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In this paper we study basic narrowing as a method for solving equations in the
initial algebra specified by a ground confluent and terminating term rewriting
system. Since we are interested in equation solving, we don’t study basic narrow-
ing as a reduction relation on terms but consider immediately its reformulation
as an equation solving rule. This reformulation leads to a technically simpler
presentation and reveals that the essence of basic narrowing can be captured
without recourse to term unification.

We present an equation solving calculus that features three classes of
rules. Resolution rules, whose application is don’t know nondeterministic, are
the basic rules and suffice for a complete solution procedure. Failure rules detect
inconsistent parts of the search space. Simplification rules, whose application is
don’t care nondeterministic, enhance the power of the failure rules and reduce
the number of necessary don’t know steps.

Three of the presented simplification rules are new. The rewriting rule
allows for don’t care nondeterministic rewriting and thus yields a marriage of
basic and normalizing narrowing. The safe blocking rule is specific to basic nar-
rowing and is particularly useful in conjunction with the rewriting rule. Finally,
the unfolding rule allows for a variety of search strategies that reduce the number
of don’t know alternatives that need to be explored.

1. Introduction

Narrowing first appeared in the context of resolution based theorem proving as an adap-
tion of the paramodulation rule (Robinson & Wos,1969) to canonical term rewriting
systems (Slagle, 1974; Lankford, 1975). Fay (1978) realized that narrowing can be em-
ployed as a universal unification procedure that solves equations in the theory defined
by a canonical rewriting system. Hullot (1980) continued Fay’s (1978) work and devised
a new narrowing strategy called basic narrowing. Kirchner (1985) extended narrowing
to rewriting modulo equations. Kaplan (1984) and HuBmann (1985) investigated nar-
rowing for conditional term rewriting systems. The recent interest in logic programming
with equations (Dershowitz & Plaisted, 1985; Goguen & Meseguer, 1986) has generated
much work on universal unification (often called E-unification) (Gallier & Snyder, 1987;
Holldobler, 1987; Martelli et al., 1986) and narrowing (Bosco et al., 1987; Fribourg,
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1985; Josephson & Dershowitz, 1986; Réty et al., 1985; You & Subrahmanyam, 1986) in
particular.

Technically, narrowing combines term unification and rewriting. To perform a par-
rowing step on a term t means to replace t by 6(¢[r «— v]), where ¢/7 is a nonvariable
subterm of ¢, u -+ v is a variable disjoint copy of a rule, and § is the most general unifier
of the subterm ¢/7 and the left hand side u of the rule. The thus obtained narrowing
relation extends the rewriting relation since every rewriting step is also a narrowing step.

Fay’s (1978) unification procedure employs a normalizing narrowing strategy, where a
proper narrowing step is only performed if no rewriting step is possible. In other words,
after every proper narrowing step the obtained term is rewritten to normal form. While
the application of a rewriting step is don’t care nondeterministic (that is, it doesn’t
matter which rewriting step is applied next), the application of a narrowing step is don’t
know nondeterministic (that is, it matters which narrowing step is applied next). The
advantage of normalizing narrowing over pure narrowing is that it yields a unification
procedure with a smaller search space.

Hullot’s (1980) basic narrowing strategy obtains a search space reduction by restricting
narrowing steps to subterms that were not introduced by instantiation. The drawback of
this stragtegy is that the application of a narrowing step that is actually a rewriting step
is no longer don’t care nondeterministic. Recently, the authors (Réty, 1987; Smolka &
Nutt, 1987) devised special rewriting rules that are compatible with the basic narrowing
strategy and whose application is still don’t care nondeterministic. This present paper
combines and simplifies our results.

We study basic narrowing and its optimizations as a method for solving equations
in the initial algebra specified by a ground confluent and terminating term rewriting
system. Since we are interested in equation solving, we don’t study basic narrowing as
a reduction relation on terms but consider immediately its reformulation as an equation
solving rule. This reformulation leads to a technically simpler presentation and reveals
that the essence of basic narrowing can be captured without recourse to term unification.

There are several advantages gained from weakening the usual confluence requirement
to ground confluence. Applications in algebraic specification and logic programming
usually employ initial algebra semantics, which means that ground confluence rather
than full confluence is the natural requirement. A typical example is the specification of
the integers shown in Figure 1. This specification is a terminating and ground confluent
rewriting system, which is not confluent since, for instance, z+y and ((z*y)+y) + (—y)
are two distinct normal forms of p(s(z)) *+ y. An automatic completion of this system
seems to be difficult if not impossible. Réty et al. (1985) give a confluent extension of this
system by adding thirteen inductive consequences. This more than doubles the original
rules and thus increases the search space of a narrowing bhased unification procedure. To
be able to weaken the usual confluence requirement to ground confluence, completeness
must be defined with respect to solutions, which map variables into irreducible ground
terms, rather than unifiers, which map variables to terms possibly containing variables.

Our equation solving calculus employs three classes of rules: resolution rules whose
application is don’t know nondeterministic, simplification rules whose application is don’t
care nondeterministic, and failure rules allowing to prune inconsistent parts of a search
tree. The resolution rules are the basic rules and suffice for a cornplete solution procedure.
The purpose of the simplification rules is to reduce the search space. In some cases, the
use of simplification rules can cut down an infinite search space to a finite one.

Three of the presented simplification rules are new. The rewriting rule allows for don’t
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(1) p(s(x)) —=

(2) s(p(z)) —=

3) 0+y—y

(4) s(z)+y—s(x+y)
(5) p(z)+y— plz+y)

(6) —0—0 (9) 0xy—0
(7) —s(z) — p(—~2z) (10) s(z)xy—(z*y)+y
(8) —p(z) — s(—=) (11) plz)*xy— (z*y)+ (-y)

FIGURE 1.1. A specification of the integers as a ground confluent and terminating
rewriting system.

care nondeterministic rewriting and thus yields a marriage of basic and normalizing
narrowing that enjoys the advantages of both approaches. The safe blocking rule is
specific to basic narrowing and is particulary useful in conjunction with the rewriting
rule. Finally, the unfolding rule allows for a variety of search strategies that reduce the
number of don’t know alternatives that need to be explored.

Our equation solving calculus is the basis for a class of solution procedures, where the
don’t know application of a resolution step is followed by the don’t care application of
finitely many simplification steps. The completeness of these procedures is shown with a
new proof technique yielding a scheme that is easily applied to additional or alternative
rules. As an application of our proof scheme, we show the completeness of an innermost
constructor strategy similar to the one proposed by Fribourg (1985).

The paper is organized as follows. In Section 2 we fix our notation for equations and
rewriting systems. In Section 3 we present two resolution rules that yield a complete
but very inefficient solution procedure, In Section 4, which is the heart of the paper, we
extend the equation solving calculus with failure and simplification rules, thus obtaining a
far more efficient solution procedure. In Section 5 we show the completeness of a solution
procedure that uses inductive consequences for rewriting and prove the completeness of
an innermost constructor strategy.

For most applications the use of many-sorted or even order-sorted (many-sorted with
subsorts) equational logic is essential. Nevertheless, in this paper we consider only un-
sorted logic since it suffices to demonstrate our ideas. The generalization of our results
to the many-sorted case without subsorts is straightforward. The generalization to the
order-sorted case is also not difficult if sort-decreasing rewriting systems (Smolka et al.,
1987) are employed.

2. Equations and Rewriting Systems

In this section we review the necessary notations for equations and rewriting systems.
The reader not familiar with the theory of term rewriting systems may consult (Huet,
1980; Huet & Oppen, 1980).
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We assume that a set of function symbols (ranged over by f, g, and h) and an infinite
set of variables (ranged over by z, y, z) are given. Every function symbol comes with an
arity, which is a nonnegative integer.

Terms (ranged over by s, ¢, u, and v) and occurrences of terms (ranged over by =) are
defined as usual. We use s/ to denote the subterm of s at occurrence m and s[r « t] to
denote the term obtainable from s by replacing the subterm at occurrence 7 with . An
equation s = t is an ordered pair consisting of two terms s and £. The letter P will always
range over equations. An equation system is a bag P, & --- & P, of equations; we use
@ to denote the empty equation system. The letter E will always range over equation
gystems. An equation is called trivial if it has the form s = s; an equation system is
called trivial if each of its equations is trivial.

A syntactical object is either a term, an equation, or an equation system. A syntactical
object is called ground if it does not contain variables. We use V(O) to denote the set of
variables occurring in a syntactical object O.

A signature is a set of function symbols. The letter £ will always range over signatures.
A syntactical object is called a Z-object if every function symbol occurring in it is in ¥,

Let ¥ be a signature. A X-substitution is a function from ¥-terms into ¥-terms such
that 0f(s1,...,5n) = f(#s1,...,0s,) and D6 := {z | = # =z} is finite. In abuse of
notation, P# is called the domain of § and C8 := {fx | = € DI} is called the codomain of
. Furthermore, 76 := V(CP) is called the set of variables introduced by §. The letters
8, v, and ¢ will always range over substitutions. The composition of 3-substitutions is
again a Z-substitution. Z-substitutions are extended to syntactical T-objects as usual.
A substitution 6 is ground if fz is a ground term for all 4 € D§. A substitution 8 is
idempotent if 8¢ = 6. Note that # is idempotent if and only if D@ and Z8 are disjoint.

The equational representation [f] of a substitution ¢ is the equation system

z1 =0z, & - &z, =0z,

where {x1,...,2,} = D6. Two substitutions are equal if and only if their equational
representations are equal. Conversely, every Z-equation system x1 = 8; & --- & z, = 3,
such that z4,..., 2, are distinct variables is the equational representation of some -

substitntion, which we denote with (z; = s; & --- & 2, = 5,). Note that § = {[f]) for
every substitution 8.

Let 6 be a substitution and V' be a set of variables. The restriction 8|y of § to
V is defined by: 8|v(z) := 6z if « € V, otherwise § |y (z) := z. Furthermore, the
update B[y «— s] of 8 at y with s is defined by: 8fy « s)(z) ;= s if £ = y, otherwise
Oy — s](z) := b=.

A syntactical object O is called an instance of a syntactical object O’ if there is
a substitution # such that O = #0’. A syntactical object O is called a variant of a
syntactical object O’ if O is obtainable from O’ by consistent variable renaming, that is,
there exist substitutions # and ¥ such that O' = 60 and O = ¢Q’.

Let — be a binary relation on a set M. Then we use —* to denote the reflexive and
transitive closure of —. The relation — is called confluent if for all a, 4, and ¢ in M such
that ¢ —* b and a —* ¢ there exists a d in M such that b —=* d and ¢ —=* d. Furthermore,
— is called terminating if there is no infinite chain a; — a3 — az — -

A T-rewriting rule s — 1 1s an equation s = ¢ such that s isn’t a variable and every
variable occurring in the right hand side ¢ occurs in the left hand side s. A rewriting
system R = (I, £) consists of a signature & and a set £ of T-rewriting rules. A rewriting

system R = (T, £) defines a binary relation -2 called the rewriting relation of R on
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the set of all T-terms as follows: s —=+¢ if and only if there exists an occurrence 7 of s
and an instance 4 — v of a rule of R such that s/ = u and t = s[r — v]. A term s is
R-normal if there is no term # such that s —<». A term ¢ is an R-normal form of a term
s if s 2*¢ and ¢ is R-normal. An R-value is an R-normal %round term. A rewriting
system R = (I, £) is ground confluent if the restriction of —= to the set of all ground
Y-terms is confluent.

The initial algebra Z(R) specified by a ground confluent and terminating rewriting
system R = (I, £) can be defined as follows:

e The carrier of Z(R) is the set of all R-values.
e The denotation fz(x) of a function symbol in & is given by f;r(;q,)(sl,...,sn) = s,
where s is the R-normal form of f(s1,...,8n).

A ground Y-equation s = t is valid in (the initial algebra of) R if s and t have the
same R-normal form. We write R s =tors =g t if s &= ¢ is valid in R. A ground
¥-equation system is valid in (the initial algebra of) R if each of its equations is valid in
R. We write R |= E if E is valid in R. A Z-equation s == ¢ is an inductive consequence
of R if every ground instance of s = t is valid in R. Two ground Z-substitutions ¢ and
1 are equal in R (write 8 = 9) if Df = Dy and 8z =x ¥z for every z € DF.

Let R = (2,€) be a ground confluent and terminating rewriting system. Then we
have:

e “s=x 1" is a congruence on the set of all ground Z-terms, that is, “s =¢ t” is an

equivalence relation satisfying
si=rity A -0 AN Bp=rig = f(sl)"‘)sn)=Rf(t1)"')tn)'

e “0 =g 9” is an equivalence relation on the set of all ground T-substitutions.
o If § =r ¢, then 8s =x s for every term s such that V(s) C D8 = Dib.

3. The Basic Resolution Rules

In this section we develop a simple equation solving calculus that captures the essence of
Hullot’s (1980) basic narrowing method. This calculus is the basis for a simple solution
procedure whose soundness and completeness we will prove. In the next section we will
present several extensions for this calculus, thus obtaining a refined solution procedure
with a much smaller search space. In particular, the basic calculus to be presented in
this section does not yet incorporate term unification, which will only be added in the
next section.

GENERAL ASSUMPTION. In the rest of this paper we assume that R = (X,€) is a
ground confluent and terminating rewriting system; furthermore, we assume that there
Is at least one ground X-term.

We start by defining the solutions of an equation system in the initial algebra of R.
A substitution f is an R-assignment if 8z is an R-value for all z € Dd. We use ASS% to
denote the set of all R-assignments. With that we define the set of all R-solutions of an
equation system F as

SOLR(E) = {0 € ASSz | DI = V(E) A R =6E}.
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Blocking

(B) C.P&E ~fopy C&P.E

Application
(A) C.P&E -Dspy C&(P/mr=u). Pln —v]&E

if P/m isn’t a variable and u — v is a variant of a rule of R
having no variables in common with C. P& E or V

F1GURE 3.1. The basic resolution rules.

An equation solving procedure for R is a procedure that enumerates SOLRr(E).

For technical reasons that will become apparent scon, we need to relativize the solu-
tions of an equation system with respect to a set of “primary variables”, The R-solutions
of a L-equation system E with respect to a set V' of variables are defined as follows:

SOL%(E) = {0y | 6 € ASSx A DPI=V UV(E) A REGE}.

Note that SOLg(E) = SOLXZ)/(E). For convenience, we write SOLY(E) for
SOLE’EM)(E), where (X,0) is the rewriting system with signature T and no rules. Note

that SOL‘g (E) can be represented rather explicitly by the most general unifier of E,
which can be computed using term unification. This will be discussed in Subsection 4.2.

In the literature, narrowing is usually presented for confluent rewriting systems and
completeness is shown with respect to all unifiers, which include nonground substitu-
tions. Since we have weakened the confluence requirement to ground confluence, we have
to restrict our attention to ground substitutions. Nevertheless, the ground confluence
approach subsumes the conventional approach. To see this, assume a confluent rewriting
system is given. We can extend this system by adding infinitely many constants to its
signature, one for each variable. Then the solutions with respect to the extended system,
which is still ground confluent, exactly correspond to the unifiers with respect to the
original system.

The rules of our equation solving calculus, which are given in Figure 3.1, apply to pairs
C. E consisting of two equation systems C and F; C is called the constraint part and
E is called the unsolved part. The division of C&E into two parts is needed to express
the basic narrowing strategy. The calculus will allow us to reduce an initial pair 8. E to
solved pairs Cy. 9, C3. 0, ... such that

e (Soundnmess) Vi. SOLY(C;) C SOL%(C;) € SOL%(E)
e (Completeness) Y 8¢€SOLL(0. E) 3Ji 8 eSOLL(C)).

Thus, our calculus “solves” by reducing R-solutions to L-solutions. The two rules
given in Figure 3.1 are called resolution rules because they are the primary rules for
solving equation systems and because we want to distinguish them from the failure and
simplification rules to be presented in the next section. With Robinson’s (1965) resolution
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solve(C. E) is
1. if F' is empty, then return C;
2. choose don’t care an equation P in F;
3. choose don’t know C’'. E’ such that C. E-">g y C’. E' by a step on P;
4. solve(C’. E')

FI1GURE 3.2. The basic solution procedure.

rule our resolution rules have only in common that they resolve something—in our case
equations. The application rule in Figure 3.1 has to introduce new variables to obtain
a renamed variant of the employed rewriting rule. The following assumption makes sure
that there are always enough new variables left.

GENERAL ASSUMPTION. In the rest of this paper we assume that V is a finite set of
variables.

ExaMmpLE 3.1. Let R be the system in Figure 1.1, V = {y}, and consider the equation
0+ y = 0, which has the unique solution (y == 0). Then:

d.0+y=0
Loy 04+y=0+4+y .y =0 by a resolution step using rule (3)
gy O04+y=0+y &y =0.0 bya blocking step.

THEOREM 3.2, (Soundness) IfC. E g v C'. E' by a blocking or an application step,
then SOLY (C' & E') C SOLY(C & E).

ProoF. Let C. E—Tsg v C'. E’ and let § be an assignment such that VUV(C’. EY) =
Df and §(C’ & E') is valid in R. It suffices to show that §(C & F) is valid in R.

If ¢' & E’' has been obtained from C. E by a blocking step, then the claim is
trivial. If an application step has been performed, then C. E = (C.P & E;),
Cl.E =(C & P/m = u. Plr — v] & Ey), and v — v is a rule of R. It suffices
to show that 8P is valid in R. Since §(P/1) =¢ fu and u -+ v is a rule of R, we
have 6(P/n) =r Ov. Since (P[r «— v]}) = (P)[r — 6u] is valid in R, we know that
(6P)[m «— §(P/m)] = 6P is valid in R. O

The nondeterministic solution procedure in Figure 3.2 is an operational formulation
of the equation solving calculus in Figure 3.1. The procedure can be explained as a two
person game played by a don’t care player who makes the don’t care choices and a don’t
know player who makes the don’t know choices. Given R, a pair 0. E, V = V(E),
and a solution § € SOLg(E), the don't care player wins if the procedure terminates
with an equation system C such that 6 & SOLg (C); the don’t know player wins if the
procedure terminates with an equation system C such that § € SOLL(C). We say that
the procedure is complete if the don’t know player can always win if he makes the right
choices. In the following we will show the completeness of the procedure.

An implementation of the basic solution procedure has to explore all alternatives of
a don’t know choice. In fact, the procedure generates a huge number of don’t know
alternatives in step 3. One alternative is to block P; the other alternatives are obtained
by applying a rule to P, where every nonvariable occurrence of P and every rule of R
have to be considered. To be efficient, it is crucial to eliminate redundant or inconsistent
don’t know alternatives as early as possible. This will be the theme of the next section.
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The application rule needs to introduce new variables to obtain a renamed variant of a
rewriting rule. The choice of the new variables is obviously a don’t care nondeterminism,
but making this fact explicit is technically very tedious. For this reason the choice of
new variables appears as a don’t know nondeterminism in the procedure in Figure 3.2.
This problem will be solved in the next section by the introduction of a simplification
rule that can be used to rename variables not occurring in V.

The basic idea behind the completeness proof is a lifting argument. If § € SOLz(E),
then this fact can be verified by rewriting §F into a trivial equation system. Now the
idea is that a blocking step corresponds to the deletion of a trivial equation in §E and
an application step correspends to an innermost rewriting step on 4.

We start by setting up a calculus for verifying that a ground equation system is valid
in R. The two rules of the verification calculus correspond to the blocking and the
application rule of the equation solving calculus:

e (VB) P& E-*Lp E if P is a trivial equation
o (VA)P & E-2Lp Plr +—v] & E if P/m — v is an instance of a rule of R.

The rule (VB) deletes a trivial equation and the rule (VA) applies a rewriting step.

PROPOSITION 3.3.
o (Invariance) If E 2L E', then E is valid in R if and only if E is valid in R.

e (Termination) The relation “E -5x E'” is terminating.
Ur, =

e (Completeness) E is valid in R if and only if E 5% 0.

An R-triple 8. C. E consists of an R-assignment 8 and two equation systems C' and
E such that V(C. E) C D4, §C is trivial, and F is valid in R. The assignment § should
be thought of as the solution one wants to find by applying resolution steps to the pair
C. E.

ProposITION 3.4. Iff € SOLg(FE), thenf. 8. E is an R-triple. Furthermore, iff. C. 0
is an R-triple and V C V(C), then 8ly € SOLE(C).

We now define a reduction relation on R-triples that links resolution steps with their
corresponding verification steps. We write 8, C. E~—gy 8. C'. E' if . C. E and
§'. C'. E' are both R-triples and

e fand # agreeon V
e C. E-Sopy C'. E' by a resolution rule o
e O0F YLp 0'E' by the verification rule corresponding to o.

PrOPOSITION 3.5. (Termination) The triple relation “6. C. E—py 0. C's E'” Is
terminating.

A term is called R-innermost if each of its proper subterms is R-normal. The proof of
the following theorem rests on the idea that for a triple 8. C. E a verification step that
rewrites an innermost term of #F can be “pushed up” to an application step on C. E.

THEOREM 3.6. (Push Up) If 9. C'. E is an R-triple and P is an equation in E, then
there exists a triple 8'. C'. E' such that §. C. E gy 6'. C'. E' by a resolution step
on P.

Proor, Let 8. C. P&E be an R-triple. Then 6P is valid in R. Thus 8P is either
trivial or can be rewritten.
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1. Suppose P is a trivial equation. Then C. P & £~y v C & P. E by the blocking
rule and §(P & E) 5 F by the verification rule VB. Since 8. C&P. E is an R-triple,
this yields the claim.

2. Suppose 8P can be rewritten. Then there exist a nonvariable occurrence m of P such
that (§ P)/r is R-innermost, a variant u — v of a rule of R, and a substitution ¢ such that
¢u = (6P)/m. Without Joss of generality we can assume that D¢ = V(u — v) and u — v
has no variables in common with V, €. P&E, and D. Define ¢’ := (C & P/7 = u) and
E' := (P[r «— v] & E). Since 8P & 0F, -“Lg (OP)[r « ¢v] & OE, by the verification
rule VA and C. P&E —Sg v C’. E! by the resolution rule A, it suffices to show that
there exists an R-assignment 6’ such that D8’ = DIUV(u — v), ¢’ agrees with § on DI,
¢’'(P/n) = 0'u, and 0'( P[w « v]) is valid in R.

To show this, define 6’ as follows: if £ € D¢ then 8’z = ¢z, otherwise 8'z == 8z. To
show that 6’ is an R-assignment, it suffices to show that ¢ is an R-assignment, which
holds since D¢ = V(u — v) = V(u), ¢u = §(P/x) is R-innermost and ground, and =
isn’t a variable.

Since D¢ = V(u — v), we have D' = DU D¢ = DI U V(u — v) as required. Since
Db and D¢ = V(u — v) are disjoint, #’ and 6 agree on D§. Furthermore, 6/(P/7) = 0'u
since 8(P/) = du.

Finally, §'(P[r «— v]) = (8P)[r « ¢v] is valid in R since ¢v =g ¢u, ¢u = 8(P/x),
and P = (§P)[r — (P/r)] is valid in R. O

COROLLARY 3.7. For every R-triple #. C. E there exist 8/ and C' such that
0.C. B4 0. ClLD.

ProoF. Suppose that #. C. E is an R-triple. If E is empty, then the claim is trivial.
Otherwise, the push up theorem applies and yields 8. C. E—sq v 8'. C'. E' for some
triple 8'. C’'. E’. Thus, using the termination property of the triple reduction relation,
the claim follows by induction. a

CoROLLARY 3.8. (Completeness) Let § € SOLr(E). Then there exists an equation
system C such that §. E 5%, vz C+ B andd e SOL};(E)(C).

ProOOF. Let § € SOLr(E). Then 6. 8. F is an R-triple. By the preceding corollary
we know that there exist §’ and C’ such that 8. . E~% ygy6’. C’. 0. Thus, we know

that 8 = 8'hm) € SOLY™(C). O

4. Failure and Simplification Rules

In this section we present several optimizations for the basic solution procedure that
was discussed in the last section. An implementation of this procedure must explore
all alternatives of a don’t know choice in step 3, which generates a huge search space.
To reduce this search space, it is crucial to detect as early as possible whether a pair
C. E is consistent, that is, whether there is an assignment that extends it to an R-
triple. This is accomplished by so-called failure rules, which are decidable sufficient
criteria for the inconsistency of a pair. The second method for cutting down the search
space is the addition of so-called simplification rules whose application, in contrast to
the application of resolution rules, is don’t care nondeterministic. By simplifying a pair
with the simplification rules before the application of a resolution step it is often possible
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solve(C'. E) is
1. choose don’t care C'. E' such that C. B—*%y C'. B’
by simplification steps;
if a failure rule applies to C’'. E’, then fail;
if E' is empty, then return C’;
choose don’t care an equation P in E';
choose don’t know C". E” such that C'. B/ g y C". B/
by a resolution step on P;
6. solve(C". E")

G W

FIGURE 4.1. The extended solution procedure.

to reduce the number of don’t know resolution steps needed to reach a solved pair.
Furthermore, often a failure rule applies to an inconsistent pair only after it has been
simplified. Figure 4.1 shows the extension of the basic solution procedure to failure and
simplification rules.

4.1 THE FAILURE RULES

The following definitions are needed to formulate the failure rules.

An equation system F is E-consistent if there is a substitution & such that 8 F is trivial.
The E-consistency of an equation system can be decided by a term unification algorithm.

A pair C. F is consistent in R if there exists a substitution € such that 8. C. E is an
R-triple.

A function symbol is called generating in R if it occurs in at least one R-value. A
function symbol is called completely defined in R if it is not generating in R. In the
rewriting system in Figure 1.1 the functions 0, s and p are generating and the functions
+, — and # are completely defined.

Two function symbols f and g are disjoint in R if no ground equation of the form
F(s1,....85) = g(f1,. .., 1) is valid in R.

A function symbol f is called reducible in R if there is a rule p in R such that f is
the top symbol of the left hand side of p. A function symbol is called irreducible in R
if it isn’t reducible in R. The constant 0 is the only irreducible function symbol in the
rewriting system in Figure 1.1.

ProrosITION 4.1. If a function symbol is irreducible in R, then it is generating in R.
Furthermore, if f and g are distinct function symbols that are both irreducible in R,
then f and g are disjoint in R.

ProPosITION 4.2. (Failure Rules) A pairC. E isinconsistent in R if one of the following
conditions holds:

1. C is not T-consistent.

2. C' contains an equation ¢ = t such that ¢ is not R-normal.

3. C contains an equation z = t such that t contains a completely defined function
symbol,

4. C = [¢] for some substitution ¥ and yE contains an equation f(51,...,82) =
g(t1,...,tm) such that f and g are digjoint.
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The requirement that the constraint part of a pair be the equational representation of
a substitution is not a real restriction since we will introduce a simplification rule that
replaces the constraint part by its most general unifier.

The concept of a completely defined function symbol is of little use for unsorted rewrit-
ing systems. For instance, if we add to the system in Figure 1.1 the constants true and
false, the functions +, — and * are no longer completely defined. This problem can be
avoided by working with many-sorted rewriting systems. Since the power of the failure
rule (3) increases with the number of completely defined functions, the presence of sorts,
even without subsorts, can lead to smaller search spaces.

4.2 TERM UNIFICATION AND EQUATION SYSTEMS

Term unification will be an important part of our optimized solution procedure. After
every resolution step the computation of the most general unifier of the constraint part
of the obtained pair is attempted. If this attempt fails, we know by the failure rule (1)
that the obtained pair is inconsistent, Otherwise, the constraint part can be replaced
with the equational representation of its most general unifier, an optimization that will
be expressed by a simplification rule. If no other failure and simplication rules are
employed, the thereby obtained solution procedure performs essentially basic narrowing
as described in (Hullot, 1980).

In this subsection we review the necessary notations and results for term unification.

An equation systemn S is called solved if it has the form 21 = s, & ... & zp = 8
where the variables z1, ..., z, occur only once. Note that an equation system is solved if
and only if it is the equational representation of an idempotent substitution. The letter
S will always range over solved systems.

The next theorem is the adaption of Robinson’s (1965) unification theorem to our
framework.

THEOREM 4.3. A T-equation system E is L-consistent if and only if there exists a solved
T-equation system S such that D(S) C V and SOLYL(E) = SOLL(S).

For an example, consider SOLL™ (z + s(0) = 5(0) + y) = SOLE (@ = s(0)). The
next proposition says that the solved system S is a fairly explicit representation of the
solution set SOLY (S).

PROPOSITION 4.4. IfD(S) C V, then SOLL(S) = {(0(S))lv | Yz € V. 8(S)z is ground}.

4.3 THE SIMPLIFICATION RULES

Figure 4.2 and 4.3 show the simplification rules we will discuss in this paper. Three of
these rules—the rewriting rule, the unfolding rule and the safe blocking rule SB1—did
not appear in the literature so far. In conjunction with the don’t care selection of the
equation to be resolved upon next, the unfolding rule can drastically reduce the don’t
know alternatives our solution procedure has to explore. The rewriting rule, if used
together with the unfolding rule and the safe blocking rule $B1, results in a marriage of
basic and normalizing narrowing that enjoys the advantages of both approaches.

The key property of the simplification rules is that their application preserves the
reachable solutions, that is, if C. E —+g v C'. E’ by a simplification step, then every
solution that can be reached from C. E can also be reached from C'. E'. We postpone
the proof of this claim to the next subsection. As a consequence of this preservation
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Unification

(Uni) C.E -Spy S.E
if S is solved, SOLY (C) = SOLY (S), D(S) T W, and W = V U V(E)

Rewriting

if (S)(P/7) — v is an instance of a rule of R

Unfolding

(Unf) C.P&E -5gpy C.2=P/r&k Plr—z]&E

if £ is a new variable, that is, z ¢ VU V(C., P&E),
and both P/r and P[r « z] contain at least one function symbol

Safe Blocking
(SB1) S.z=t& E gy S&z=i.FE

if § contains an eguation y = s such that (S)¢ is a subterm of s

(SB2) C.P&E -*sgpy C&P.E

if every function symbol occurring in P is irredueible

Decomposition

(D) C. f(sl,“.,sn)if(‘tl,...,tn)&E —L"R.V Cos1i=t1 & ... &s,=t, & F

if f is decomposable

FIGURE 4.2. The simplification rules, part 1.

property, a pair C. F is inconsistent if it is inconsistent after it has been simplified. This
fact greatly enhances the power of the failure rules.

The following definition is needed for the decomposition rule. A function symbol f
is decomposable in R if for every ground equation f(s1,...,8,) = f(t1,...,%y) that is
valid in R the equations s1 = #1, ..., s, = 1, are valid in R. In the rewriting system in
Figure 1.1 the function symbols s and p are decomposable.
PROPOSITION 4.5. Every irreducible function symbol is decomposable.

The following rewriting system will be used in examples.

(1) app(nil,z) — = (R1)
(2) app(z.y,z) — z.app(y, 2)

R1 is a confluent and terminating rewriting system. The function symbols nil (the empty
list) and ‘. (the cons operator) are irreducible and thus generating, decomposable and
disjoint. The function symbol app (list concatenation) is completely defined.
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Subsumption

(S) S.PYUQYE gy S.QLE
if (S)P = (5)Q

Permutation

(P1) Cis=t& E gy C.t=s&E

(P2) S.z=s&t=u& E -Spy S.c=s&e=u&E
if (S)s = (5)t

(P3) C. E —L’R,V c'. g

if C’. E’ is obtainable from C. E by replacing all occurrences
of z with y, where € V and y ¢ VUV(C. E)

F1GURE 4.3. The simplification rules, part 2.

EXAMPLE 4.6. (Rewriting) We want to solve the equation app(app(z,y), z) = nil in
R1 with respect to the variable z. This problem has an infinite search space if only
unification is employed for simplification, but it has a finite search space if both the
unification and rewriting rule can be used. To see this, consider the derivation

) 0. app(app(z,y), z) = nil o
1z} epp(z,y) = app(z’.y',2’) « app(e’.app(y’,z'), 2) =nil by A
—r142) O« app(z’.app(y’,2’), z) = nil by Uni,

which can be continued infinitely often by applying rule (2) to the inner occurrence of

app. However, if the rewriting rule is available for simplification, we can prune this

infinite and inconsistent part of the search space by rewriting the above pair to
—r1,:) 0. 2lepplapp(y’, 2), 2) = nil by R.

This pair can now be recognized as inconsistent by the failure rule (4) since the function
symbols ‘.’ and nil are disjoint in R1.
The following derivation shows how the solution of the system can be computed:

8 . app(app(z,y), z) = nil

~Sri{ap app(®,y) = app(nil,z’) . app(z’, 2) = nil by A
~ry ) 0. app(e!, z) = nil by Uni
~ori (s app(z!, z) = app(nil, y') « ' = nil by A
~q1,zp app(z’, z) = app(nil,y’) & ' = nil . ¢ by SB2
_r_)’R-l,{z} z=nil . @ by Uni.

ExAMPLE 4.7. (Unfolding) We want to solve the equation app(z, app(y, 2)) = nilin R1
with respect to the variable z. This problem has a finite search space if the unfolding
rule can be used for simplification, while it has infinite search space otherwise. To see
this, consider the derivation
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0. app(z, app(y,z)) = nil .
Ry (=} epp(y,2) = epp(a’y's2') « app(a, #'app(y’, #)) = nil by A
~oriqey 9. app(z, @' .app(y’, 2')) = nil by Uni,

which can be continued infinitely often by applying rule (2) to the inner occurrence of app.
However, if we start with the unfolding rule, we can prune this infinite and inconsistent
part of the search space and compute the solution as follows:

. app(z, app(y,z)) = nil

—opi{z} 0. app(z,z’) = nil & &' = app(y, 2) by Unf
~Lora iz} opp(e,z’) = app(nil,y’) « y' = nil & 2’ = app(y, 2) by A
ey E=nil &z =nil. 2= app(y, z) by §B2, Uni
i {z} T=nil &' =nil& app(y, z) = app(nil,z’) . &’ =2’ by A

ey =il by SB2, Uni.

Compared to ordinary narrowing, the basic narrowing strategy achieves a smaller
search space by avoiding many derivations that don’t correspond to innermost rewriting
chains. This becomes apparent in the proof of the push up theorem, where only innermost
rewriting steps are pushed up, and with the failure rules (2) and (3). However, as the
last example demonstrates, this innermost flavor of the basic narrowing strategy can be
weakened by using the unfolding rule without losing the search space reductions.

The last example also demonstrates that, in conjunction with the don’t care selection
of the next equation to be resolved upon, the unfolding rule can lead to drastic search
space reductions by breaking large equations with many don’t know alternatives into
small equations with few don’t know alternatives. For instance, if the extended solution
procedure selects the equation

app(app(z,y), app(z’,y’)) ==

in step 4, it must explore the following five, not obviously inconsistent, don’t know
alternatives:

{1} blocking the equation,

(2) applying rule (1) of R1 to the left inner occurrence of app,

(3) applying rule (2) of R1 to the left inner occurrence of app,

(4) applying rule (1) of R1 to the right inner occurrence of app, and

(5) applying rule (2) of R1 to the right inner occurrence of app.

The alternatives (2) and (3) or, alternatively, (4) and (5) seem to be redundant since it
shouldn’t make a difference whether the left or right inner occurrence of app is considered
first. This idea can be exploited by unfolding the right inner occurrence of app, which
yields the equations

7' =app(z’,v') & app(app(z,y),z') = 2

and thus eliminates the alternatives (2) and (3) if the left equation is considered first.

In conjunction with the don’t care selection of the next equation to be resolved upon
the unfolding rule can be used to obtain a variety of strategies that reduce the don’t know
alternatives a solution procedure has to consider. Two examples are the the left-to-right
basic narrowing strategy in (Herold, 1986) and the selection narrowing strategy in (Bosco
et al., 1987). Another example is the innermost constructor strategy in (Fribourg, 1985),
which we will discuss in the next section.
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Bosco et al. (1987) present a translation of basic narrowing into SLD-resolution (Lloyd,
1984), which gives them implicitly the effect we would obtain by using the unfolding rule
as often as possible. Complete unfolding, however, has the disadvantage of reducing the
power of the rewriting rule. Nevertheless, Bosco et al.’s (1987) paper gave us the idea
for the unfolding rule.

The application conditions of the unfolding rule ensure that it can’t produce equations
of the form 2 = y, a restriction that is needed to preserve the completeness of the extended
solution procedure.

EXAMPLE 4.8. (Safe Blocking) As we have seen in Example 4.6, using the rewriting rule
for simplification may cut down an infinite search space to a finite one. A disadvantage
of the rewriting rule is, however, that it transfers terms from the constraint part back
into the unsolved part, thus increasing the search space again. To see this, let R be the
rewriting system in Figure 1.1 and consider the rewriting step
, y = s(s(s(2))) + 3+ p(y) = 0
~ryy Y= 8(s(s(2)) « @+ s(s(2)) =0 by R,
which carries the term s(s(z)) from the constraint part into the unsolved part. This
disadvantage can be completely avoided by using the unfolding and the safe blocking
rule to transfer terms carried over by the rewriting rule back into the constraint part:
—or iy y=5(s(s(2)) 2’ =s(s(2)) &z +a’' =0 by Unf
—oryp Y =5(s(s(2)) &' =s(s(2) . z+2' =0 by SBI.
ExAMPLE 4.9. (Naive Rewriting) The following restriction of the application rule, which
we will refer to as the naive rewriting rule, seems to be a better alternative to the rewriting
rule in Figure 4.2 since it doesn’t transfer terms from the constraint part to the unsolved
part:
SeP&E -—mry S& SP/m‘i-u). Plr v & E
if P/ isn’t a variable,
u — v is a variant of a rule of R containing only new variables,
and (S)(P/x) is an instance of u.
However, this rule cannot be used as a simplification rule since, in general, its application
is not don’t care nondeterministic. To see this, consider the rewriting system in Figure
1.1 and the initial pair

0. s(p(x+0)) =0,

which has the unique solution (z = 0). By applying the naive rewriting rule to s with
rule (2) we obtain the pair

o(p(z +0) = s(p(e")) - 2’ =0,
which, after a unification step, becomes
' =z4+0.2" =0.

The only resolution step that applies to the unsolved equation of this pair is blocking,
which yields

' 2e+0& 2’ =0.0,

a pair whose constraint part is T-inconsistent. This shows that the application of the
naive rewriting rule is not don’t care nondeterministic.



310 W. Nuit er al.

ExAMPLE 4.10. (Decomposition) Let R be the rewriting system in Figure 1.1 and con-
sider the equation s(z) = s(y). Since s is decomposable in R (note that s is not irreducible
in R), we know by the decompacsition rule that the equation £ = y, which is in solved
form, has the same solutions in R as the equation s(z) = s(y). Without the decomposi-
tion rule, however, our solution procedure cannot avoid to compute a second solved form
that is redundant:

0. s(x) =s(y)

~Ten vy s(2) = s(p(e’)) . 2’ = s(y) by A
—rfy} 0.2 =s(y) by Uni
~Sorguy (W) =s(p)) 2’ =y by A
Ly v=p) .0 by SB2, Uni.

With the permutation rule P3 it is possible to rename auxiliary variables, that is,
variables that don’t occur in V. We have included this rule to show that the intro-
duction of new variables by the application rule (Figure 3.1) is actually a don’t care
nondeterminism.

4.4 SOUNDNESS AND COMPLETENESS PROOFS

THEOREM 4.11. (Soundness) IfC. E —»g v C’. E' by a simplification step,
then SOLY (C' & E') C SOLL(C & E).

ProoF. Let C. E——g vy C'. E' by a simplification step and let § be an assignment
such that D8 = VUV(C'. E') and 6(C" & E') is valid in R. We have to show that
there exists an assignment 8/ such that VU V(C & F) C D¢, 8’ and 8 agree on V, and
¢'(C & F) is valid in R. Let the simplification rule employed inC. E —>R,V C'. F' be:

Uni. Then C'. E' = S. E, where S is solved, SOLY (C) = SOL¥ (5) and D(S) C
W = V UV(E). It suffices to show that there exists a ground substltutlon f# such that
VUW(C & E) C Db, bly =x blv, and §(C & E) is valid in R, since then defining 6’z as
the normal form of 2 for every & € DB yields the claim.

Since S is solved, we know that (S)S is a trivial equation system, which implies that
6(S)S is a trivial system. This implies (6(S))|lw € SOLY (S) = SOLY (C). Therefore,
there exists a ground substitution & such that D = W U V(C’) V UV(E) UV(C),
bl = (0(.5’))|W, and 8C is trivial. In particular, #C is valid in R.

Since 05 is valid in R, we have § =g 0( ), which yields &|w =r (0{S))|w = 0|w.
Since W = V U V(E), this yields that #E is valid in R and Oy =g lv.

R.Then C. E =(S. P& Ey)and C', E' = (S. P[r « v] & Ey), where (S)(P/7) — v
is an instance of a rule of R. It suffices to show that 82 = (§P)[w — #(P/7)] is valid in R,
which in turn follows from 8(P/7) = fv, since (§P)[r — fv] = §(P[r + v]) is valid in
R. Since 85 is valid in R, we know that § =g 6(S). Hence, 8(P/n) =g 0(S)(P/7) =g Bv
as required.

Unf. Then C.E = (C. P & Ey) and C'. B/ = (C.z = P/n & Plr « z] & E,),
where ¢ is a new variable. It suffices to show that P = (8P)[r « §(P/7)] is valid in R,
which holds since 8z =g 6(P/r) and (0P)[r — 6z] = 0(P[r «— z]) is valid in R.

SB1 or SB2. Then the claim is trivial.

D. Then the claim follows from the congruence property of the relation “s =¢ ¢”.

S. Then C. E = (S. P& Q & E1) and ', E' = (8. Q & E,), where (S)P = (5)Q.
It suffices to show that 6P is valid in R. Since 85 is valid in R, we have § =¢ 6(S), and
since 4Q is valid in R, we know that 6{S)Q is valid in R. This yields that § P is valid in
R since (S)Q = (S)P.
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P1. Then the claim is trivial.

P2. ThenC. E=(Sez=s&t=uv & F)andC.E =(S.z2=s5 &z =u & Ey),
where (S)s = (S)t. It suffices to show that 1 =g fu. Since 45 is valid in R, we know
that § = 6(S), which yields that 6t =g 8(S)t = §(S)s =r s = Oz =x fu.

P3. Then C’. E' has been obtained from C. E by replacing all occurrences of z with
Y, wherez ¢ V and y € VU V(C. E). Thus 0’ := [z « 8y] yields the claim. |

Our next goal is to prove the completeness of the extended solution procedure in
Figure 4.1. As before, the proof will be based on the notion of a triple reduction relation,
which links steps on the resolution level with steps on the verification level. We start by
giving the corresponding verification rule for every simplification rule:

e (VUni), (VP3) E-X5p E

s (VR) P& E-*%q Plr «—v] & E if P/m — v is an instance of a rule of R

o (VUnf) P& E—*»ps=P/n & P[r + s] & E if 5 is the R-normal form of P/n
(VSB1), (VSB2) P & E %% E if P is a trivial equation
(VD) f(s1,...,8n) = f(t1,e. o ytn) & B 2ps; =t & ... & s, =1, & Eif fis
decomposable
¢ (VS) PYPEE 5p P& E
¢ (VP1) s=t& E*pt=s & E
o (VP2) v=2s&s=u& E- sgv=s&v=u& E if v is R-normal.

PRrRoPOSITION 4.12. (Invariance) Let E ~%%g E'. Then E is valid in R if and only if E
is valid in R.

The R-complexity || E||r of an equation system E is defined as the maximal length of
an R-rewriting derivation issuing from £.

PROPOSITION 4.13. (Compatibility) If E % E', then ||El|r > ||E'||=.

Next we extend the simplification steps to R-triples.
We write 8. C. B g v 0. C'. E'if both §. C. E and #'. C'. E’ are R-triples and

o # and ' agree on V
o (. E—gy C'. E' by some simplification rule o
e 0F 24y 6'E' by the verification rule corresponding to o.

The next theorem is the counterpart to the push up theorem for the resolution rules.
Since the application of the simplification rules is supposed to be don’t care nondeter-
ministic, we must be able to push down a simplification step from the resolution level to
the verification level.

THEOREM 4.14. (Push Down) If C. E—*»g v C'. E' by a simplification step and
. C. E is an R-triple, then there exists an assignment 6’ such that

8. C. E—*sp v 0. C'. E'.

Proor. Let 8. C. E be an R-triple. Then V(C. E) C D4, 6C is trivial, and 4E
is valid in R. We will show that for every simplification step C. E—+g v C'. E’ there
exists an assignment §’ such that V(C'. E’) C D', § and 0’ agree on V, §'C’ is trivial,
and 6FE % §'E’ by the corresponding verification step. Let the simplification rule
employed in C. E—+g v C’. E' be:
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Uni. Then C'. E' = S, E, where S is solved, SOLY (C) = SOLY¥ (8), D(S) C W and
W = VUV(E). Since §C is trivial and W U V(C) C D9, we ha.ve flw € SOL¥ (C) =
SOLY (S). Therefore, there exists a ground substitution 8’ such that 8’ agrees with § on
W, 'S is trivial, and D8’ = WUV(S). Since V(E) C W, we know that 0'E = 6F is valid
in R. Thus, it suffices to show that 8’z is R-normal for every & € WUV(S) = W UZI(S).

If z € W, then 8z is R-normal, since 8’z = fz and fz is R-normal. If z € I(S),
then there is an equation y == s in S such that z occurs in s and y € D(S) C W. Hence,
#'z is a subterm of the term 6’s, which is R-normal since ¢'s = 8'y = 8y. Thus 8’z is
R-normal.

R.ThenC. E = (5. P& Ey) and C'. I' = (S. Plr «— v} & Ey), where (S)(P/7) — v
is an instance of a rule of R. It suffices to prove that #P -5 §(P[r « v]) by the
verification rule VR, since then we can define ¢/ := 6.

Since #. S. E is an R-triple, 65 is trivial. Hence # = 6(5), which implies that
(6PY/m = 0(P/m) = 0(S)(P/m). Thus 6P 5y (8P)[r « 6v] by the verification rule
VR, since (S)(P/7) — v is an instance of a rule of R.

Unf. Then C. E = (C. P& E))and C'. E' = (C.z = P/7r & Pr + z] & E,),
where z is a new variable. Defining 6’ := f[z « s], where s is the R-normal form of
6(P/x), yields the claim.

SB1. Then C. B = (S.z=1& Ey) and C'. B/ = (S & ¢ =1t. E;), where S contains
an equation y = s such that (S)t is a subterm of s. It suffices to show that fz =6t is a
trivial equation, since then we can define 4/ := 4.

Since 8. C. E is an R-triple, we have that § = 8(5), 8y = 8s, and z = 8t. Since
6t = 6(S)t and (S)t is a subterm of s, we know that 6t is a subterm of fs. Since s = 8y
is an R-value, 6t is an R-value. Since fz is an R-value and #z =x 6t, we conclude that
fr = 6t.

SB2. Then C. E = (C. P & Ey) and ¢, E' = (C & P. E), where every function
symbol occurring in P is irreducible. It suffices to prove that P is trivial, since then
we can define # := #. Since § is normal and every function symbol occurring in P is
irreducible, 8 P cannot be rewritten. Since P is valid in R, this yields the claim.

D, S, P1 or P2. For these rules §’ := § does the job.

P3. Then ¢’. E' has been obtained from C. E by replacing all occurrences of z with
y, where z € V and y ¢ VU V(C. E). Defining ¢’ := 0y « 6z] yields the claim. O

We write 6. C. E-5gy 0. C's B! if 8. Co BE~—% , 0". C"'. B ~Tog v 0. C'. E'
for some R-triple 8”. C*'. E”. By the push down and the push up theorem we know
that the extended solution procedure builds a derivation

0.C.E Lpy 0. C' B Shpy 0. C".B" 2Sgy -,

provided the right don’t know choices are made. Thus, we know that the procedure is
complete if we can show that the triple reduction relation “4. C. E 2Sp v 9. C’. E' is
terminating. To do this, we will define a complexity measure on triples that is decreased
by resclution steps and not increased by simplification steps. A first attempt to define
the complexity of a triple . C. E could be to use |E||r. However, this doesn’t work
since the resolution step B (blocking) doesn’t necessarily decrease ||E||®.

To define a complexity measure that works, we need a few auxiliary definitions. For a
term s, let |s| be the number of function symbols occurring in s. For an equation s = ¢,
define |s = t| := 0 if s and ¢ are variables and |s = t| := |s|+ [t| — 1 otherwise. For an
equation system E, let |E| 1= ) 5. p|P| and §Z be the number of equations occurring
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in E. With that we define the complexity of an R-triple as a triple of nonnegative
integers:

0. C. E| = (|0E]lx, |E]1E).

On these complexities we obtain a well founded ordering “
extending the usual ordering on integers lexicographically.

4. C. El > }9/0/. El’n by

THEOREM 4.15. (Compatibility)

1. If0. C. E—g v 0'. C'. E' by a resolution step, then [§. C. E| > |6'C'. E'|.
2. If§. C. E—=sg v 0'. C'. E' by a simplification step, then 6. C. E| > |§'C". E'|.

PROOF. 1. Since application steps decrease ||§ E||r, and since blocking steps increase
neither ||6E||» nor |E|, but decrease §E, resolution steps decrease the complexity of a
triple.

2. Let 8. C. E—g y0'. C'. E' by a simplification step. By proposition 4.13, we
know that no simplification step increases ||§E||z. Therefore, it suffices to show that if
a simplification step increases |E|, then it decreases ||0E||g, and if a simplification step
increases § £, then it decreases |E|. The only rule that can increase |E] is the rewriting
rule, which does decrease || E||z. The only rules that can increase {E are the unfolding
and the decomposition rule, which do decrease |E|. O

COROLLARY 4.16. The relation ‘9. C. E5g v 0'. C'. E'” is terminating.
COROLLARY 4.17. The solution procedure in Figure 4.1 is complete.

The proof method we have developped in this and the last section can be used to show
the completeness of alternative sets of resolution and simplification rules. Given such an
alternative set of rules, the first step is to devise for every rule a suitable verification rule.
The verification rules are applied to ground equation systems and must leave their validity
invariant. The combination of the given rules with their corresponding verification rules
then yields a reduction relation on triples. Next one defines a complexity measure on
triples that is decreased by resolution steps and not increased by simplification steps.
Then one shows with a push up theorem that every unsolved triple can be reduced by
a resolution step on any given equation. Finally, one shows with a push down theorem
that every triple can be reduced with any given simplification step.

If one uses an alternative set of resolution rules but the same complexity measure we
used here, the simplification rules discussed here can be used without reproving anything.
If the complexity measure is changed, it is still possible to reuse the push down theorem.

5. Refinements

In this section we discuss two refinements for the extended solution procedure. Both of
them depend on additional knowledge about the underlying rewriting system.
5.1 REWRITING WITH INDUCTIVE CONSEQUENCES

Let R be the rewriting system. in Figure 1.1 and consider the equation z+0 = 0. Although
this equation has the unique solution {z = 0) in R, which is easily found, the extended
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solution procedure nevertheless has an infinite search space for this equation, To see this,
consider the derivation steps

0.z+0=0
Topgsy 2O s() +y  s(z+y) =0 by 4
~opgsy r=s(z) &y =0.s(z'+y') =0 by Uni,

which can be continued infinitely often by applying rule (4) to the occurrence of +. The
obtained pair is actually inconsistent, but our simplification and failure rules are too
weak to detect this inconsistency.

We can get rid of this annoying problem if we add the rule z + 0 — 2 to the rewriting
system. Then the extended solution procedure can find the sclution of 240 = 0 by using
simplification steps only. Since the equation z + 0 = z is an inductive consequence of R
and the extended rewriting system still terminates, adding this rule doesn’t change the
solutions of an equation. We will show that the solution procedure stays complete if the
new rule is used for simplification with the rewriting rule but is not used for resolution
with the application rule.

Two ground confluent and terminating rewriting systems are equivalent if they have
the same signature and every ground term has the same normal form in both systems.
Equivalent rewriting systems define, up to isornorphism, the same initial algebra.

PROPOSITION 5.1. Let R and R’ be two equivalent ground confluent and terminating
rewriting systems. Then a ground equation is valid in R if and only if it is valid in R’

ProPosITION 5.2. Let R = (X,€) be a ground confluent and terminating rewriting
system and s — t be a rewriting rule that is an inductive consequence of R. Then
R’ 1= (E,£ U {s — t}) is a ground confluent rewriting system. Furthermore, if R' is
terminating, then R and R’ are equivalent.

THEOREM 5.3. Let R = (5, ) and R' = (X, EUE') be two equivalent ground confluent
and terminating rewriting systems. Then the extended solution procedure in Figure 4.1
is complete if the rules in £ are employed for resolution steps and the rules in £ U &' are
employed for simplification steps.

ProoF. It suffices to show that the Push Up Theorem still holds if only the rules in
£ are available for application steps. This is the case since every ground term that can
be rewritten with a rule in £ U £’ can also be rewritten with a rule in £, O

The idea to use inductive consequences for rewriting also appears in Fribourg (1985).

5.2 FREE REWRITING SYSTEMS

A ground confluent and terminating rewriting system R is called free if every function
symbol that is reducible in R is completely defined in R. Recall that a function symbol
f is reducible in R if f is the top symbol of the left hand side of at least one rule of R,
and that f is completely defined in R if f occurs in no R-value. The rewriting system
R1 in Subsection 4.3 is an example for a free rewriting system. The irreducible function
symbols of a free rewriting system are often called constructors. Furthermore, a term is
called canonical in R if it doesn’t contain a function symbol that is reducible in R.

PROPOSITION 5.4. Let R be a free rewriting system. Then a ground term is an R-value
if and only if it is canonical.

The reason we discuss free rewriting systems here is that for these systems the number
of don’t know alternatives our solution procedure has to explore can be significantly
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solve(C. E) is
1. choose don’t care C'. E' such that C. E % , C'. E' by simplification
steps and every equation in E’ contains at least one simple term;
if a failure rule applies to C’. E', then fail;
if £’ is empty, then return C’;
. choose don’t care an equation P in E' and a simple subterm P/7 in P;
choose don’t know G, E" such that C'. B' gy C”’. B
by an application step on P at =;
6. solve(C". E")

o oo o

FIGURE 5.1. A solution procedure for free rewriting system.

reduced. Given a free rewriting system R, we call a term f(s1,...,8n) simple in R if
its top symbol f is reducible in R and its arguments s, ..., 5, are canonical in R. The
solution procedure in Figure 5.1 restricts resolution steps to rule applications to don’t
care chosen simple subterms. To prove that this procedure is complete for free rewriting
systems, we have to show two things. First, it must always be possible to simplify a pair
C'. E such that the unsolved part contains only equations that contain at least, one simple
term. This is the case since an equation that doesn’t contain a simple term contains only
irreducible function symbols and can thus be blocked with the simplification rule SB2.
Second, we need a stronger push up theorem:

TuEOREM 5.5. (Push Up for Free Rewriting Systems) Let R be a free rewriting system.
Then, if§. C. E is an R-triple, P is an equation in E, and P/w is a simple subterm of
P, there exists a triple 8'. C’. E' such that §. C. E—Tsg y §'. C’'. E' by an application
step on P at 7.

Proor. Let 6. C. P&E be an R-triple and P/7 be a simple subterm of P. Then
g(P/) is an innermost ground term. Thus there exist a variant u — v of a rule of R
and a substitution ¢ such that ¢u = (§P)/7. From here on the proof is identical with
the proof of the push up theorem in Section 3. |

COROLLARY 5.6. The solution procedure in Figure 5.1 is complete for free rewriting
gystems.

Fribourg (1985) discusses a similar solution procedure for free conditional rewriting
systems. He has the additional requirement that the left hand sides of all rules be simple
terms.

There is actually no need for reproving a stronger version of the push up theorem,
since our simplification rules are already strong enough to justify the solution procedure
for free rewriting systems. In fact, the solution procedure in Figure 5.1 just realizes one
of the many strategies that one can obtain by using the unfolding rule in conjunction
with the don’t care selection of the next equation to be resclved upon. To see this, first
notice that every equation that doesn’t contain a simple term can be safely blocked with
the simplification rule SB2. Secondly, any simple term § contained in an equation can be
unfolded into an equation z == s, which then can be chosen to be the next equation to be
resolved upon. Blocking such an equation immediately yields an inconsistent pair, as we
know by failure rule (3) since the top symbol of s is completely defined. Furthermore,
any application step to a proper subterm s/ of s yields an inconsistent pair, as we know
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by failure rule (1) since the top symbol of s/ is irreducible, that is, is different from the
top symbol of the left hand side of any rewriting rule. Thus we are left with exactly the
don’t know alternatives that are considered by the solution procedure for free rewriting
systems.

The left-to-right basic narrowing strategy in (Herold, 1986) and the selection narrowing
strategy in (Bosco et al., 1987) are two further examples for the strategies that can be

obtained by using the unfolding rule.

Werner Nutt and Gert Smolka’s research was funded by the Bundesminister fiir Forschung
und Technologie under grant ITR8501A. We are grateful to Hans-Jiirgen Burckert and Manfred
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