tha t r ~ Us(~)(TO, which yields the claim.

2. (Termina t ion) Suppose there is an infinite derivation Tt u ~v Tz ~ ~v �9 "'.
2.1. Consider the number of quasi-variable occurrences in T~. This number is increased

by no rule and decreased by M2. Thus, we can assume that the infinite derivation doesn' t
employ M2.

2.2. Let us call a variable r isolated in an equation system E if ~ occurs only once in
E and E contains an equation z - s such that crs < ~rz. Now consider the number of

Inheritance Hi~rarchbs 365

D e c o m p o s i t i o n

(D) f(s1,...,sa) "-- f(h tn) & T

if f is a cons t ruc to r

M e r g i n g

(M I) x - s ~ : x - t & T ~v a - - s ~ s - - t & T

i f s and t a r en ' t variables and Isl < Itl

U,v sl ~ h ~ z . - . & s n - - t n & T

(M2) l(x)&s &l(;c) "--t&T _U,v l(a)-s&s '-t & T

W e a k e n i n g

(W1) x-yAT ~v x " - : z A y ' - z & (~ - z A y : - z) T

if not cry < c a and z is a variable not occurr ing in V or x -:-" y A T
such tha t c z is the grea tes t common subsor t of ax a n d cry

(w 2) ~(~) e y ~ T - - ~ V y --' Z ~ (y = z) q (~) -'- y ~ T)

if not gy <_ ~l(x) and z is a variable not occurr ing in V or l(x) -- y A T
such t h a t cz is the greates t common subsor t of crl(z) and cry

I s o l a t i o n

(I) x-'--y&T U,v x "--y&(x--" y)T

if x is different f~om y, x occurs in T, and cry < ux

O rientation

(0) s - x A T " , v x - s & T

if s is neither a variable nor a quasi-variable

Elimination

(E) x-x A T u..~v T

FIGURE 6.1. The fea ture unif icat ion rules. The no ta t ion assumes t h a t the con junc -
tion symbol T & T ' is associative, commutat ive , and satisfies T &= 0 = T.

366 O. Smolka and H. Ait-Kaci

nonisolated variables in 7"1. This number is increased by no rule and decreased by W1
and I (W1 introduces a new nonisolated variable and isolates two variables t ha t were
nonisolated before). Thus, we can assume that the infinite derivation employs only the
rules D, MI, W2, O, and E.

2.3. Let k be a fixed natural number greater than the ar i ty of every function symbo l oc-
curring in T1. Let us call an equation nonfiat if one of its sides is a canonical, nonvariable
term. Fur thermore , define the complexity of an equation system E as)--]~1 kmax{I*d'ltH},
where sl - t l , . . . , s , - t~ are the nonfiat equation occurrences of E. I t is easy to verify
tha t the complexi ty of an equation system is not changed by the rules M1, W2, O, or E.
The decomposi t ion rule D, however, decreases this complexity since

> E kma~{IsH'ltH}
/=1

for n < k. Thus, we can assume that the infinite derivation employs only the rules M1,
W2, O, and E.

2.4, Consider the number of equation occurrences in Tz whose one side is a var iable and
whose other side is neither a variable nor a quasi-variable. This number is decreased by
~I1 and not changed by W2, O, and E. Thus, we can assume tha t the infinite derivation
employs only the rules W2, O, and E.

2.5. Consider the number of equation occurrences in T1 whose left-hand side is neither
a var iable nor a quasi-variable. This number is not changed by W2 and E and decreased
by O. Thus, we can assume that the infinite derivation employs only the rules W2 and
E.

2.6. Let [] a II be the maximal length of a descending sort chain issuing fl'om ~x. Since
there are no infinite descending sort chains by the admissibility conditien 2, we know
tha t n x]] is always finite. Now consider the sum E l] Y n over all equation occurrences
in 3"1 tha t have the form l(x) - y. This sum is decreased by W2 and not changed by
E. Thus, we can assume tha t the infinite derivation employs only the rule E, which is
imp ossible.

3. (Completeness) Suppose no unification rule applies to T and 0 is a canonical ,.q(~)-
unifier of T. To prove the claim, it suffices to show that T is quasi-solved. We show this
in eight steps.

3.]. T contains no equation x -- y such that not ~ry _< c~m. To see this, suppose T
contains such an equation. Since S(E) ~ ~x '-- ~y and both sides are canonical, we have
~m = Oy, which implies that cr6z is a common subsort of ~x and gy. Thus, ~rx and
cry have a greatest common subsort by the admissibility condition 3. This, however, is
impossible since the weakening rule W1 isn't applicable.

3.2. T contains no equation m - f (s l sn) such that not c~f(sl, . . . , s ~) < ~m.
To see this, suppose T contains such an equation. Since S(~) ~- 8m - 8 f (s ~ , . . . , s n)
and bo th sides are canonical, we have ~m = ~f (s l sn). This yields c~x =
r ~sn) = e f (s l , . . . , s ,) since in basic signatures no constructor has more than
one declaration. This, however, implies err(s1 s~) = cr~m _< crm, which contradicts
our assumptions.

3.3. T contains no equation/(m) ~ s such that not ~s <_ ~l(~). To see this, suppose T
contains such an equation. Since 5 (~) ~ 8l(z) - 8s and 8s is canonical, we know tha t @s
is the normal form of #/(m). Thus, ~Ss S ~ l (m) <_ ~l(z) since rewriting and subst i tut ion
appl icat ion are sort decreasing. Now we distinguish two cases. (a) If s isn't a variable,

Inheritance Hierarchies 367

then ~rs = c~s since in basic signatures no constructor has more than one declaration.
Thus ors < ~rl(x), which contradicts our assumptions. (b) If s is a variable, then crl(x)

and ors have a greatest common subsort by the admissibility condition 3 since they have
the common subsort ~#s. This, however, is impossible since the weakening rule W2 isn ' t
applicable.

3.4. E v e r y equa t ion o f T has e i ther the form x "-" s or l (x) "-- s where s is c a n o n -

ical. To see this, note first that T can ' t contain an equation f (s l , . . . , sin) -- �9 where
f is a constructor, since the orientation rule isn't applicable. Now suppose T contains
an equation f (s l sin) - g (t l , tn) such tha t f and g are constructors. Since
S(E) ~ f (~ s l ~sm) - g (S t l , . . . , tgt,), we know that f -= g. This, however, is impos-
sible since the decomposition rule isn' t applicable.

3.5. No left h a n d side l (x) occurs more t han once in T , since otherwise the merging
rule M2 were applicable.

3.6. T con ta ins no equa t ion x - y such tha t x occurs more t h a n once in T . To see
this, suppose T contains such an equation. Since the elimination rule isn't applicable, we
know tha t z is different from y. Because of 3.1 we know that cry _< ca . This, however,
is impossible since the isolation rule isn' t applicable.

3.7. No two l e f t -hand sides of T are equal. To see this, suppose T contains two
equations whose left-hand sides are equal. Because of 3.5 and 3.6 we know tha t T mus t
contain two equations x -- s and x - t such that neither s nor t is a variable. This,
however, is impossible since the merging rule M1 isn't applicable.

3.8 T doesn ' t conta in t w o equa t i ons x -- s and /(x) - t. To see this, suppose T
contains two equations x - s and l (x) - "t. Because of 3.6, we know that s has the form
f (s l , . � 9 s ,) . Since T is t r immed, we know that f is an explicit constructor. Because
of 3.2, we know tha t f is an explicit constructor of c~z. Because l (x) is well-formed, we
also know that crx is a feature sort. This, however, is impossible since feature sorts have
no explicit constructors. []

Our feature unification rules extend Colmerauer 's (1982) rules for unification with
infinite terms. To deal with subsorts, we had to add the weakening rule W1, and to
deal with features, we had to add the merging rule M2 and the weakening rule W2. The
completeness of Colmerauer 's rules for infinite terms suggests tha t feature unification is
complete for infinite terms as well, provided, we employ quasi-solved systems as solved
form. Feature unification with infinite terms is more efficient than feature unification
wi thout infinite terms since it doesn ' t require testing the produced quasi-solved sys tem
for cycles.

The check Isl < It] in the merging rule M1 is necessary to ensure termination, as the
following example of Colmerauer (1982) shows:

x "- y & y - h (h (y)) & y - h (y) u ' v b y M1 w i t h o u t tes t

x - y & y - h (h (y)) & h (h (y)) -A h (y) u ' v b y D
: U

- y & y - h(h(y)) h(y) - y by O

= y y - h(h(y)) y =" h(y).

However, the check Isl < Itl can be avoided if we unfold the equation system to be solved
such t h a t every nonvariable right-hand side has the form f (x l , . . . , xn).

Fea ture unification in signatures without feature sorts is order-sorted unification
(Whither, 1984, 1988; Meseguer et al., 1988; Smolka e ta l . , 1987), which generalizes un-
sorted te rm unification. Feature unification in signatures without explicit constructors

368 G. Smolka and H. Ait-Kaci

(E l) z - s & S e-a--~v S

if z doesn ' t occur in V or S

(E2) z - y & S e---*v S

if crz = o'y and y doesn ' t occur in V or S

(E3) l (z) - 8 & S --a-'+v S

if x doesn ' t occur in V or a r igh t -hand side of S

(E4) l(x)-y & S --~-~v S

if el(z) -- cry and y doesn't occur in V or S

FIGUKE 6.2. The elimination rules. The rules are applicable to solved equation
systems over admissible basic signatures.

is e-unif icat ion (A'/t-Kaci 1984, 1986; A'/t-Kaci & Nasr 1986), where, however , " infini te
e - t e rms" aren ' t admi t ted . Thus, feature unif icat ion clarifies the r e l a t i onsh ip be tween
order-sorted and e-unif icat ion, an open quest ion originally m o t i v a t i n g our research .

Figure 6.2 shows some rules for the e l iminat ion of r e d u n d a n t e q u a t i o n s in solved
equation systems. For instance, the new equat ions in t roduced b y the w e a k e n i n g ru les
may become redundant after some fur ther s implif icat ion steps. No te t h a t t h e de le t ion of
an equation in a solved sys tem yields again a solved equa t ion sys tem.

THEOREM 6.5. Let E be an admissible basic signature and S ~ be a so l ved equat ion

PRoof". Since S (E) ~ S ' --* S, we have uv(~,)(S ') C_ U~(~.)(S). To s h o w the o the r

direction, suppose 8 is an S(P,)-unifier of S. Let the rule employed in S ~ e ' v S be:
EI. Then S ~ = (z A S & S) and X doesn ' t occur in V or S. Since t he d e p e n d e n c y

relation of S ' is acyclic, we know tha t z doesn ' t occur in s. Thus , 8Ix *-- 88] is an
S(P,)-unifier of S ~, which yields the claim.

E2. Then S ' = (~ A y & S) , ~C = ~y, ~nd y doesn ' t occur in V or S. T h e n 8[y *-- ~]
is an S(~)-unif ier of S ~, which yields the claim.

17,3. Then S ' = (l(~) - s ~ S) and z doesn ' t occur in V or a r i g h t - h a n d side of S.
Since S ~ is solved, we also know tha t z occurs in no r igh t -hand side of S ~, a n d t h a t e v e r y
left-hand side of S ~ in which z occurs is a quas i -var iable k(x) . Le t ll < . . . < l~ be the
features of crz. By the admissibil i ty condit ion 1 we know t h a t there is a m i n i m a l f e a t u r e
sort ~ < ~x such tha t tr(li, [) --- cr(l~, ~) -- crl~(*) for all i. Now define s l , sn as
follows: si : - li(x) if li(r doesn ' t occur in St; otherwise, let si be the t e r m such t h a t
l~(z) - si occurs in S ' . Then 8Ix *-- ~(sl , 8 ,)] is an S(~,)-unif ier of S ' , w h i c h yields
the claim.

E4. Then S ' = (l (z) - y & S) , ~rl(r ~- ey , and y doesn ' t occur in V or S . Since S '

Inheritance Hierarchies 369

is solved, we know that so is different from y. Thus, #[y ~-/(so)] is an S(E)-unifier of S',
which yields the claim. []

The research reported in this paper started while Gert Smolka was visiting the AI Program
of MCC in the summer of 1986. Gert Smolka~s research was also funded by the Bundesminister
ffir Forschung und Technologie under grant ITR8501A. We are grateful to the members cf the
Unification Group at Kaiserslautern for many discussions on the topic of this paper.

References

AYt-Kaci, H. (1984). A Lattice Theoretic Approacll to Computation Based on a Calculus of
Partially Ordered Type Structures. Ph.D. Thesis, University of Pennsylvania.

Ait-Kaci, I-3[. (1986). An Algebraic Semantics Approach to the Effective Resolution of Type
Equations. Theoretical Computer Science 45, 293-351.

A~t-Kaci, I'I., Nasr, R. (1986). LOGIN: A Logic Programming Language with Bailt-In Inheri-
tance. The Journal of Logic Programming 3, 185-215.

Burstall, i%. (1969). Proving Properties of Programs by Structural Induction. Computer Journal
12.

Cardelli, L. (1984). A Semantics of Multiple Inheritance. Proc. of the Symposium on Semantics
of Data Types, Springer LNCS 173, 51-67.

Colmerauer, A. (1982). Prolog and Infinite Trees. In Clark, K.L., TErnlund, S.-A. (Eds.), Logic
Progra, mming~ Academic Pressj 231-251.

Colmerauer, A. (1984). Equations and Inequations on Finite and Infinite Trees. Proc. of the 2nd
International Conference on Fifth Geaeration Computer Systems, 85-99.

Ehrig, H., Mahr, B. (1985). l~undamen~als of Algebraic Specification 1~ Equatlons and Initial
Semantics. Springer Verlag.

Fages~ F., Huet, G. (1986). Complete Sets of Unifiers and Matchers in Equational Theories.
Theoretical Computer Science 43, 189-200.

Futatsugi, I(., Goguen, J.A., Jouannaud, J.-P., Meseguer J. (1985). Principles of OBJ2. Proc.
of the 13th ACM Symposium on Principles of Programming Languages, 52-66.

Goguen, 3.A. (1978). Order Sorted Algebra. Semantics and Theory of Computation Report No.
14, Computer Science Departmen L UCLA.

Goguen, J.A., Thatcher, J.W., Wagner, E.G. (1978). An Initial Algebra Approach to the Spec-
ification, Correctness, and Implementation of Abstract Data Types. In Yeh, I~.T. (Ed.),
Current Trends in Programming Methodology, Volume IV, Data Structuring, Prentice-Hall,
80-149.

Goguen, J.A., Meseguer, J. (1986). Eqlog: Equality, Types, and Generic Modules for Logic Pro-
gramming. In DeOroot, D., Lindstrom, G. (Eds.), Logic Programming, Funcgions, Relations,
and Equations, Prentice Hail, 295-363.

Goguen, J.A., Meseguer, J. (1987a). Order-Sorted Algebra Solves the Constructor-Selector, Mul-
tiple Representation and Coercion Problems. Second IEEE Symposium on Logic in Com-
puter Science, Ithaca, 18-29.

Goguen, 5.A,, Meseguer, J. (1987b). Order-Sorted Algebra I: Partial and Overloaded Opera-
tors, Errors and Inheritance. Draft, Computer Science Lab, SKI International, Menlo Park,
California.

Herbrand, J. (1930). Recherches sur la Tk~orle de la Ddmons~ratlon. Thesis, University of Paris.
lZeprinted in Goldfarb, W. (Ed.), Logical Writings, Cambridge 1971.

Hoare, C.A.R. (1975). Recursive Data Structures. International Journal of Computer and Infor-
mation Sciences.

370 G. Smotka and H. Ait-Kaci

Johnson, M.E. (1987). Attribute-Value Logic and the Tl~eory of Grammar. PhD Dissertation,
Stanford University. (To appear as CSLI Lecture Notes.)

Kasper, R.T. (1988). Conditional Descriptions in Functional Unification Grammar. Proc. of ~he
26~h Annual Meeting of ~he Association for Computational Linguistics, Buffalo, New York,
233-240.

Kirchner, C. (1986). Computing Unification Algorithms. Proc. of ~he Is~ IEEE Symposium on
Logic in Computer Science, 206-216.

Kirchner, C., Lescanne, P. (1987). Solving Disequations. Proc. of the 2nd IEEE Symposium on
Logic in Computer Science, 347-352.

Lanolin, P.J. (1964). The Mechanical Evaluation of Expressions. Computer Journal, 308-320.
Martelli, A., Montanari, U. (1982). An Efficient Unification Algorithm. ACM Transactions on

Programming Languages and Systems 4(2), 258-282.
Meseguer, J., Goguen, J.A., Smolka G. (1988). Order-Sorted Unification. (This issue.)
Milner, R., (1984). A Proposal for Standard ML. Proc. of the ACM Symposium on Lisp and

Functional Programming, Austin, Texas, 184-197.
Moshier, M.D., l~ounds, W.C. (1987). A Logic for Partially Specified Data Structures. Proc.

of ~he I4~h ACM Symposium on Principles of Programming Languages, Munich, West
(.~ermany, 156-167.

Mukai, K. (1987). Anadic Tuples in Prolog. Technical P~eport TI~-239, ICOT, Tokyo, Japan.
iNivat. M., P~eynolds, J.C. (Eds.) (1985). Algebraic Methods in Semantics. Cambridge University

Press.
Pereira, F.C.N. (1987). Grammars and Logics of Partial Information. Proc. of6he 4th Interna-

tional Conference on Logic Programming, The MIT Press, 989-1013.
Pollard, C., Sag, I.A. (1987). An Information-Based Syntax and Semantics, Volume 1, Funda-

mentals. CSLI Lecture Notes 13, Stanford University.
Robinson, J.A. (1965). A Machlne-Oriented Logic Based on the l~esolution Principle. Journal

of the ACM 12, 28-41.
l~ounds W.C., Kasper, R.T. (1986). A Complete Logical Calculus for Record Structures 1%ep-

resenting Linguistic Information. Proc. of the Jst IEEE Symposium on Logic in Computer
Science, 38-43.

Shieber, S.M. (1986). An Introduction to Unification-Based Approaches to Grammar. Stanford
University, CSLI Lecture Notes 4.

Siekmann, J.H. (1984) Universal Unification. Proc. 7~h International Conference on Automated
Deduction, Springer LNCS 170, 1-42.

Siekmann, J.H. (1988) Unification Theory. (This issue.)
Smolka~ G., Nutt, W.~ Goguen, J.A., Meseguer, J. (1987). Order-Sorted Equational Computa-

tion. SEKI Keport S1~-87-14, FB Informatik, Universit~t Kaiserslautern, West Germany.
To appear in A~t-Kaci, H.~ Niwt, M., Resolution of Equations in Algebraic S~ructures,
Academic Press.

Smo]ka, G. (1988). A Feature Logic with Subsorts. LILOG Report 33, IBM Deutschland,
Stuttgart, West Germany. To appear in Proc. o~ the Workshop on Unification Formalisms--
Syntax, Semantics and Implementation, Titisee, West Germany.

Walther, C. (1984). Unification in Many-Sorted Theories. Proc. 6th European Conference on
Artil~cial Intelligence, North-Holland, 383-392.

Walther, C. (1988). Many-Sorted Unification. Journal of the ACM 35(1), 1-17.

