
s Symbolic Computation (1989) 7, 275-293

Boolean Unification- The Story So Far*

Ursula M a r t i n i and Tobias Nipkow

Department of Computer Science, RHBNC, University of London
Egham, Surrey if'W20 0EX, UIt"

and
MIT Laboratory for Computer Science,

545 Technology Square, Cambridge MA 02139, U.S.A.

1 In troduct ion

Unification in Boolean rings, or algebras, has recently attracted considerable interest
both for its theoretical merits, since it is unitary, and for its practical relevance for
manipulating hardware descriptions, for example in BiJttner & Simonis (1986). The aim
of this paper is to give a comprehensive survey over the techniques and results in the
field as far as it has evolved to date. However most of the results have been around for a
long time; some of them going back to Boole himself (Bode, 1847). A very good source
for ranch of the mathematics underlying unificat;ion in Boolean rings is Rudeanu (1974).

The most important result is that Boolean unification is unitary, that is either an
equation has no solution or there is a single most general unifier (in the sequeh mgu).
We present two different unification algorithms, one due to Boole and the other to
LSwenheim. The paper is structured as follows.

In section we present only the very basic facts about Boolean rings, just enough
to explain the unification algorithms presented in section . However the algorithms
presented in section axe parameterized on procedures for simplifying Boolean terms and
finding solutions to Boolean equations. In order to solve these two problems section
invokes a bit of structure theory of Boolean algebras. This enables us in sections and
to derive solutions to the two remaining subproblems of simplification and of finding

particular solutions. Section provides a rough complexity analysis of the presented
algorithms. It turns out that both unification methods have the same complexity which
is exponential in the number of constants and variables. Section explains how the results
obtained in terms of a particular set of operators (the ring operations + and *) may be
transferred to a different set of operators.

So far we only dealt with terms over the ring operations a.nd arbitrary constants. In
section we extend unification to inchde free terms with variables as well. The resulting
set of formulae are basically those of the unquantified predicate calcuhs. It is shown
that unification in this theory is finitaxy. This extension is used in section to obtain
semi-decision procedure for the first erder predicate calculus.

*This research was carried out at t, he University of Manchester,
~The author acknowledges partial support of the United Kingdom SERC under graxxt GR8:tT18D.

275
0747-7171/89/030275 + 19 $03.00/0 �9 1989 Academic Press Limited

276 U. Martin and T. Nipkow

2 B o o l e a n R i n g s

In this section we present the definition of Boolean rings, a few simple consequences
and some important examples.

A set B containing elements 0 and 1 is a Boolean ring under the operations + and *
if for all z, y, z E 2? we have

x + y = y + z

(z + y) + z = x + (y + z)
z + 0 = a~
l*z = z

= E
x , (y + z) = z , y + z . z
(z + y) * z = z , z + y , z

X * X , -- X

= o

where 0 is the zero element, 1 the unit and - x is the additive inverse of z. It then follows
that 0 is also a zero element with respect to *, t h a t , is commutative and every element
is its own additive inverse, that is

~ * 0 = 0
z , y = y , z

z + x = O.

In the sequel we will repeatedly make use of the identities z * (1 + x) = 0, and x k = x for
k ~- 0. We also abbreviate x + 1 by ~. The Boolean ring with two elements, 0 and 1, will
be denoted by 2. Since we have z = - z in any Boolean ring we may obtain an equivalent
s t ructure axiomatised in terms of + , . , 0, 1 alone, by omitting the last equation above.
This s t ructure is called a Boolean algebra.

These equations for a Boolean algebra have the following equivMent complete set d
rewrite rules under associative-commutative rewriting:

z + x ~ O

O * z ~ O R
l * x --+ z

x , (y + z) ---* z , y + z , z .

This set of rules was first given by Hsiang &; Dershowitz (1983). The rules]~ can be
obta ined from E in a purely mechanical way by using the Knuth-Bendix procedm.e
enhanced with associative-commutative unification as for example implemented in LP
(Lescanne, 1986). If associative-commutative matching is used for + and *, /g provides
a decision procedure for equations over fl'ee Boolean rings. It rewrites terms into their
so-called "polynomial normal form" (Martin & Nipkow, 1989). This process is described
in detail in Hsiang (1985) where it is used for theorem proving.

For oar purposes there are two important examples of Boolean rings. The power
set 7)(S) of a set S with n elements forms a Boolean ring with 2 n elements under the
operat ions of symmetric difference (+) and intersection (.) , where 1 is S and 0 the empty

Boolean Unification 277

set. The set of all well-formed formulae of the propositional calculus on a set of n symbols
for propositions fomns a Boolean ring with 2 ~ elements under the operations of exclusive
or (+) and conjunction (*), where 1 is true and 0 is false. In section we shall see tha t
these two are actually isomorphic.

For the rest of the paper let the signature E denote the set of operators {0, 1, +, *}.
Given the signature E, a set of variables V and a set of constants C, the term algebra
T (E , V u C) is defined in the usual way. Elements f E T(E , V U C) are in terpreted as
functions from T(E , V t2 C) '~ (where n is the number of vm'iables in f) to T(E , V U C);
application is substitution. We assume that the variables in each te rm are ordered linearly
and write f(_.z) to express that f is a function of the variables ~ = (~1 , . . . , z ,) .

Given a Boolean ring B, its carrier is denoted by B. The interpretation of a te rm
f(x_) E T (E , V U B) is a function f& : B ~ ~ B. We write s =B t to denote tha t s = t
is valid in B. In the following we do not always distinguish between a te rm f and the
function fB_.

3 T w o U n i f i c a t i o n A l g o r i t h m s

Before we start on the actual business of unification, we simplify the problem due to
the following observation. As a consequence of the laws of Boolean rings, an equation
s(~) = t(_.x) is equivalent to s(z) + t(_x) = 0. Hence any unification problem is equivalent
to a matching problem. Therefore we can restrict our attention to equations of the form

= o, (1)

For the rest of this paper let B be a Boolean ring and let f (~) E T (E , V U B), x_ =
(rex, . . . , x,~), be a term with constants in B.

A second simplification can be justified by the following results.
L e m m a 1 Any Boolean algebra generated by a finite set of generators is finite.

T h e o r e m 1 Let C be the finite set of constants in f (~) and let 19 be the (finite) subal.
gebra o f B B_ generated by C. Then the following holds:

1. (1) has a solution in t? if and only if it has a solution in 19.

2. Any mgu of (1) with respect to 19 is also an mgu with respect ~o _19.

Hence we can restrict our attention to unification in the finite subalgebra generated by
the constants in a.n equation. The result is still correct in any superalgebra thereof.

3"he following terminology for talking about different kinds of solutions to equations
is taken from Rudeanu (1974). Let S = {b E B n I f(b) - 0} be the set of solutions to (1).
An equation of the form (1) is called consistentif and only i fS r {}. A vector of functions
F : B m ---+ B '~ is called a (parametric) solution to (1) if and only if F (B '~) C S. F is
called a general (parametric) solution if and only i f F (B "~) = S. F is called a reproductive
solution if and only if m = n, F is a parametric solution, and F(s) = s holds for all s E S.
Notice that a general solution does not have to be e most general unifier because it is
only guaranteed to yield all ground solutions. The importance of reproductive solutions
stems from the fact tha t they are most general unifiers: any solution G can be obtained
as an instance of a reproductive solution F because G = Az.F(G(x)) .

We can now presen~ two different methods for computing reproductive solutions, and
hence most general unifiers, for Boolean equations.

278 U. Martin and T. Nipkow

3.1 BOOLE'S METHOD

This method is also known as "successive variable elimination" and appeared first
in Boole (1847) for the special case of equations in one variable. Later accounts can be
found in Schrhder (1890) and P~udeanu (1974). It is based on the following equivalence:
L e m m a 2 Equation (1) has a solution in the Boolean ring t? iff

f (0 , x 2 , . . . , = .) . / (1 , = 2 , . . . , . .) = 0, (2)

has a solulion in t? and hence, iff

~I f(D= 0 (3)
~ 2 ~

holds in B.

This consistency test was first mentioned in Boole (1847). Note that the correctness of
this test is only trivial if (1) is an equation over 2, Otherwise a product may well be 0
even if none of its factors are,

Boole's method is based on the equivalence of equations (1) and (2) and proceeds in
a simple reeursive rammer by eliminating variables one by one.

T h e o r e m 2 Let G(y) : B n-1 -~ B n-x, ~here y = (~2 , . . . , zn) , be a reproductive solu-
tion to (2). Then

F(_~) = ((/(0, a (@) + f(1, C(y)) + 1) * =1 + f(0, a (y)) , C(y)) (4)

is a reproduciive solution to (1).

This theorem is the basis of the algorithm in Biittner & Simonis (1986) which integrates
Boolean unification into logic programming.

E x a m p l e 1 Let f (x , y) = x + y + x * y + a = 0 be tlle unification problem in the free
Boolean ring generated by a. Eliminating x results in the subproblem g(y) = f(O, y) *
](1, y) -- y + a �9 y. Eliminating y from g(y) results in 9(0) * g(1) which simplifies to 0.
Hence the original problem is consistent. Applying theorem 2, the reproductive solution
for g(y) = 0 is G(y) = ((g(0) + g(1) + 1) * y + g(0)) = (a * y). Substituting this into the
reproductive solution for f (x , y) = 0 yields f (x , y) -- ((f(0, a �9 y) + f(1, a * y) + 1) * x +
: (o , ~ , v) , ~ , v) = (~ * ~ * v + ~ * v + ~ , ~ * v) .

Be]ow this recursive algorithm is presented in a functional language notation. It also
covers the base case where ~ = 0-

i~ ~ = 0

else let 0 = unify(f(O,~)* f (1 ,y))
in ((f(0, o(~)) + f(1, c(_v)) + 1) �9 ~1 + y(0, a(~)), a(~))

Boolean Unification 279

Notice that f (x) =B_ 0 is not a syntactic comparison but a test whether f(_x) = 0 is
valid in B. For free Boolean rings this test can be carried out using the rewrit ing system

fl.om section. For arbitrary Boolean rings we present a solution in section .
There are two points about this recursive algorithm which we would like to demon-

s trate by way of examples.
Although it may appear that unifying a term with n variables leads to n recursive

procedure calls, that is not necessarily the case. In practice recursion often stops before
because vm'iables have been eliminated by simplification. Take the equation

f (z , y , z) = ~ * y + z = 0. (5)

Eliminating z results in the equation

f t z , Y , 0) * f (z , y , 1) = (~* Y)* (z * Y+ 1) = 0 (6)

which still contains two variables. However, a few simplifications reduce (6) to the trivial
equation 0 = 0. Hence any values for x and Y are solutions and the subproblem (6) has
the reproductive solution F(x , y) = (z, y). Substituting this back yields the reproduct ive
solution

F(m,y ,z) = (x, y, ((z , y) + (m * y + l) + 1) * z + (m , y)) = (x , y , m * y)

to (5) which is in fact only dependent on m and y. If we think about this procedure in
ternls of substitutions, it just means that once we get down to a trivial equation, nolle
of the remaining variables need to be instantiated. In the above case z and y remain
unchanged (apart from possibly renaming them) and only z is instantiated by m * y.

The second important point concerns the selection of which variable to eliminate in
each step. Elil~nating m instead of z in (5) results in the non-trivial subproblem

�9 (Y + z) = 0. (7)

If y is chosen next, this leads to the trivial problem z �9 z * z �9 (1 + z) = 0 which has
the solution F(z) = (z). This in turn leads to the reproductive solutions F(y, z) ----
(v , z + v + and = ((v , z + v + + to the
equations (7) and (5) respectively. This solution is significantly more complex than tl~e
one obtained by eliminating z first. In particular it depends on three variables ra ther
than two.

lZecent work by Biittner (Biittner, 1988) has shown how to select the variables in
order to get a reproductive solution with the minimal number of parameters.

3 . 2 LOWENHEIM'S FOaZMULA

The second algorithm for computing reproductive solutions to Boolean equations is
due to LSwenheim (1908). It consists of finding a particulax solution which is then
substi tuted into a general formula to yield a reproductive solution. Detailed expositions
of this method can be found in Martin & Nipkow (1986, 1989).
T h e o r e m 3 Let b_ 6 B n be a particular solution to (1), i.e. f(b_) = O. Then the vector
o f functions

F(Z) = Z + f (s * (s + b) (S)

is a reproductive solulion ~o (1).

280 U. Martin and T. Nipkow

It should be noted that in the definition of F in the above theorem + and * are extended
to ope ra te on vectors of functions.

A simple example will illustrate how theorem 3 works. Let

a , a : + b , y + a - ' - O (9)

be the equation we want to solve. One solution to (9) is z = 1, y = 0. Hence a reproduc-
tive solution to (9) is

=

=

Obviously the only "algorithmic" aspect of this method is to find particular solutions.
Various algorithms for this problem are discussed in section .

We would like to conclude the discussion of LSwenheim's formula with a comparison
with Boole~s method.

l%om LSwenheim's formula it is obvious "that the reproductive soIution always con-
rains as maaay parameters (new variables) as the unification problem contains variables.
Hence in general i6 leads to more complex solutions than the ones resulting from vari-
able elimination. The equation z + y = 0 shows this quite clearly: Variable elimin&tion
yields the two reproductive solutions F~(~z,y) ---- (y,y) and Fu(x , y) = (z ,z) , depend-
ing on whether x or y is eliminated first. LSwenheim's formula yields the two solutions
Foo(~,y) = (z*y , x*~d) mid Fil(x ,y) = (z * y + x + y , z . y + ~ + y) , depending on
whether the particular solution (0, 0) or (1, 1) is used.

4 The Structure of Boolean Rings
T h e following theorems about the structure of the variety of Boolean rings all go back

to Stone (1936). In its most general form we have the following representation theorem
relating any Boolean ring back to 2.
T h e o r e m 4 The variety o/Boolean rings and ~he class of subdirect powers of 2 coincide
up to ~somorphism.

For finite Boolean rings we have the following more concise characterization:

T h e o r e l n 5 The finite Boolean rings and the fini'le powers of 2 coincide up to isomor-
phism.

The finite powers of 2 are simply the finite power set algebras where every set is repre-
sented by a finite vector of ls and 0s indicating the presence or absence of a particular
elenlent. We shall see in sections and how the representation of finite Boolean algebras
as powers of 2 can be used to solve the problems of simplification und finding solutions.
However tha t requires a more constructive connection than the one given in theorem 5.
For this reason we introduce the so called or~hogonal basis and orlhogonal normal form.

4.1 THE ORTHOGONAL BASIS

We now define a subset of a Boolean ring called an orthogonal basis, which gives rise
to a no rma l form for the elements.
D e f i n i t i o n 1 A subset D = {d i , . . . , d~) of the finite Boolean ring B is called an or-
thogona.1 basis for 23_ iff

Boolean Unification 281

i , D is a basis for B__ as a vector space over 2. This means ~hat each b E B can be
expressed as a linear combination of elements of D,

b = E] b,d, (io)

where bl E 2, and ~hat the elemenls of D are linearly independent, ~hat is,

r~

0 = ~ bidl
i = 1

if and only if each bl = O.

2. The elements of D are orthogonal, that is,

dldj = O f or i # j.

The orthogonal normal form of some element b E B is its unique represental~ion as a
linear combination of the basis elements as in (10). We recall tha t it follows f r o m t h e
definition that if b E/3 then bd~ = bids E {0, di).

It follows from Stone's theorem that the finite Boolean ring B__ is isomorphic to t h e
power set of a set, and so it must contain a subset of elements which correspond to the
singleton sets under this isomorphism. In fact this subset is just the orthogonal basis.
In general we have (Martin & Nipkow, 1989):

T h e o r e m 6 Let B__ be a Boolean ring generated by C -- { C l , . . . , cn) and for U E_ C
define

ueu wEC\u

Then l.he non-zero v v are all distinct, and form an orthogonal basis of B_. This orehogonal
basis is unique.

For the fl'ee Boolean ring on a set of generators C this means that the set of all c- i �9 �9 �9 c~,
where gi is either cl or cl + 1, is the unique orthogonal basis with 2 n elements. T h u s t h e
ring has order 22".

For non-free rings we can use their presentation to give a constructive account of the i r
basis vectors. A Boolean r ing/3 is often described in terms of a set of generators C =
{ei , . . . ,c ,~} and relations wl = 0, . . . , wk = 0 where w~ E 7-(E, C), the te rm a lg eb ra
generated by the constants C over the function symbols E = {0, 1,*, +}. Formal ly we
write

B_=< c~, . . . ,c~ I vJ~,., . ,w~ > . (li)

This means tha t /3 is isomorphic to the quotient o f T (E , C)~ (which is T (E , C) f a c t o r e d
by the equations E, by the subring of T (~ , C)E generated by the elements w i , . �9 �9 wk.
Thus if r is the natural homomorplfism fl'om T (E , C) z onto B_., /3 is genera ted b y
{ c l r ,c~r In practice we often drop all mention of r and refer to the c~ ~.s ele-
ments of B.

For Boolean rings with a presentation in terms of generators and relations we have
the following test for an element being 0:

282 U. Martin and T. Nipkow

L e m m a 3 I f B has a presentation as in (11) let

k

w = + 1)
i = l

Then p = ~ 0 holds for any p ~ T (~ , C) i f and only i f p , W =E O.

Thus we have reduced the 0-test in B_B_ to a 0-test in the free algebra. The latter can easily
be checked using for example the rewriting system R.

In conjunction with theorem 6 we can determine the set of basis vectors as all those
v u such that v v * W e E 0.

E x a m p l e 2 Let B be the Boolean ring on a, b, c subject to ab + ac + bc = 0. There are
eight elements v ~r, of the form ~b~ where ~ can be ~ or ~. Of these,

abe =B_. ~bc =B_ abe = B abe = ~ O,

and the rest
abe, abe, abc and 8b~

are non-zero and distinct, and form an orthogonal basis for B. This can be determined
easily using lemma 3.

It should be mentioned that Knuth-Bendix completion can be used for the same
purpose. Given the equation ab + ac + be = 0 (and the basic system/~) it will generate
the consequences ab --~ O, ac -+ 0 and bc -+ 0. The ~esulting system of rewrite rules
can then be used as a decision procedure for the word problem in B and hence to test
p --B_ 0.

We can now use the orthogonal basis to establish the connection between a finite
Boolean algebra and its representation as a power of 2. Let B__ be a Boolean algebra with
orthogonal basis D = { d l , . . . , din}. Then B B_ is isomorphic to 2 r~ via ~ : B -~ 2 m such
tha t

i=1

for (e l , . . . , e m) E 2 "~.
The isomorphism ~ itself can be computed as the homomorphic extension of its

definitioll on the generators. Given a generator el, ~(ci) = (e l , . . . , era) where

0 ifcidj =E 0
ei = 1 if Cldj ~E 0

E x a m p l e 3 In example 2 the orthogonal basis D = {abe, abe, abe, abe}. has been deter-
mined. Hence the generators a, b and c are mapped into 2 4 as follows: ~o(a) = (1,0, 0, 0),

= (o, 1, o, o) and = (0, 0, 1, 0).

5 Simplification

Boole's algorithm requires us to decide whether a term equals 0 in an arbitrm'y
Boolean algebra B__. There are basically two approaches.

Boolean Unification 283

The first one relies on rewriting techniques. In the simplest case/3 is a free Boolean
algebra and system R can be used to test a term against 0. I f B__ is given in terms of
generators and relations, there is again a choice. One can either try to add all relations to
2~ and obtain a new canonical rewriting system by running the Knuth-Bendfi~ completion
procedure. The resulting system can then be used as a decision procedure. It is not clear
to us that the completion always succeeds. Alternatively one can use lemma 3 togethe~
with system/~.

The second approach uses the existence of an orthogonal basis of B of cardinality m
to translate the problem into 2 m. Given a term t E T(E, C), the isomorphism ~, (see
section) translates t ~ into 2 "~. This results in rn terms ti E T(E, {}) such that t = ~ 0 if
and only if t~ =2 0 for all i. The latter can be solved by simply evaluating t~ in 2 using
the truth-tables of + and *.
E x a m p l e 4 To test whether the term a , b �9 c is equal to 0 in the Boolean ring B of
examples 2 and 3, we apply ~ to it which yields (1,0,0,0) * (0 , 1 , 0 , 0) , (0,0,1,0) and
hence, by componentwise evaluation, (0, 0, 0, 0). Therefore a �9 b * c --B 0 holds.

']?he image of a + b under ~o on the other hand evaluates to (1, 1, 0, 0). Therefore
a + b = 0 does not hold in B.

It should be noted that both methods apply equally well to terms with variables
which are then interpreted as new free constants.

6 Finding Particular Solutions
We can now tackle the problem left open in the description of LSwenheim's method:

finding a particular solution to a Boolean equation. In section we discuss classical
algorithms for solving equations in 2. In section we reduce the problem of solving
equations in an arbitrary Boolean ring to a number of independent problems in 2.

6 .1 SOLUTIONS IN 2

Finding particular solutions to Boolean equations is known to be an NP-complete
problem (e.g. Garey & Johnson, 1979). Because of its importance for theorem prov-
ing, satisfiability tests for propositional formulae have been at the hea~'t of most early
mechanical proof procedures, e.g. Davis • Putnam (1960). As a by-product these pro-
cedures usually find particular vahations which satisfy the given formula, h~[ore recent
work in this area can be found in Van Gelder (1984) and Bryant (1986).

Vail Gelder presents a satisfiability test of complexity O(2(~ *l) if I is the length
of the formula. Currently this seems to he the best upper bound on the complexity of
satisfiability tests.

The work of Bryant is based on the efficient representation of propositional formulae
as graphs. Once the formula has been translated into graph fomn, satisfiabi]ity can be
tested in time O(1). I-Iowever, the translation may require exponential time.

Any equation over 2 can be expressed in polynomial form, as a sum of products of
variables, or 1 plus a sum of products of variables. Then satisfiability is immediate, since
any formula whose polynomial form is not 0 is satisfiable. Thus f(~) = 0 has a solution
provided f (z) is not identical to 1. A solution can be written down in linear time if f(._z)
is in polynomial form. If 1 does not appear in f(~) then set each zi = 0. Otherwise pick
a shortest product of variables appearing in f(.z), set each variable in this product to 1
and the rest to 0.

284 U. Martin and T. Nipkow

6 . 2 SOLUTIONS IN AN ARBITRARY BOOLEAN P~ING

There are two approaches to this problem. One can either reduce it to a number of
problems over 2 or solve it directly in the given Boolean r ing/3.

For the first approach (Niartin & Nipkow, 1989) le t /3 be a Boolean ring with m basis
elements and let (1) be the equation we want to find a solution to (or determine it is
unsatisfiable). This is broken up into 3 steps.

1. Translate f ~ : B n --. B into m functions f i : 2 n ~ 2. This is easily done with the
help of the isomorphism ~ defined at the end of section .

.

3.

Solve m independenr equations fi(z_'i) = 0 in 2 (see section).

Combine the solutions (if any) obtained in step 2 and translate them back i n t o / 3
using ~-1.

The second approach (P~udeanu, 1976; Martin & Nipkow, 1989) uses a degenerate
version of Boole's algorithm: simply instant]ate all parameters in the most general unifier
with arbitraz.y values to yield a particular solution. Alternatively one can simplify the
algori thm to yield a particular solution directly: if b_ E B n-1 is a solution to f (0 , y) *
/ (1 , y) = 0, (f(0,b) , b) is a solution to (1).

E x a m p l e 5 Let f (z) = a z + bz + b = 0 be the equation we want to find a solution to
in the Boolean r ing /3 of example 2.

Using W as of example 3, the above equation translates to (1, 0, 0, 0) * x + (0, 1,0, 0) *
x + (0, 1, 0, 0) which yields the following set of independent equations:

l * ~ : z - l - 0 * Z l - b 0 -" 0

0 * r B - l - l * m B q - 1 -~ O

0 * m s + 0 * z s + 0 = 0

0 * m 4 + 0 * z 4 + 0 = 0

A part icular solution, for example (~ , ~2, x3, x4) = (0, 1, 0, 0), can easily be found. In
the case of (0,1, 0, 0) we can immediately read off its translation back into /3 as b. In
general we will only get its orthogona] normal form 0 * ab~ Jr 1 * hb~ § 0 * ~bc q- 0 * ~b~.
It so happens that this expression simplifies to ~b~ which (in /3) is equivalent to b.

I f we use the degenerate version of Boole's algorithm, we obtain f (0) * f (1) = ab after
eliminating x. Using for example]emma 3, it is easy to verify tha t ab --'~ O. Hence the
equation is consistent and as a special solution for x we obtain f (0) --- b.

There are many variations on the above methods which we shall not explore. For
example in Martin & Nipkow (1986, 1989) the formula is brought into polynomial normal
form before its translation into 2 m. This makes the search for particular solutions trivial
(see section) and puts all the work into the normalization process.

7 Complexity
Tile following complexity analysis of the various algorithms presented does not apply

to any of the rewrite based methods. It concentrates on the algorithms which operate
by reduct ion to 2 m,

Boolean Unification 285

In the sequel let l be the number of symbols in @, the formula under consideration, n
the number of variables in @ and k the set of constants in @. Also let m be the number
of orthogonal basis vectors of the Boolean algebra B generat.ed by C, the set of constants
in |

7.1 SIMPLIFICATION

Simplifying a formula in q'(]~, {}) amounts to evaluating it in 2 which has complex-
ity O(l). If the formula is in T(P., C), it is equivalent to m evaluations in 2 and has
complexity O(m �9 l).

7.2 BOOLE~S METHOD

Both variable elimination and resubstitution of reproductive solutions can be done
in time O(n) using suitable structure sharing techniques (e.g. Boyer & Moore, 1972).
However, the length of the term constructed by variable elimination is O(l * 2n). To
test this term against 0 requires time (1 , 2 n) in 2 and O (m * l , 2 ") in B. Hence
Boole's algorithm requires O(m * l �9 2 ~) steps. To reduce this complexity, a practical
implementation requires the judicious application of simplifications every time a variable
is eliminated.

7.3 FINDING PARTICULAR SOLUTIONS

The complexity of the best known algorithms for testing the satisfiability and finding a
particular solution to Boolean equations in 2 (see section) is still exponential, which is not
surprising, given that the problem is NP-complete. For simplicity we do therefore assume
that its complexity is O(l * 2n), reflecting the process of trying 2 n possible valuations
which each take time O(l) to be tested.

If a solution in an arbitrary Boolean ring B is to be found, the reduction to m
independent equations yields a complexity of O(m �9 l �9 2n). If the degenerate version of
Boole's algorithm is used to determine a solution the complexity is the same.

7.4 LOWENHEIM'S METHOD

The complexity of using LSwenheim's formula is determined completely by the coin-
plexity of finding a particular solution, which, by section , is O(m * l �9 2n).

~u have seen that both Boole's mid LSwenheim's method have the same asymptotic
complexity O(m �9 l �9 T~). If we work in the free Boolean ring generated by k constants,
m = 2 ~ and the complexity of unification is O(1 * 2~+n), i.e. it is exponential in the
number of both variables and constants.

8 Different Operators

Quite frequently problems in the realm of Boolean algebra m'e not formulated in terms
of the ring operations 1, + and * but in terms of a different signature P. For example
F = {O,_,,,U}, where U is union and - complement. As long as F is as expressive as E,

286 U. Martin and T. Nipkow

there is no real problem because one can translate in either direction. For the above r
the translations take the following form:

1 : 0 , z + y = z * g U ~ * y

~ : m + l , z U y = ~ + y + x * y
This suggests the naiye approach of translating the unification problem into E, solving
it there and translating it back. The problem with this is the exponential blowup in the
size of the formulae which may occur with each translation.

Alternatively one can translate the unification algorithms from E into 1-'. We show
what tha t means for Boole and LSwenheim.

For Boole's method this requires the translation of the consistency test (2) and of
equation (4). Given the above r, the consistency test remains unchanged because * is
still at our disposal. The translation of equation (4) however has to go through a number
of simplifications (f (0 , G(y))* f(1, G(y)) = 0!) before the following compact fo rmula can
be derived:

: (:(1, �9 u f(0, G(_y)), (12)
Fox" Lbwenheim's method we need to translate equation (8). For r as above this yields

the following formula:
F(~) - x , f(x) U b__, f(~) (13)

For other sets of operators the task is the same although the result of translating
Boole's and L6wenheim's formulae may not be as straightforward as in (12) and (13)
above.

9 U n i f i c a t i o n in t h e U n q u a n t i f i e d P r e d i c a t e
C a l c u l u s

In this section we describe how to unify terms of the unquantified predicate calculus,
viewed as a Boolean ring under exclusive or (+) and conjunction. In fact we solve a
slightly more general unification problem, which we now describe, and show it to be
finitary.

Let F be a signature, C a set of constants and X a set of variables, and suppose each
contains no elements of E. Let T(F , X U C) = T be the corresponding term Mgebra, as
defined in for example Siekmann (1984). Let S = q- \ X. Now form

= r

the free Boolean ring over 6". We shall give a unification algorithm for this r ing.
Notice that if P is a set of predicate symbols, C a set of constant function symbols,

D a set of non constant function symbols and X a set of variable symbols then the set of
well formed formulae of the first order predicate calculus on P, C, D and X (see Monk,
1976) corresponds to a subring of the Boolean ring B(P U D), generated by all terms of
the form

where p C P and t~ C T(D,X UC). We denote this subring by B~(P U D). Finding a
unifier involves finding a substitution

:X--+ T(D, XUO).

Boolean Unification 287

In fact we shall see tha t any unifier arising from our method will be of this fo rm if the
original te rms correspond to well formed formulae, i.e. lie irt BI (P U D) . Hence our
generalisation makes no difference.

Suppose that we wish to solve
= O.

By multiplying up and using the distributive law we m a y assume tha t

UC8

where the sum is over all finite subsets of 8, xu is the product of all the elements of U,
each bu 6 2 mad only finitely m~ny bu are not zero.

A solution consists of a unifier

x

However, since we only Mlow unifiers which induce a map from/3(1") to itself, and skate
any variable occurs only as a proper subterm of m~ element of 8, it can only be mapped
by cr to ~n element of T. Thus

~:X-~T.

Since our equation involves only a finite subset T of S we may regard i~ as an equation
in T (E , T)E , and rewrite it in ~erms of the orthogonal basis {x u I U C_ T} as

U CT

where each b u ~ 2, and at least one b u is non-zero,
Now multiplying this equation (14) by z u for each non-zero b or, we see tha t (14) is

equivalent to
m u = 0 for eaclx non-zero b cr . (15)

Now
xu

where u~ and v i are all distinct elements of T C 8. Applying a unifier ~ only replaces
the ui and vj by other elements of S, so tha t

a:Uo - - 0

if and only if u~cr = vjcr for some values of i and j .
This gives us our unification procedure. We t ry to unify the v.s possible pMrs ui,vj

using a unification algorithm in 2-; either Robinson's unification (Robinson, 1965) or the
improved algori thm of Vit ter ~ Simons (1986). If there are no u~ or no vj, or if none
of the pairs can be unified our original equation had no solution. Otherwise, for each
ratifier tha t we have found, we do the following. First we use it to simplify the remaining
equations in (15). If all the equations simplify to 0 = 0, we have a unifier for the original
equation. Otherwise we repeat the process on one of the simplified equations which is
not 0 = 0. This process terminates, since we only find finitely many unifiers at each
stage, and reduce the number of equations in (15) each time. I f the original equation
has a solution we can either stop the search process when we have found one solution,

288 U. Martin and T. Nipkow

or continue and find all solutions. There will be a finite set of unifiers tha t gives all
solutions.

Let us consider some examples.
E x a m p l e 6 To solve

v(~)p(a) + ;(~)p(b) = 0

In te rms of an orthogonal basis this becomes

p(~)p(a)(1 + p(b)) + p(~)(1 + p(a))p(b) = 0

Thus we have to solve the two equations

p(~)p(a)(1 + p(b)) = 0

and
v(~)(1 + ; (~))v (0 = 0

To solve the first we must t ry and unify the pairs p(z),p(b) aud p(a),p(b). The first gives
the most general unifier ~ : x ~ b; the second pair cannot be unified. Now g reduces the
second equat ion to

(1 + P(a))p(b) = 0

which gives rise to one pair of terms p(a),p(b), which cannot be unified. Thus the original
equat ion had no solution.

E x a m p l e 7 To solve

p(~) + p(x)p(b) 4" p(a)p(b) 4" p(x)p(a)p(b) -- O.

This reduces to three equations

p (x) (l + p (a)) (1 4 - p (b)) = 0
v(x)p(a)(1 + v(b)) = o

(1 + p(~))p(a)p(b) = 0

The first gives rise to two pairs, p (z) ,p (a) and p(x),p(b), aud two unifiers, ~1 : x --+ a
and ~2 : x --+ b. Under zl the remaining equations become

p(a)(1 +p(b)) = 0

and
0 = 0 .

The first gives a pair p(a),p(b), which cannot be unified. Under ~2 bo th equations reduce
to 0 -- 0, so x --+ b is the most general unifier.

l ~ e m a r k Herold (1986) describes a technique for combining equational theories which,
a l though it sets out to solve a different and more general problem, yields a valid technique
in this case. To solve the equation

~ buzu = O,
UC$

Boolean Unification 289

take all pairs sl, s2 of distinct elements of S which occur in it and a t tempt ~o un i fy
them using the unification Mgorithm in T . If no pairs can be unified, halt with fa i lure .
Otherwise, for each unifier obtained, use it to simplify the equation and then repea t t h e
process. It is easy to see that this method is essentially the same as ours, except t h a t
we write our equation in orthogonal form before attempting to unify pairs. This r educes
the number of pairs we try to unify, from n (n - 1)/2 to at most n~/4 at the first pass o f
the algorithm, when R has n elements.

10 A S e m i - D e c i s i o n Procedure for the First O r d e r
P r e d i c a t e Calculus

In this section we describe a semi-decisiort procedure for the first order p red ica te
calculus, based on our unification techniques. The reader is referred to chapter 11 o f
Monk (1976) for definitions.
T h e o r e m 7 The following steps constitute a semi-decision procedure for the first order
predicate calculus. Let P be a formula of the first order predicate calculus. To determine
whether P is unsatisfiable

1. Form the Skolem expansion

Ps = W l , . . . ,V:~,,F(~I, . . . , ~:,,)

of P, where F(Zz, . . . , x,,) = F is quantifier free, and Ps contains no free variables.

~. Transform F inlo a Boolean term B(x l , xn) -- B by replacing pAq by pq, p V q
by p + q + pq and --,p by l + p.

3. Let

for i > O, and let

B~ = B (x i . + l , . . . , z(i+l),,),

B[k] = Bo Bk.

For each, k > O, determine, using the melhod of section 6, or other~wise, whether or
not B[k] can be unified with O.

J. P is unsatisfiable i f and only i f some B[k] can be unified with O.

N o t e We do not intend to address questions of efficiency here. Of course the equat ions
B[i] are not independent of each other, and information acquired in failing to unify B[k]
with 0 can be used in at tempting to unify B[k + 1] with 0. This will be more efficiellt
than just applying the method of section from scratch for each value of k.

We illustrate the theorem with two examples.

E x a m p l e 8 Let
B(x) -- p(g) + p(x)p(a).

The substitution r : x -+ a unifies B(x) with 0, and so

w.~,(~) A -,p(a)

is unsatisfiable.

290 U. Martin and T. Nipkow

E x a m p l e 9 Let

Then

an d

B (,) =

Z[0] = B (, ,) ,

Bin - 1] = (p(xl) + p (a l)p (a2) . . , p (an)) . . . (P(r + p (a t) p (a s) . . , p(an)).

Then the substitution
: x i --* a~ (~ = 1 , . . . , n)

is a unifier of Bin - 1] with 0, and so

v A . . . ^ A ^ A . . . A p (a , ,))

is unsatisfiable. (Notice that none of B[0] , . . . , Bin - 2] can be unified with 0.)

The idea of using unification for first order theorem proving seems to have appeared
first in Herbrands thesis Herbrand (1930), chapter 5, section 2, pp. 139-148. He decided
which terms to t ry and unify by associating to each formula an array of signed letters

def ined by recursion on the variables in the proposition, which generated infinitely many
derived propositions. The original proposition was unsatisfiable if and only if one of the
derived propositions could be reduced, using unification, to an unsatisfiable formula of the
propositional calculus. I~.obinson (1965) eliminated the complicated notion of the array
of signed letters by always working with skolemised formulae; two terms were unified if
this would ~llow the resolution rule.

P v Q , ~ P v R
Ovt~

to be applied. Again this gives a semi-decision procedure.
Our method may be regarded as no more than a variant of resolution. The point of

the reduction to orthogonal form inside our unification algorithm is that terms are only
unified if we can apply the rule (1 + u)u = O, that is

P A ~ P

In our method the different equations B[k] are treated explicitly; in Robinson's method
they axe hidden.

Another approach to fiirst order theorem proving has been investigated by Hsiang
(1985) and Kaput & Narendran (1985). They work in a Boolean ring, as we do, but
they do not at tempt to unify the B[k] with 0 directly. Instead they assume B[0] is
not unsatisfiable, then use unification inside the Knuth Bendb: algorithm, attempting to
produce directed rules involving Boolean terms which eventually lead to the rule 1 --~ 0,
contradicting the assumption.

We now sketch the proof of Theorem 7.
P r o o f of t h e o r e m 7 Our proof depends upon Herhrand's theorem (see Herbrand

(1971), chapter 5, section 3, or Monk (1976), theorem I1.42). As we have remarked
above~ our theorem is similar to tha:~ of I-Ierbrand's thesis, chapter 5, section 2, which
Herbrand deduced from the result now ca.lied Iterbrand's Theorem. In the notation

Boolean Unification 291

above this theorem states that the formula P is unsatisfiable if and only if there is some
integer m and n . m variable-free terms a l , . . . , a~rn such tha~ the conjunction of ~he m
expressions

. . . , = - 1)

is unsatisfiable in the propositional calculus.
Suppose that P is unsatisfiable. IIerbrand's theorem implies that there exist elements

a l , . . . , an,,, with the conjunction of the m expressions

F (a t + r ~ , - . . , a(r+l),~)

unsatisfiable. Translating into the Boolean ring, this means that the product of the m
expressions

is equal to zero, and the substitution

: x~ "-+ ai (i - - 1 , . . . , n r n)

unifies B [m -- 1] with O.
Conversely suppose tha t B[k] has been unified with O, by the substitution cr : xl --+ ti.

Replace each variable occuring in the ti by a variable-free term, to get a substitution
~- : xr ~ al, where each a~ is a variable-free term. Now since B[k]~- = O, the conjunction
of the k + 1 formulae

. . . ,

is unsatlsfiable, so by tterbrand's theorem P is unsatisfiable.

11 Conc lus ion

We would like to conclude by referring to some recent work generalizing the methods
presented in this article.

We have dealt with unification of terlr~s over the ring operations and al'bitrary con-
stants, and with a special case of adding free function symbols, in SchrrSdt-SchauB(1988)
and Boudet e~. al. (1988) the general problem of combining boolean unification with uni-
fication algorithms for other disjoint theories is solved. Although methods for combining
unification algorithms (Yelick, 1987; Herold, 1986; Tid4n, 1986) were known before, the
syntact ic form of the Boolean ring axioms rendered them inapplicable: both non-regular
(x + x -= 0) and collapsing (x * x = x) axioms are present.

Recently there have been two generalizations of Boolean unification reported in Nip-
kow (1988) and Biittner (1988). Nipkow generalizes to primal (or functionally complete)
algebras and their varieties. This covers in particular matrix rings over finite fields, Post-
algebras and p-rings (rings with px = 0 and x p = x for some prime p). Bfittner m~nounces
a unification algorithm for Post-algebras based on their lattice structure aad presents a
unification algorithm for a functionally complete variant of the 4-element Boolean lattice.

Re fe r e n c e s

Boole, G. (1847). The Ma~hematicM Analysis of Logic. Macmillan 1847. Reprinted
1948, B. Blackwell.

292 U. Martin and T. Nipkow

Bonder, A., 3ouannand, 3.-P., Schmidt-Schaug, M. (1988). Unification in Flee Ex-
tensions of Boolean Rings and Abelian Groups. Proe. LICS'88, 121-131.

Boyer, P~.S., Moore, J.S. (1972). The Sharing of Structure in Theorem Proving Pro-
grams. Machine Inielligence 7, Edinburgh University Press.

Bryant, R.E. (1986). Graph-Baaed Algorithms fox" Boolean Function Manipulation,
IEEE Trans. on Computers 35, 8, 677-691.

Biittner, W. (1988). Unification in Finite Algebras is Unitary (?). Proc. CADE-9,
LNCS 310, 368-377.

Biittner, W., Simonis, H. (1987). Embedding Boolean Expressions into Logic Pro-
gramming. JSC 4, 191-205.

Davis, M., Putnam, H. (1960). A Computing Procedure for Quantification Theory.
JA CM 7, 201-215.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability. W.It. Freeman
and Company, San Francisco.

Herbrand, J. (1971). Investigations in Proof Theory. Jacques Herbrand 5ogical Writ-
ings, W. Goldfarb (ed.), D. Reidel, 44-202.

Herold, A. (1988). Combination of Unification Algorithms. Proc. CADE-8, LNCS
230, 450-469.

Hsiang, J. (1985). l%efutational Theorem Proving Using Tenn-tLewriting Systems.
Artificial Intelligence 25.

Hsiang, 3., Dershowitz, N. (1983) Rewrite Rnles for Clausal and Non-Clausal Theorem
Proving. Proc. lOih ICAbP, Barcelona, LNCS 154,431-446.

Kaput, D., Narendran, P. (1985) An equational approach to theorem proving in the
first order predicate calculus. Proc. IJCAI 85, Los A,]geles.

Lescanne, P. (1986). REVE a Rewrite Rule Laboratory. Proc. CADE-8, LNCS 230,
696-697.

Lbwenheim, L. 0908). Uber das Auflbsungsproblem im logischen Klassenkalkbl.
Sitzun~sber. ~terl. Math. GeselL 7, 89-94.

Martin, U., Nipkow, T. (1986). Unification in Booleaa Rings. /Proc. CADE-8, LNCS
230, 506-513.

Martin, U., Nipkow, T. (1989). Unification in Booleal Rings. Journal of Automated
Reasoning 4, 381-396.

Monk, :I.D. (1976). Mathematical Logic. Springer.
Nipkow, T. (1988). Unification in Primal Algebras. Proc. CAAP'88, LNCS 299,

117-131.
Nipkow, T. (1988). Unification in Primal Algebras, Their Powers, and Their Varieties.

Submitted for publication.
Robinson, J.A. (1965). A machine oriented logic based on the resolution principle.

JA C'~ r 12, 23-41.
l~udeanu, S, (1974) Boolean Fnnctions and Equations. North-Holland.
Schmidt-Schaufl, M (1988). Unification in a Combination of Arbitrary Disjoint Equa-

tional Theories. Proc. CA;DE-9, LNCS 310, 378-396.
Schr6der, E. (1890): Vorlesungen fiber die Algebra der Logic. (Leipzig, Vol 1, 1890;

Vol 2, 1891, 1905; Erol 3, 1895), Reprint 1966, (Chelsea, Bronx NY).
Siekmmm, J. H. (1984). Universal Unification, Proc. CADE-Z LNCS 170.
Stone, M.H. (1936). The Theory of Representation for Boolean Algebras. Trans.

Amer. Malh. Soe. 40, 37-111.

Boolean Unification 293

Tidgn, E. (1986). Unification in Combinations of Collapse-Free Theories with Disjoint
Sets of Function Symbols. Proc. CADE-8, LNCS 230,431-449.

Van Gelder, A. (1984). A Satisfiability Test for Non-Clausal Propositional Calculus.
Proc. CADE-7, LNCS 170.

Vitter, J.S., Simons, l%.A. (1986). New Classes for Parallel Complexity: A Study
of Unification and Other Complete Problems for ~ . IEEE Transactions on Compu'ters,
403-418.

Ye]ick, K (1987). Unification in Combinations of Collapse-Free Regular Theories.
JSC 3, 153-181.

