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1 In troduct ion  

Unification in Boolean rings, or algebras, has recently attracted considerable interest 
both for its theoretical merits, since it is unitary, and for its practical relevance for 
manipulating hardware descriptions, for example in BiJttner & Simonis (1986). The aim 
of this paper is to give a comprehensive survey over the techniques and results in the 
field as far as it has evolved to date. However most of the results have been around for a 
long time; some of them going back to Boole himself (Bode, 1847). A very good source 
for ranch of the mathematics underlying unificat;ion in Boolean rings is Rudeanu (1974). 

The most important result is that Boolean unification is unitary, that is either an 
equation has no solution or there is a single most general unifier (in the sequeh mgu). 
We present two different unification algorithms, one due to Boole and the other to 
LSwenheim. The paper is structured as follows. 

In section we present only the very basic facts about Boolean rings, just enough 
to explain the unification algorithms presented in section . However the algorithms 
presented in section axe parameterized on procedures for simplifying Boolean terms and 
finding solutions to Boolean equations. In order to solve these two problems section 
invokes a bit of structure theory of Boolean algebras. This enables us in sections and 
to derive solutions to the two remaining subproblems of simplification and of finding 

particular solutions. Section provides a rough complexity analysis of the presented 
algorithms. It turns out that both unification methods have the same complexity which 
is exponential in the number of constants and variables. Section explains how the results 
obtained in terms of a particular set of operators (the ring operations + and *) may be 
transferred to a different set of operators. 

So far we only dealt with terms over the ring operations a.nd arbitrary constants. In 
section we extend unification to inchde free terms with variables as well. The resulting 
set of formulae are basically those of the unquantified predicate calcuhs. It is shown 
that unification in this theory is finitaxy. This extension is used in section to obtain 
semi-decision procedure for the first erder predicate calculus. 

*This research was carried out at t, he University of Manchester, 
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2 B o o l e a n  R i n g s  

In this section we present the definition of Boolean rings, a few simple consequences 
and some important  examples. 

A set B containing elements 0 and 1 is a Boolean ring under the operations + and * 
if for all z, y, z E 2? we have 

x + y  = y + z  

( z + y ) + z  = x + ( y + z )  
z + 0  = a~ 
l*z = z 

= E 
x , ( y + z )  = z , y + z . z  
( z + y ) * z  = z , z + y , z  

X * X ,  -- X 

= o 

where 0 is the zero element, 1 the unit and - x  is the additive inverse of z. It then follows 
that  0 is also a zero element with respect to *, t h a t ,  is commutative and every element 
is its own additive inverse, that is 

~ * 0  = 0 
z , y  = y , z  

z + x  = O. 

In the sequel we will repeatedly make use of the identities z *  ( 1 +  x) = 0, and x k = x for 
k ~- 0. We also abbreviate x + 1 by ~. The Boolean ring with two elements, 0 and 1, will 
be denoted by 2. Since we have z = - z  in any Boolean ring we may obtain an equivalent 
s t ructure  axiomatised in terms of + , . ,  0, 1 alone, by omitting the last equation above. 
This s t ructure is called a Boolean algebra. 

These  equations for a Boolean algebra have the following equivMent complete set d 
rewrite rules under associative-commutative rewriting: 

z + x  ~ O 

O * z  ~ O R 
l * x  --+ z 

x , ( y + z )  ---* z , y + z , z .  

This set of  rules was first given by Hsiang &; Dershowitz (1983). The rules ]~ can be 
obta ined from E in a purely mechanical way by using the Knuth-Bendix procedm.e 
enhanced with associative-commutative unification as for example implemented in LP 
(Lescanne, 1986). If associative-commutative matching is used for + and *, /g provides 
a decision procedure for equations over fl'ee Boolean rings. It rewrites terms into their 
so-called "polynomial normal form" (Martin & Nipkow, 1989). This process is described 
in detail in Hsiang (1985) where it is used for theorem proving. 

For oar  purposes there are two important  examples of Boolean rings. The  power 
set 7)(S) of a set S with n elements forms a Boolean ring with 2 n elements under the 
operat ions of symmetric difference (+) and intersection ( .) ,  where 1 is S and 0 the empty 
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set. The set of all well-formed formulae of the propositional calculus on a set of n symbols 
for propositions fomns a Boolean ring with 2 ~ elements under the operations of exclusive 
or (+)  and conjunction (*), where 1 is true and 0 is false. In section we shall see tha t  
these two are actually isomorphic. 

For the rest of the paper let the signature E denote the set of operators {0, 1, +,  *}. 
Given the signature E, a set of variables V and a set of constants C, the term algebra 
T ( E ,  V u C) is defined in the usual way. Elements f E T(E ,  V U C) are in terpreted as 
functions from T(E ,  V t2 C) '~ (where n is the number of vm'iables in f )  to T(E ,  V U C); 
application is substitution. We assume that  the variables in each te rm are ordered linearly 
and write f(_.z) to express that  f is a function of the variables ~ = (~1 , . . . ,  z , ) .  

Given a Boolean ring B, its carrier is denoted by B. The interpretation of a te rm 
f(x_) E T ( E , V  U B) is a function f& : B ~ ~ B. We write s =B t to denote tha t  s = t 
is valid in B. In the following we do not always distinguish between a te rm f and the 
function fB_. 

3 T w o  U n i f i c a t i o n  A l g o r i t h m s  

Before we start  on the actual business of unification, we simplify the problem due to 
the following observation. As a consequence of the laws of Boolean rings, an equation 
s(~) = t(_.x) is equivalent to s(z) + t(_x) = 0. Hence any unification problem is equivalent 
to a matching problem. Therefore we can restrict our attention to  equations of the form 

= o, (1) 

For the rest of this paper let B be a Boolean ring and let f ( ~ )  E T ( E , V  U B),  x_ = 
(rex, . . . ,  x,~), be a term with constants in B. 

A second simplification can be justified by the following results. 
L e m m a  1 Any Boolean algebra generated by a finite set of generators is finite. 

T h e o r e m  1 Let C be the finite set of constants in f (~)  and let 19 be the (finite) subal. 
gebra o f B  B_ generated by C. Then the following holds: 

1. (1) has a solution in t? if and only if it has a solution in 19. 

2. Any mgu of (1) with respect to 19 is also an mgu with respect ~o _19. 

Hence we can restrict our attention to unification in the finite subalgebra generated by 
the constants in a.n equation. The result is still correct in any superalgebra thereof. 

3"he following terminology for talking about different kinds of solutions to equations 
is taken from Rudeanu (1974). Let S = {b E B n I f(b) - 0} be the  set of solutions to (1). 
An equation of the form (1) is called consistentif and only i fS  r {}. A vector of functions 
F : B m ---+ B '~ is called a (parametric) solution to (1) if and only if F ( B  '~) C S. F is 
called a general (parametric) solution if and only i f F ( B  "~) = S. F is called a reproductive 
solution if and only if m = n, F is a parametric solution, and F(s )  = s holds for all s E S. 
Notice that a general solution does not have to be e most general unifier because it is 
only guaranteed to yield all ground solutions. The importance of reproductive solutions 
stems from the fact tha t  they are most general unifiers: any solution G can be obtained 
as an instance of a reproductive solution F because G = Az.F(G(x)) .  

We can now presen~ two different methods for computing reproductive solutions, and 
hence most general unifiers, for Boolean equations. 
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3.1  BOOLE'S METHOD 

This method is also known as "successive variable elimination" and appeared first 
in Boole (1847) for the special case of equations in one variable. Later accounts can be 
found in Schrhder (1890) and P~udeanu (1974). It is based on the following equivalence: 
L e m m a  2 Equation (1) has a solution in the Boolean ring t? iff 

f ( 0 , x 2 , . . . , = . ) . / ( 1 , = 2 , . . . , . . )  = 0, (2) 

has a solulion in t? and hence, iff 

~I f(D= 0 (3) 
~ 2  ~ 

holds in B. 

This consistency test was first mentioned in Boole (1847). Note that  the correctness of 
this test  is only trivial if (1) is an equation over 2, Otherwise a product may well be 0 
even if none of its factors are, 

Boole's method is based on the equivalence of equations (1) and (2) and proceeds in 
a simple reeursive rammer by eliminating variables one by one. 

T h e o r e m  2 Let G(y) : B n-1 -~ B n-x, ~here y = (~2 , . . . , zn ) ,  be a reproductive solu- 
tion to (2). Then 

F(_~) = ((/(0,  a (@) + f(1, C(y)) + 1) * =1 + f(0, a (y) ) ,  C(y)) (4) 

is a reproduciive solution to (1). 

This theorem is the basis of the algorithm in Biittner & Simonis (1986) which integrates 
Boolean unification into logic programming. 

E x a m p l e  1 Let f ( x , y )  = x + y + x * y + a = 0 be tlle unification problem in the free 
Boolean ring generated by a. Eliminating x results in the subproblem g(y) = f(O, y) * 
](1, y) -- y + a �9 y. Eliminating y from g(y) results in 9(0) * g(1) which simplifies to 0. 
Hence the original problem is consistent. Applying theorem 2, the reproductive solution 
for g(y) = 0 is G(y) = ((g(0) + g(1) + 1) * y + g(0)) = (a * y). Substituting this into the 
reproductive solution for f ( x ,  y) = 0 yields f ( x ,  y) -- ((f(0, a �9 y) + f(1,  a * y) + 1) * x + 
: ( o , ~ , v ) , ~ , v )  = ( ~ * ~ * v + ~ * v + ~ , ~ * v ) .  

Be]ow this recursive algorithm is presented in a functional language notation. It also 
covers the base case where ~ = 0- 

i~ ~ = 0 

else let 0 = unify(f(O,~)* f (1 ,y ) )  
in ((f(0, o(~)) + f(1, c(_v)) + 1) �9 ~1 + y(0, a(~)),  a(~)) 
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Notice that f (x )  =B_ 0 is not a syntactic comparison but a test  whether f(_x) = 0 is 
valid in B. For free Boolean rings this test can be carried out using the rewrit ing system 

fl.om section.  For arbitrary Boolean rings we present a solution in section . 
There are two points about this recursive algorithm which we would like to demon- 

s trate  by way of examples. 
Although it may appear that unifying a term with n variables leads to  n recursive 

procedure calls, that  is not necessarily the case. In practice recursion often stops before 
because vm'iables have been eliminated by simplification. Take the equation 

f ( z , y , z )  = ~ * y + z  = 0. (5) 

Eliminating z results in the equation 

f t z , Y , 0 ) *  f ( z , y , 1 )  = (~* Y)* ( z *  Y+ 1) = 0 (6) 

which still contains two variables. However, a few simplifications reduce (6) to the trivial 
equation 0 = 0. Hence any values for x and Y are solutions and the subproblem (6) has 
the reproductive solution F(x ,  y) = (z, y). Substituting this back yields the reproduct ive 
solution 

F(m,y ,z)  = (x, y, ((z , y) + ( m * y + l ) +  1 ) * z + ( m , y ) )  = ( x , y , m * y )  

to (5) which is in fact only dependent on m and y. If we think about  this procedure in 
ternls of substitutions, it just means that once we get down to a trivial equation, nolle 
of the remaining variables need to be instantiated. In the above case z and y remain 
unchanged (apart from possibly renaming them) and only z is instantiated by m * y. 

The second important  point concerns the selection of which variable to eliminate in 
each step. Elil~nating m instead of z in (5) results in the non-trivial subproblem 

�9 (Y + z) = 0. (7) 

If y is chosen next, this leads to the trivial problem z �9 z * z �9 (1 + z) = 0 which has 
the solution F(z) = (z). This in turn leads to the reproductive solutions F(y,  z) ---- 
( v ,  z + v +  and = ( ( v ,  z + v +  + to the 
equations (7) and (5) respectively. This solution is significantly more complex than  tl~e 
one obtained by eliminating z first. In particular it depends on three variables ra ther  
than two. 

lZecent work by Biittner (Biittner, 1988) has shown how to select the variables in 
order to get a reproductive solution with the minimal number of parameters.  

3 . 2  LOWENHEIM'S  FOaZMULA 

The second algorithm for computing reproductive solutions to Boolean equations is 
due to LSwenheim (1908). It consists of finding a particulax solution which is then 
substi tuted into a general formula to yield a reproductive solution. Detailed expositions 
of this method can be found in Martin & Nipkow (1986, 1989). 
T h e o r e m  3 Let b_ 6 B n be a particular solution to (1), i.e. f(b_) = O. Then the vector 
o f functions 

F(Z) = Z + f (s  * (s + b) (S) 

is a reproductive solulion ~o (1). 
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It should  be noted that  in the definition of F in the above theorem + and * are extended 
to ope ra te  on vectors of functions. 

A simple example will illustrate how theorem 3 works. Let 

a , a : + b , y + a - ' - O  (9) 

be the  equation we want to solve. One solution to (9) is z = 1, y = 0. Hence a reproduc- 
tive solution to (9) is 

= 

= 

Obviously the only "algorithmic" aspect of this method is to find particular solutions. 
Various algorithms for this problem are discussed in section . 

We  would like to conclude the discussion of LSwenheim's formula with a comparison 
with Boole~s method. 

l%om LSwenheim's formula it is obvious "that the reproductive soIution always con- 
rains as maaay parameters (new variables) as the unification problem contains variables. 
Hence in general i6 leads to more complex solutions than the ones resulting from vari- 
able elimination. The equation z + y = 0 shows this quite clearly: Variable elimin&tion 
yields the two reproductive solutions F~(~z,y) ---- (y,y) and Fu(x , y) = (z ,z ) ,  depend- 
ing on whether x or y is eliminated first. LSwenheim's formula yields the two solutions 
Foo(~,y) = ( z*y , x*~d)  mid Fil(x ,y)  = ( z * y  + x + y , z . y +  ~ + y ) ,  depending on 
whether  the  particular solution (0, 0) or (1, 1) is used. 

4 The Structure of Boolean Rings  
T h e  following theorems about the structure of the variety of Boolean rings all go back 

to Stone (1936). In its most general form we have the following representation theorem 
relating any Boolean ring back to 2. 
T h e o r e m  4 The variety o/Boolean rings and ~he class of subdirect powers of 2 coincide 
up to ~somorphism. 

For finite Boolean rings we have the following more concise characterization: 

T h e o r e l n  5 The finite Boolean rings and the fini'le powers of 2 coincide up to isomor- 
phism. 

The finite powers of 2 are simply the finite power set algebras where every set is repre- 
sented by  a finite vector of ls and 0s indicating the presence or absence of a particular 
elenlent. We shall see in sections and how the representation of finite Boolean algebras 
as powers  of 2 can be used to solve the problems of simplification und finding solutions. 
However tha t  requires a more constructive connection than the one given in theorem 5. 
For this  reason we introduce the so called or~hogonal basis and orlhogonal normal form. 

4.1 THE ORTHOGONAL BASIS 

We now define a subset of a Boolean ring called an orthogonal basis, which gives rise 
to a no rma l  form for the elements. 
D e f i n i t i o n  1 A subset D = {d i , . . . , d~)  of the finite Boolean ring B is called an or- 
thogona.1 basis for 23_ iff 
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i ,  D is a basis for B__ as a vector space over 2. This means ~hat each b E B can be 
expressed as a linear combination of elements of D, 

b = E ]  b,d, ( io)  

where bl E 2, and ~hat the elemenls of D are linearly independent, ~hat is, 

r~ 

0 = ~ bidl 
i = 1  

if and only if each bl = O. 

2. The elements of D are orthogonal, that is, 

dldj = O f or i # j.  

The  orthogonal normal form of some element b E B is its unique represental~ion as a 
linear combination of the basis elements as in (10). We recall tha t  it follows f r o m  t h e  
definition that if b E/3 then bd~ = bids E {0, di). 

It follows from Stone's theorem that the finite Boolean ring B__ is isomorphic to  t h e  
power set of a set, and so it must contain a subset of elements which correspond to  the  
singleton sets under this isomorphism. In fact this subset is just  the orthogonal  basis.  
In general we have (Martin & Nipkow, 1989): 

T h e o r e m  6 Let B__ be a Boolean ring generated by C -- { C l , . . . , cn )  and for U E_ C 
define 

ueu wEC\u 

Then l.he non-zero v v are all distinct, and form an orthogonal basis of B_. This orehogonal 
basis is unique. 

For the fl'ee Boolean ring on a set of generators C this means that  the set of all c- i �9 �9 �9 c~, 
where gi is either cl or cl + 1, is the unique orthogonal basis with 2 n elements. T h u s  t h e  
ring has order 22". 

For non-free rings we can use their presentation to give a constructive account of  the i r  
basis vectors. A Boolean r ing/3  is often described in terms of a set of generators  C = 
{ei , . . . ,c ,~} and relations wl = 0, . . . ,  wk = 0 where w~ E 7-(E, C), the te rm a lg eb ra  
generated by the constants C over the function symbols E = {0, 1,*, +}. Formal ly  we 
write 

B_=< c~, . . . ,c~  I vJ~,., . ,w~ > .  (li) 

This means tha t /3  is isomorphic to the quotient o f T ( E ,  C)~ (which is T ( E ,  C) f a c t o r e d  
by the equations E, by the subring of T ( ~ ,  C)E generated by the elements w i , .  �9 �9 wk. 
Thus if r is the natural homomorplfism fl'om T ( E , C ) z  onto B_., /3 is genera ted  b y  
{ c l r  ,c~r In practice we often drop all mention of r and refer to the c~ ~.s ele- 
ments of B. 

For Boolean rings with a presentation in terms of generators and relations we have  
the following test for an element being 0: 
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L e m m a  3 I f  B has a presentation as in (11) let 

k 

w = + 1) 
i = l  

Then p = ~  0 holds for  any p ~ T ( ~ ,  C) i f  and only i f  p ,  W =E O. 

Thus we have reduced the 0-test in B_B_ to a 0-test in the free algebra. The latter can easily 
be checked using for example the rewriting system R. 

In conjunction with theorem 6 we can determine the set of basis vectors as all those 
v u such that  v v *  W e E  0. 

E x a m p l e  2 Let B be the Boolean ring on a, b, c subject to ab + ac + bc = 0. There are 
eight elements v ~r, of the form ~b~ where ~ can be ~ or ~. Of these, 

abe =B_. ~bc =B_ abe = B  abe = ~  O, 

and the rest 
abe, abe, abc and 8b~ 

are non-zero and distinct, and form an orthogonal basis for B.  This can be determined 
easily using lemma 3. 

It should be mentioned that Knuth-Bendix completion can be used for the same 
purpose. Given the equation ab + ac + be = 0 (and the basic system/~)  it will generate 
the consequences ab --~ O, ac -+ 0 and bc -+ 0. The ~esulting system of rewrite rules 
can then be used as a decision procedure for the word problem in B and hence to test 
p --B_ 0. 

We can now use the orthogonal basis to establish the connection between a finite 
Boolean algebra and its representation as a power of 2. Let B__ be a Boolean algebra with 
orthogonal  basis D = { d l , . . . ,  din}. Then B B_ is isomorphic to 2 r~ via ~ : B -~ 2 m such 
tha t  

i=1 

for ( e l , . . . , e m )  E 2 "~. 
The  isomorphism ~ itself can be computed as the homomorphic extension of its 

definitioll on the generators. Given a generator el, ~(ci) = ( e l , . . . ,  era) where 

0 ifcidj  =E 0 
ei = 1 if Cldj ~E 0 

E x a m p l e  3 In example 2 the orthogonal basis D = {abe, abe, abe, abe}. has been deter- 
mined. Hence the generators a, b and c are mapped into 2 4 as follows: ~o(a) = (1,0, 0, 0), 

= (o, 1, o, o) and  = (0, 0, 1, 0). 

5 Simplification 

Boole's algorithm requires us to decide whether a term equals 0 in an arbitrm'y 
Boolean algebra B__. There are basically two approaches. 
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The first one relies on rewriting techniques. In the simplest case/3 is a free Boolean 
algebra and system R can be used to test a term against 0. I f  B__ is given in terms of 
generators and relations, there is again a choice. One can either try to add all relations to 
2~ and obtain a new canonical rewriting system by running the Knuth-Bendfi~ completion 
procedure. The resulting system can then be used as a decision procedure. It is not clear 
to us that  the completion always succeeds. Alternatively one can use lemma 3 togethe~ 
with system/~. 

The second approach uses the existence of an orthogonal basis of B of cardinality m 
to translate the problem into 2 m. Given a term t E T(E,  C), the isomorphism ~, (see 
section ) translates t ~  into 2 "~. This results in rn terms ti E T(E,  {}) such that t = ~  0 if 
and only if t~ =2  0 for all i. The latter can be solved by simply evaluating t~ in 2 using 
the truth-tables of + and *. 
E x a m p l e  4 To test whether the term a ,  b �9 c is equal to 0 in the Boolean ring B of 
examples 2 and 3, we apply ~ to it which yields (1,0,0,0) * ( 0 , 1 , 0 , 0 ) ,  (0,0,1,0) and 
hence, by componentwise evaluation, (0, 0, 0, 0). Therefore a �9 b * c --B 0 holds. 

']?he image of a + b under ~o on the other hand evaluates to (1, 1, 0, 0). Therefore 
a + b = 0 does not hold in B. 

It should be noted that both methods apply equally well to terms with variables 
which are then interpreted as new free constants. 

6 Finding Particular Solutions 
We can now tackle the problem left open in the description of LSwenheim's method: 

finding a particular solution to a Boolean equation. In section we discuss classical 
algorithms for solving equations in 2. In section we reduce the problem of solving 
equations in an arbitrary Boolean ring to a number of independent problems in 2. 

6 .1  SOLUTIONS IN 2 

Finding particular solutions to Boolean equations is known to be an NP-complete 
problem (e.g. Garey & Johnson, 1979). Because of its importance for theorem prov- 
ing, satisfiability tests for propositional formulae have been at the hea~'t of most early 
mechanical proof procedures, e.g. Davis • Putnam (1960). As a by-product these pro- 
cedures usually find particular vahations which satisfy the given formula, h~[ore recent 
work in this area can be found in Van Gelder (1984) and Bryant  (1986). 

Vail Gelder presents a satisfiability test of complexity O(2(~ *l) if I is the length 
of the formula. Currently this seems to he the best upper bound on the complexity of 
satisfiability tests. 

The work of Bryant is based on the efficient representation of propositional formulae 
as graphs. Once the formula has been translated into graph fomn, satisfiabi]ity can be 
tested in time O(1). I-Iowever, the translation may require exponential time. 

Any equation over 2 can be expressed in polynomial form, as a sum of products of 
variables, or 1 plus a sum of products of variables. Then satisfiability is immediate, since 
any formula whose polynomial form is not 0 is satisfiable. Thus f(~) = 0 has a solution 
provided f (z)  is not identical to 1. A solution can be written down in linear time if f(._z) 
is in polynomial form. If 1 does not appear in f(~) then set each zi = 0. Otherwise pick 
a shortest product of variables appearing in f(.z), set each variable in this product to 1 
and the rest to 0. 
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6 . 2  SOLUTIONS IN AN ARBITRARY BOOLEAN P~ING 

There  are two approaches to this problem. One can either reduce it to a number of 
problems over 2 or solve it directly in the given Boolean r ing/3.  

For the first approach (Niartin & Nipkow, 1989) le t /3  be a Boolean ring with m basis 
elements and let (1) be the equation we want to find a solution to (or determine it  is 
unsatisfiable). This is broken up into 3 steps. 

1. Translate f ~  : B n --. B into m functions f i  : 2 n ~ 2. This is easily done with the 
help of the isomorphism ~ defined at the end of section . 

. 

3. 

Solve m independenr equations fi(z_'i) = 0 in 2 (see section ). 

Combine the solutions (if any) obtained in step 2 and translate them back i n t o / 3  
using ~-1. 

The  second approach (P~udeanu, 1976; Martin & Nipkow, 1989) uses a degenerate 
version of Boole's algorithm: simply instant]ate all parameters in the most general unifier 
with arbitraz.y values to yield a particular solution. Alternatively one can simplify the 
algori thm to yield a particular solution directly: if b_ E B n-1 is a solution to f ( 0 , y )  * 
/ ( 1 , y )  = 0, (f(0,b) ,  b) is a solution to (1). 

E x a m p l e  5 Let f ( z )  = a z  + bz + b = 0 be the equation we want to find a solution to 
in the Boolean r ing /3  of example 2. 

Using W as of example 3, the above equation translates to (1, 0, 0, 0) * x + (0, 1,0, 0) * 
x + (0, 1, 0, 0) which yields the following set of independent equations: 

l * ~ : z - l - 0 * Z l - b 0  -" 0 

0 * r B - l - l * m B q - 1  -~ O 

0 * m s + 0 * z s + 0  = 0 

0 * m 4 + 0 * z 4 + 0  = 0 

A part icular  solution, for example ( ~ ,  ~2, x3, x4) = (0, 1, 0, 0), can easily be found. In 
the case of (0,1, 0, 0) we can immediately read off its translation back into /3 as b. In 
general we will only get its orthogona] normal form 0 * ab~ Jr 1 * hb~ § 0 * ~bc q- 0 * ~b~. 
It so happens that  this expression simplifies to ~b~ which ( in /3)  is equivalent to b. 

I f  we use the degenerate version of Boole's algorithm, we obtain f (0)  * f (1)  = ab after 
eliminating x. Using for example ]emma 3, it is easy to verify tha t  ab --'~ O. Hence the 
equation is consistent and as a special solution for x we obtain f (0)  --- b. 

There  are many variations on the above methods which we shall not explore. For 
example in Martin & Nipkow (1986, 1989) the formula is brought into polynomial normal 
form before its translation into 2 m. This makes the search for particular solutions trivial 
(see section ) and puts all the work into the normalization process. 

7 Complexity 
Tile following complexity analysis of the various algorithms presented does not apply 

to any of the  rewrite based methods. It concentrates on the algorithms which operate 
by reduct ion to 2 m, 
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In the sequel let l be the number of symbols in @, the formula under consideration, n 
the number of variables in @ and k the set of constants in @. Also let m be the number 
of orthogonal basis vectors of the Boolean algebra B generat.ed by C, the set of constants 
in | 

7.1 SIMPLIFICATION 

Simplifying a formula in q'(]~, {}) amounts to evaluating it in 2 which has complex- 
ity O(l). If the formula is in T(P., C), it is equivalent to m evaluations in 2 and has 
complexity O(m �9 l). 

7.2 BOOLE~S METHOD 

Both variable elimination and resubstitution of reproductive solutions can be done 
in time O(n) using suitable structure sharing techniques (e.g. Boyer & Moore, 1972). 
However, the length of the term constructed by variable elimination is O(l * 2n). To 
test this term against 0 requires time ( 1 , 2  n) in 2 and O ( m * l , 2 " )  in B. Hence 
Boole's algorithm requires O(m * l �9 2 ~) steps. To reduce this complexity, a practical 
implementation requires the judicious application of simplifications every time a variable 
is eliminated. 

7.3 FINDING PARTICULAR SOLUTIONS 

The complexity of the best known algorithms for testing the satisfiability and finding a 
particular solution to Boolean equations in 2 (see section ) is still exponential, which is not 
surprising, given that the problem is NP-complete. For simplicity we do therefore assume 
that its complexity is O(l * 2n), reflecting the process of trying 2 n possible valuations 
which each take time O(l) to be tested. 

If a solution in an arbitrary Boolean ring B is to be found, the reduction to m 
independent equations yields a complexity of O(m �9 l �9 2n). If the degenerate version of 
Boole's algorithm is used to determine a solution the complexity is the same. 

7.4 LOWENHEIM'S METHOD 

The complexity of using LSwenheim's formula is determined completely by the coin- 
plexity of finding a particular solution, which, by section , is O(m * l �9 2n). 

~u have seen that both Boole's mid LSwenheim's method have the same asymptotic 
complexity O(m �9 l �9 T~). If we work in the free Boolean ring generated by k constants, 
m = 2 ~ and the complexity of unification is O(1 * 2~+n), i.e. it is exponential in the 
number of both variables and constants. 

8 Different Operators 

Quite frequently problems in the realm of Boolean algebra m'e not formulated in terms 
of the ring operations 1, + and * but in terms of a different signature P. For example 
F = {O,_,,,U}, where U is union and - complement. As long as F is as expressive as E, 
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there is no real problem because one can translate in either direction. For the  above r 
the translations take the following form: 

1 : 0 ,  z + y = z * g U ~ * y  

~ : m + l ,  z U y = ~ + y + x * y  
This suggests the naiye approach of translating the unification problem into E, solving 
it there and translating it back. The problem with this is the exponential blowup in the 
size of the formulae which may occur with each translation. 

Alternatively one can translate the unification algorithms from E into 1-'. We show 
what tha t  means for Boole and LSwenheim. 

For Boole's method  this requires the translation of the consistency test (2) and of 
equation (4). Given the above r, the consistency test remains unchanged because  * is 
still at our disposal. The translation of equation (4) however has to go through a number 
of simplifications ( f (0 ,  G(y))*  f(1,  G(y)) = 0!) before the following compact fo rmula  can 
be derived: 

: (:(1, �9 u f(0, G(_y)), (12) 
Fox" Lbwenheim's method we need to translate equation (8). For r as above this yields 

the following formula: 
F(~) - x ,  f(x) U b__, f(~) (13) 

For other sets of operators the task is the same although the result of translating 
Boole's and L6wenheim's formulae may not be as straightforward as in (12) and (13) 
above. 

9 U n i f i c a t i o n  in  t h e  U n q u a n t i f i e d  P r e d i c a t e  
C a l c u l u s  

In this section we describe how to unify terms of the unquantified predicate calculus, 
viewed as a Boolean ring under exclusive or (+) and conjunction. In fact we solve a 
slightly more general unification problem, which we now describe, and show it to be 
finitary. 

Let F be a signature, C a set of constants and X a set of variables, and suppose each 
contains no elements of E. Let T(F ,  X U C) = T be the corresponding term Mgebra, as 
defined in for example Siekmann (1984). Let S = q- \ X. Now form 

= r  

the free Boolean ring over 6". We shall give a unification algorithm for this r ing.  
Notice that if P is a set of predicate symbols, C a set of constant function symbols, 

D a set of non constant  function symbols and X a set of variable symbols then the set of 
well formed formulae of the first order predicate calculus on P, C, D and X (see Monk, 
1976) corresponds to a subring of the Boolean ring B(P U D), generated by all terms of 
the form 

where p C P and t~ C T(D,X UC). We denote this subring by B~(P U D). Finding a 
unifier involves finding a substitution 

:X--+ T(D, XUO). 
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In fact we shall see tha t  any unifier arising from our method will be of this fo rm if the 
original te rms correspond to well formed formulae, i.e. lie irt BI (P  U D) .  Hence our 
generalisation makes no difference. 

Suppose that  we wish to solve 
= O. 

By multiplying up and using the distributive law we m a y  assume tha t  

UC8 

where the sum is over all finite subsets of 8, xu is the product of all the elements  of U, 
each bu 6 2 mad only finitely m~ny bu are not zero. 

A solution consists of a unifier 

x 

However, since we only Mlow unifiers which induce a map  from/3(1") to itself, and  skate 
any variable occurs only as a proper  subterm of m~ element of 8, it can only be mapped  
by cr to ~n element of T.  Thus 

~:X-~T. 

Since our equation involves only a finite subset T of S we may  regard i~ as an equation 
in T (E ,  T)E ,  and rewrite it in ~erms of the orthogonal basis {x u I U C_ T}  as 

U CT 

where each b u ~ 2, and at least one b u is non-zero, 
Now multiplying this equation (14) by z u for each non-zero b or, we see tha t  (14) is 

equivalent to 
m u = 0 for eaclx non-zero b cr . (15) 

Now 
xu 

where u~ and v i are all distinct elements of T C 8. Applying a unifier ~ only replaces 
the ui and vj by other elements of S, so tha t  

a:Uo - - 0 

if and only if u~cr = vjcr for some values of i and j .  
This gives us our unification procedure. We t ry  to unify the v.s possible pMrs ui,vj  

using a unification algorithm in 2-; either Robinson's unification (Robinson, 1965) or the 
improved algori thm of Vit ter  ~ Simons (1986). If there are no u~ or no vj, or if none 
of the pairs can be unified our original equation had no solution. Otherwise, for each 
ratifier tha t  we have found, we do the following. First we use it to simplify the remaining 
equations in (15). If all the equations simplify to 0 = 0, we have a unifier for the original 
equation. Otherwise we repeat  the process on one of the simplified equations which is 
not 0 = 0. This process terminates,  since we only find finitely many  unifiers at  each 
stage, and reduce the number  of equations in (15) each time. I f  the original equation 
has a solution we can either stop the search process when we have found one solution, 
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or continue and find all solutions. There will be a finite set of unifiers tha t  gives all 
solutions. 

Let us consider some examples. 
E x a m p l e  6 To solve 

v(~)p(a)  + ;(~)p(b) = 0 

In te rms  of an orthogonal  basis this becomes 

p(~)p(a)(1 + p(b)) + p(~)(1 + p(a))p(b) = 0 

Thus  we have to solve the two equations 

p(~)p(a)(1 + p(b)) = 0 

and 
v(~)(1 + ; (~ ) )v (0  = 0 

To solve the  first we must  t ry  and unify the pairs p(z),p(b) aud p(a),p(b). The first gives 
the most  general unifier ~ : x ~ b; the second pair cannot be unified. Now g reduces the 
second equat ion to 

(1 + P(a))p(b) = 0 

which gives rise to one pair of terms p(a),p(b), which cannot be unified. Thus  the original 
equat ion had no solution. 

E x a m p l e  7 To solve 

p(~) + p(x)p(b) 4" p(a)p(b) 4" p(x)p(a)p(b) -- O. 

This  reduces to three equations 

p ( x ) ( l + p ( a ) ) ( 1 4 - p ( b ) )  = 0 
v(x)p(a)(1 + v(b)) = o 

(1 + p(~))p(a)p(b) = 0 

The  first gives rise to two pairs, p (z ) ,p (a )  and p(x),p(b), aud two unifiers, ~1 : x --+ a 
and ~2 : x --+ b. Under zl  the remaining equations become 

p(a)(1 +p(b ) )  = 0 

and 
0 = 0 .  

The  first gives a pair p(a),p(b), which cannot be unified. Under ~2 bo th  equations reduce 
to 0 -- 0, so x --+ b is the most  general unifier. 

l ~ e m a r k  Herold (1986) describes a technique for combining equational  theories which, 
a l though it sets out  to solve a different and more general problem, yields a valid technique 
in this case. To solve the equation 

~ buzu = O, 
UC$ 
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take all pairs sl,  s2 of distinct elements of S which occur in it and a t tempt  ~o un i fy  
them using the unification Mgorithm in T .  If no pairs can be unified, halt  with fa i lure .  
Otherwise, for each unifier obtained, use it to simplify the equation and then repea t  t h e  
process. It is easy to see that  this method is essentially the same as ours, except  t h a t  
we write our equation in orthogonal form before attempting to unify pairs. This r educes  
the number of pairs we try to unify, from n ( n -  1)/2 to at most n~/4 at the first pass  o f  
the algorithm, when R has n elements. 

10 A S e m i - D e c i s i o n  Procedure  for the  First  O r d e r  
P r e d i c a t e  Calculus  

In this section we describe a semi-decisiort procedure for the first order p red ica te  
calculus, based on our unification techniques. The reader is referred to chapter  11 o f  
Monk (1976) for definitions. 
T h e o r e m  7 The following steps constitute a semi-decision procedure for the first order 
predicate calculus. Let P be a formula of the first order predicate calculus. To determine 
whether P is unsatisfiable 

1. Form the Skolem expansion 

Ps = W l , . . .  ,V:~,,F(~I, . . . ,  ~:,,) 

of P, where F(Zz, . . . ,  x,,) = F is quantifier free, and Ps contains no free variables. 

~. Transform F inlo a Boolean term B(x l ,  . . . .  xn) -- B by replacing pAq  by pq, p V  q 
by p + q + pq and --,p by l + p. 

3. Let 

for i > O, and let 

B~ = B ( x i . + l , . . . ,  z(i+l),,), 

B[k] = Bo . . . . .  Bk. 

For each, k > O, determine, using the melhod of section 6, or other~wise, whether or 
not B[k] can be unified with O. 

J. P is unsatisfiable i f  and only i f  some B[k] can be unified with O. 

N o t e  We do not intend to address questions of efficiency here. Of course the equat ions  
B[i] are not independent of each other, and information acquired in failing to unify B[k] 
with 0 can be used in at tempting to unify B[k + 1] with 0. This will be more efficiellt 
than  just applying the method of section from scratch for each value of k. 

We illustrate the theorem with two examples. 

E x a m p l e  8 Let 
B(x) -- p(g) + p(x)p(a). 

The substitution r : x -+ a unifies B(x)  with 0, and so 

w.~,(~)  A -,p(a) 

is unsatisfiable. 
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E x a m p l e  9 Let 

Then 

an  d 

B ( , )  = 

Z[0] = B ( , , ) ,  

Bin  - 1] = (p(xl )  + p (a l )p (a2) . . ,  p (an ) ) . . .  (P(r + p ( a t ) p ( a s ) . . ,  p(an)). 

Then the substitution 
: x i  --* a~ (~ = 1 , . . . ,  n )  

is a unifier of Bin - 1] with 0, and so 

v A . . .  ^ A ^ A . . .  A p (a , , ) )  

is unsatisfiable. (Notice that  none of B[0] , . . . ,  Bin - 2] can be unified with 0.) 

The idea of using unification for first order theorem proving seems to have appeared 
first in Herbrands thesis Herbrand (1930), chapter 5, section 2, pp. 139-148. He decided 
which terms to t ry  and unify by associating to each formula an array of signed letters 

def ined by recursion on the variables in the proposition, which generated infinitely many 
derived propositions. The original proposition was unsatisfiable if and only if one of the 
derived propositions could be reduced, using unification, to an unsatisfiable formula of the 
propositional calculus. I~.obinson (1965) eliminated the complicated notion of the array 
of signed letters by  always working with skolemised formulae; two terms were unified if 
this would ~llow the resolution rule. 

P v Q ,  ~ P v R  
Ovt~ 

to be applied. Again this gives a semi-decision procedure. 
Our method may be regarded as no more than a variant of resolution. The point of 

the reduction to orthogonal form inside our unification algorithm is that  terms are only 
unified if we can apply the rule (1 + u)u = O, that  is 

P A ~ P  

In our method the different equations B[k] are treated explicitly; in Robinson's method 
they axe hidden. 

Another  approach to fiirst order theorem proving has been investigated by Hsiang 
(1985) and Kaput & Narendran (1985). They work in a Boolean ring, as we do, but 
they do not  at tempt to unify the B[k] with 0 directly. Instead they assume B[0] is 
not unsatisfiable, then use unification inside the Knuth  Bendb: algorithm, attempting to 
produce directed rules involving Boolean terms which eventually lead to the rule 1 --~ 0, 
contradicting the assumption. 

We now sketch the proof of Theorem 7. 
P r o o f  of  t h e o r e m  7 Our proof depends upon Herhrand's theorem (see Herbrand 

(1971), chapter 5, section 3, or Monk (1976), theorem I1.42). As we have remarked 
above~ our theorem is similar to tha:~ of I-Ierbrand's thesis, chapter 5, section 2, which 
Herbrand deduced from the result now ca.lied Iterbrand's Theorem. In the notation 



Boolean Unification 291 

above this theorem states that  the formula P is unsatisfiable if and only if there is some 
integer m and n . m  variable-free terms a l , . . . ,  a~rn such tha~ the conjunction of ~he m 
expressions 

. . . ,  = - 1 )  

is unsatisfiable in the propositional calculus. 
Suppose that P is unsatisfiable. IIerbrand's theorem implies that  there exist elements 

a l , . . . ,  an,,, with the conjunction of the m expressions 

F ( a t + r ~ , - . . ,  a(r+l),~) 

unsatisfiable. Translating into the Boolean ring, this means that  the product of the m 
expressions 

is equal to zero, and the substitution 

: x~ "-+ ai ( i - -  1 , . . . , n r n )  

unifies B [ m  -- 1] with O. 
Conversely suppose tha t  B[k] has been unified with O, by the substitution cr : xl --+ ti. 

Replace each variable occuring in the ti by a variable-free term, to get a substitution 
~- : xr ~ al, where each a~ is a variable-free term. Now since B[k]~- = O, the conjunction 
of the k + 1 formulae 

. . . ,  

is unsatlsfiable, so by tterbrand's theorem P is unsatisfiable. 

11 Conc lus ion  

We would like to conclude by referring to some recent work generalizing the methods 
presented in this article. 

We have dealt with unification of terlr~s over the ring operations and al'bitrary con- 
stants,  and with a special case of adding free function symbols, in SchrrSdt-SchauB(1988) 
and Boudet  e~. al. (1988) the general problem of combining boolean unification with uni- 
fication algorithms for other disjoint theories is solved. Although methods for combining 
unification algorithms (Yelick, 1987; Herold, 1986; Tid4n, 1986) were known before, the 
syntact ic  form of the Boolean ring axioms rendered them inapplicable: both non-regular 
(x + x -= 0) and collapsing (x * x = x) axioms are present. 

Recently there have been two generalizations of Boolean unification reported in Nip- 
kow (1988) and Biittner (1988). Nipkow generalizes to primal (or functionally complete) 
algebras and their varieties. This covers in particular matrix rings over finite fields, Post- 
algebras and p-rings (rings with px = 0 and x p = x for some prime p). Bfittner m~nounces 
a unification algorithm for Post-algebras based on their lattice structure aad presents a 
unification algorithm for a functionally complete variant of the 4-element Boolean lattice. 
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