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In this paper we study basic narrowing as a method for solving equations in the 
initial algebra specified by a ground confluent and terminating term rewriting 
system. Since we are interested in equation solving, we don't study basic narrow~ 
ing as a reduction relation on terms but consider immediately its reformulation 
as an equation solving rule. This reformulation leads to a technically simpler 
presentation and reveals that the essence of basic narrowing can be captured 
without recourse to term unification. 

We present an equation solving calculus that features three classes of 
rules, l~esolution rules, whose application is don't know nondeterministic, are 
the basic rules and suffice for a complete solution procedure. Failure rules detect 
inconsistent parts of the search space. Simplification rules, whose application is 
don't care nondeterministic, enhance the power of the failure rules and reduce 
the number of necessary don't know steps. 

Three of the presented simplification rules are new. The rewriting rule 
allows for don't care nondeterministic rewriting and thus yields a marriage of 
basic and normalizing narrowing. The safe blocking rule is specific to basic nar- 
rowing and is particularly useful in conjunction with the rewriting rule. Finally, 
the unfolding rule allows for a variety of search strategies that reduce the number 
of don't know alternatives that need to be explored. 

1. I n t r o d u c t i o n  

Narrowing first appeared in the context of resolution based theorem proving as an adap- 
tion of the paramodulat ion rule (Robinson & Wos,1969) to canonical term rewriting 
systems (Slagle, 1974; Lankford, 1975). Fay (1978) realized that narrowing can be em- 
ployed as a universal unification procedure that solves equations in the theory defined 
by a canonical rewriting system. Hullot (1980) continued Fay's (1978) work and devised 
a new narrowing strategy called basic narrowing. Kirchner (1985) extended narrowing 
to rewriting modulo equations. Kaplan (1984) and Huflmann (1985) investigated nar- 
rowing for conditional term rewriting systems. The recent interest in logic programming 
with equations (Dershowitz & Plaisted, 1985; Goguen & Meseguer, 1986) has generated 
much work on universal unification (often called E-unification) (Gallier & Snyder, 1987; 
HSIldobler, 1987; Martelli et al., 1986) and narrowing (Dosco et al., 1987; Fribourg, 
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1985; :losephson &= Dershowitz, 1986; R~ty et al., 1985; You ~z Subrahmanyam, 1986) in 
particular. 

Technically, narrowing combines term unification and rewriting. To perform a nar- 
rowing step on a term t means to replace t by O(t[rr ~-- v]), where t/~r is a nonvariable 
subterm of t ,  u --+ v is a variable disjoint copy of a rule, and 0 is the most general unifier 
of the  subterm t/Tr and the left hand side u of the rule. The thus obtained narrowing 
relation extends the rewriting relation since every rewriting step is also a narrowing step. 

Fay's (1978) unification procedure employs a normalizing narrowing strategy, where a 
proper  narrowing step is only performed if no rewriting step is possible. In other words, 
after every proper narrowing step the obtained te rm is rewritten to normal form. While 
the application of a rewriting step is don' t  care nondeterministic ( that  is, it doesn't 
mat te r  which rewriting step is applied next), the application of a narrowing step is don't  
know nondeterministic ( that  is, it matters  which narrowing step is applied next). The 
advantage of  normalizing narrowing over pure narrowing is tha t  it yields a unification 
procedure with a smaller search space. 

Hullot 's  (1980) basic narrowing strategy obtains a search space reduction by restricting 
narrowing steps to subterrns tha t  were not introduced by instantiation. The drawback of 
this s t ragtegy is tha t  the application of a narrowing step that is actually a rewriting step 
is no longer don't  care nondeterministic, l~ecently, the authors (R~ty, 1987; Smolka & 
Nutt,  1987) devised special rewriting rules that  are compatible with the basic narrowing 
strategy and  whose application is still don't  care nondeterrninistic. This present paper 
combines and simplifies our results. 

We s tudy  basic narrowing and its optimizations as a method for solving equations 
in the initial algebra specified by a ground confluent and terminating term rewriting 
system. Since we are interested in equation solving, we don't  study basic narrowing as 
a reduction relation on terms but  consider immediately its reformulation as an equation 
solving rule. This reformulation leads to a technically simpler presentation and reveals 
that  the essence of  basic narrowing can be captured without recourse to term unification. 

There  are several advantages gained from weakening the usual confluence requirement 
to ground confluence. Applications in algebraic specification and logic programming 
usually employ initial algebra semantics, which means that ground confluence rather 
than full confluence is the natural requirement. A typical example is the specification of 
the integers shown in Figure 1. This specification is a terminating and ground confluent 
rewriting system, which is not confluent since, for instance, x �9 y and ((x * y) + y) + ( - y )  
are two distinct normal forms of p(s(x))  �9 y. An automatic completion of this system 
seems to be difficult if not  impossible, tLety et al. (1985) give a confluent extension of this 
system by adding thir teen inductive consequences. This more than doubles the original 
rules and thus increases the search space of a narrowing based unification procedure. To 
be able to weaken the usual confluence requirement to ground confluence, completeness 
must be defined with respect to solutions, which map variables into irreducible ground 
terms, ra ther  than unifiers, which map variables to terms possibly containing variables. 

Our equation solving calculus employs three classes of rules: resolution rules whose 
application is don' t  know nondeterministic, simplification rules whose application is don't  
care nondeterministic,  and failure rules allowing to prune inconsistent parts  of a search 
tree. The  resolution rules are the basic rules and suffice for a complete solution procedure. 
The  purpose  of the simplification rules is to reduce the search space. In some cases, the 
use of simplification rules can cut down an infinite search space to a finite one. 

Three  of the presented simplification rules are new. The rewriting rule allows for don't  
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(1) v(8(~)) -~ 
(2) s(v(~)) -~ 

(3) O-by--~y  

(4) s(x) + y ---+ s(x + y) 

(5) p(~) + ~ -~ p(z + y) 

(6)  - o  ~ o 

(7) -~ (~ )  -~ p ( - ~ )  
(8) -p (~ )  -~ ~ ( -~ )  

(9) 0 . y - +  0 

(10) 8 ( ~ ) ,  y - .  (~ �9 y) + y 
(11) p ( : c ) , y ~ ( x . y ) + ( - y )  

FIGURE 1.1. A specification of the integers as a ground confluent and terminating 
rewriting system. 

care nondeterministic rewriting and thus yields a marriage of basic and normalizing 
narrowing that enjoys the advantages of both approaches. The safe blocking rule is 
specific to basic narrowing and is particulary useful in conjunction with the rewriting 
rule. Finally, the unfolding rule allows for a variety of search strategies that reduce the 
number of don't know alternatives that need to be explored. 

Our equation solving calculus is the basis for a class of solution procedures, where the 
don't know application of a resolution step is followed by the don't care application of 
finitely many simplification steps. The completeness of these procedures is shown with a 
new proof technique yielding a scheme that is easily applied to additional or alternative 
rules. As an application of our proof scheme, we show the completeness of an innermost 
constructor strategy similar to the one proposed by Fribourg (1985). 

The paper is organized as follows. In Section 2 we fix our notation for equations and 
rewriting systems. In Section 3 we present two resolution rules that yield a complete 
but very inefficient solution procedure. In Section 4, which is the heart of the paper, we 
extend the equation solving calculus with failure and simplification rules, thus obtaining a 
far more efficient solution procedure. In Section 5 we show the completeness of a solution 
procedure that uses inductive consequences for rewriting and prove the completeness of 
an innermost constructor strategy. 

For most applications the use of many-sorted or even order-sorted (many-sorted with 
subsorts) equational logic is essential. Nevertheless, in this paper we consider only un- 
sorted logic since it suffices to demonstrate our ideas. The generalization of our results 
to the many-sorted case without subsorts is straightforward. The generalization to the 
order-sorted case is also not difficult if sort-decreasing rewriting systems (Smolka et al., 
1987) are employed. 

2. Equa t ions  and  Rewr i t ing  Sys tems 

In this section we review the necessary notations for equations and rewriting systems. 
The reader not familiar with the theory of term rewriting systems may consult (Huet, 
1980; Huet 8z Oppen, 1980). 
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We a s s u m e  t h a t  a se t  offunc~ion symbols ( ranged  over by f ,  g, and h) and  an  infinite 
set of  variables ( r a n g e d  over b y  z, y, z) are  given. Eve ry  func t ion  symbol  comes  wi th  an 
arity, w h i c h  is a n o n n e g a t i v e  integer.  

T e ~  ( r ~ . g e a  o~er  by ~, t, ~, a~d , )  ~ . d  o r 1 6 2 1 6 2 1 6 2  of  t~rm~ (:anged over by ~) are 
defined a s  u s u a l .  W e  use s/~r t o  denote  the subterm ors at occurrence zr and s[zr +-- t] to 
deno te  t h e  t e r m  o b t a i n a b l e  f rom s b y  replacing the  s u b t e r m  a t  occurrence zr wi th  t. A n  
equation s "-- t is a n  o r d e r e d  pa i r  consist ing of  two te rms  s and t.  The  l e t t e r  P will a lways 
range  ove r  e q u a t i o n s .  A n  equation sys tem is a bag  P1 & �9 "' 8z Pn of  equat ions;  we use 
@ to d e n o t e  t h e  e m p t y  equation sys tem.  T h e  l e t t e r  E will a lways  range  over equa t ion  
sys tems .  A n  e q u a t i o n  is cal led trivial if i t  has t he  form s - s; an equa t ion  sys tem is 
cal led trivial i f  e a c h  o f  i t s  equat ions  is t r ivial .  

A syntact ical  o b j e c t  is e i ther  a te rm,  an equation~ or an  equa t ion  system. A syn tac t i ca l  
ob j ec t  is c a l l e d  ground i f  it  does  not  conta in  variables .  We  use Y(O) to  denote  the  set of  
va r i ab le s  o c c u r r i n g  i n  a syn tac t i ca l  ob jec t  O.  

A signature is a s e t  e f  funct ion  symbols .  The  l e t t e r  ~, wil l  a lways  range  over s ignatures.  
A s y n t a c t i c a l  o b j e c t  is cal led a E-ob jec t  if every funct ion symbol  occurr ing in i t  is in E. 

Let  E b e  a s i g n a t u r e .  A E-substitution.is a funct ion f rom E - t e r m s  into E - t e r m s  such 
t h a t  0 f ( s l , . . . , s n )  -"  f (Os l , . . . ,Osn)  and :Dr9 :=  {s  I 0 z  r x} is finite. In abuse of 
n o t a t i o n ,  T)~ is c a l l e d  the  domain  of 8 and g0 : :  {t?z [ z E :D0} is called the codomain of 
0. F u r t h e r m o r e ,  27t~ :--- ])(CO) is called the set  of variabJes introduced by 8. The  let ters  
9, r  a n d  r wi l l  a l w a y s  range  over subs t i tu t ions .  T h e  compos i t ion  of E - subs t i t u t i ons  is 
aga in  a E - s u b s t i t u t i o n .  E - subs t i t u t i ons  are ex tended  to syn tac t ica l  E - o b j e c t s  as usual. 
A s u b s t i t u t i o n  0 is ground if Oz is a g round  t e rm  for al l  x E :D0. A subs t i t u t i on  0 is 
idempotent  i f  00 = 0. No te  t h a t  0 is i dempo ten t  if and  only  if �9 and Z0 are  disjoint .  

T h e  equational  representation [0] of  a subs t i t u t i on  6 is the equa t ion  sys t em 

~1 - 0 x I  8~ . . .  & mn --  0xn 

where  { x l , . . . ,  z.} = T)t~. T w o  subs t i t u t i ons  are equal  if  and only if  their  equat ional  
r e p r e s e n t a t i o n s  a r e  equa l .  Conversely, every E-equa t ion  sys t em x l  - s l  & - -. & zn -:-" sn 
such t h a t  ~1 . . . . .  x,,  a r e  d i s t inc t  variables  is the equa t iona l  r ep resen ta t ion  of some E- 
s u b s t i t u t i o n ,  w h i c h  w e  d e n o t e  with (x l  - s l  & . - -  & ~ ,  - -  sn>. Note  tha t  0 = ([0]> for 
every  s u b s t i t u t i o n  8. 

Let  0 b e  a s u b s t i t u t i o n  and  V be  a set  of var iables .  The res t r ic t ion  (91 u of  0 to 
V is de f i ned  by :  0 I v ( x )  :=  0x if  z E V, otherwise  0 I v ( z )  : =  x. Fu r the rmore ,  the 
update tg[y ~-- s] o f  ~ a t  y w i th  s is defined by: 0[y ~ s](~) :=  s i f  z = y, otherwise 

A s y n t a c t i c a l  o b j e c t  O is called an  instance of  a syn tac t i ca l  ob jec t  O '  if  there  is 
a s u b s t i t u t i o n  0 s u c h  t h a t  O = 0 0  t. A syn tac t i ca l  ob jec t  O i s  cal led a variant of a 
s y n t a c t i c a l  o b j e c t  0 '  i f  O is ob t a inab l e  f rom O r by  cons is ten t  var iab le  renaming,  t h a t  is~ 
there  ex i s t  s u b s t i t u t i o n s  t9 and  r such tha t  O '  = 6 0  and O = r  

Let  --~ be  a b i n a r y  re la t ion  on a set  M.  Then  we use ---+* to deno te  the reflexive and 
t r a n s R i v e  c l o s u r e  o f  --+. The  re la t ion --+ is called confluent if  for al l  a, b, and c in M such 
t h a t  a --+* b a n d  a =-+* c there  exists  a d in M such tha~ b --+* d and c ---+* d. Fur the rmore ,  
-+  is ca l l ed  terminat ing i f  t he re  is no infinite chain a l  -+ a2 --+ a3 -+ - �9 -. 

A E-rewri t ing rule s -+ t is an equat ion s A t such t h a t  s i sn ' t  a var iab le  and every 
va r i ab le  o c c u r r i n g  in t h e  r ight  hand side t occurs in the left hand  side s. A rewriting 
system Tr --  ( E ,  g )  cons i s t s  of a s ignature  E and a set  $ of  E- rewr i t ing  rules. A rewri t ing 
s y s t e m  Tr = (~3, g )  de f ines  a b ina ry  re la t ion n cal led the  rewriting relation of 7~ on 
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the set of all E-terms as follows: s ~ t if and only if there exists an occurrence ~r of s 
and  an instance u ~ v of a rule of 7~ such that  s/Tr = u and t = s[~r *-- v]. A t e rm  s is 
7~-normM if there is no te rm t such that  s ~ , t .  A te rm t is an Ti-normal form of a t e r m  
s if s n~*t and ~ is 7~-normal. An ~-value  is an 7~-normalc~round term. A rewrit ing 
sy s t em 7~ = (E, s is ground confluent if the restriction of - - ~  to the set of all ground 
E - t e r m s  is confluent. 

T h e  initiaI algebra Z(7~) specified by a ground confluent and terminat ing rewrit ing 
sy s t em  7~ = (E, s can be defined as follows: 

�9 The  carrier of Z(7~) is the set of all T~-values. 
�9 The denotation fx(~)  of a function symbol in ~. is given by f z ( ~ ) ( s l , . . .  , sn)  -~ s, 

where s is the 7~-normal form of f ( 8 1 , . . . ,  s , ) .  

A ground E-equation s - ~ is valid in (the initial algebra of) 7-t if s and t have the  
s ame  7~-normal form. We write 7~ ~ s - ~ or s =n ~ if s - t is valid in ~ .  A ground 
E-equat ion  system is valid in (the initial algebra of) 7~ if each of its equations is valid in 
7~. We write 7~ ~ E if E is valid in 7t. A E-equation s - t is an inductive consequence 
of ~ if every ground instance of s - t is valid in 7~. Two  ground ~-subst i tu t ions  ~ and 
r are  equal in Tt (write ~ = n  r if 230 = 23r and ~x = n  e x  for every x E 23/~. 

Let  7~ = (E, s be a ground confluent and terminating rewriting system. Then  we 
have: 

�9 "s - -n  t" is a congruence on the set of all ground E-terms, tha t  is, "s - ' n  ~" is an 
equivalence relation satisfying 

�9 "0 = n  9"  is an equivalence relation on the set of all ground E-substi tutions.  
If  0 = n  r then Os = ~  r  for every term s such tha t  Y(s) C 23/? = 23r 

3. T h e  B a s i c  R e s o l u t i o n  R u l e s  

In this section we develop a simple equation solving calculus that  captures the essence of 
Hul lo t ' s  (1980) basic narrowing method. This calculus is the basis for a simple solut ion 
procedure  whose soundness and completeness we will prove. In the next section we will 
p resen t  several extensions for this calculus, thus obtaining a refined solution procedure  
wi th  a much smaller search space. In particular,  the basic calculus to be presented in 
this section does not yet  incorporate te rm unification, which will only be added in the  
nex t  section. 

GENERAL ASSUMPTION. In the rest o f  this paper we assume that 7Z = (E, s is a 
ground confluent and terminating rewriting system; furthermore, we assume that there  
is at least one ground E-term.  

We star t  by defining the solutions of an equation system in the  initial algebra of 7Z. 
A subst i tut ion O is an 7"C-assignment if 8x is an 7Z-value for all ~ 6 230. We use ASSTe to 
denote  the set of all 7~-assignments. With that  we define the set of  all 7~-solutions of an 
equat ion  system E as 

SOL (E) := {0 e ASS  I 23e = ^ BE). 
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Blocking 

(B) C. P & E C & P . E  

Application 

(A) C. P E ,x,v C ( P / .  E 

if Pier isn't a variable and u ~ v is a variant of a rule of Tr 
having no variables in common with C.  P & E or V 

FIGIJI~E 3.1. The basic resolution ru~es. 

An equat ion solving procedure for 7~ is a procedure that enumerates S O L~(E) .  
For  technical reasons that  will become apparent soon, we need to relativize the solu- 

tions of an equation system with respect to a set of "primary variables". The Tr 
of a ~-equat iou system E with respect to a set V of variables are defined as follows: 

{Olv leeAss  A Z ) 0 = V U V ( E )  A 

Note tha t  SOLx(27) = SOLV(E)(E). For convenience, we write S O L , ( E )  for 
SOL~m,O)(E), where (~,  $) is the rewriting system with signature D and no rules. Note 

that  S O L , ( E )  can be represented rather explicitly by the most general unifier of E,  
which can be computed using term unification. This will be discussed in Subsection 4.2. 

In the literature, narrowing is usually presented for confluent rewriting systems and 
completeness is shown with respect to all unifiers, which include nonground substitu- 
tions. Since we have weakened the confluence requirement to ground confluence, we have 
to restr ict  our a t ten t ion  to ground substitutions. Nevertheless, the ground confluence 
approach subsumes the conventional approach. To see this, assume a confluent rewriting 
system is given. We can extend this system by adding infinitely many constants to its 
signature, one for each variable. Then the solutions with respect to the extended system, 
which is still ground confluent, exactly correspond to the unifiers with respect to the 
original system. 

The  rules of our equation solving calculus, which are given in Figure 3.1, apply to pairs 
C.  E consisting of two equation systems C and ~7; C is called the constraint part and 
E is called the unsolved part. The division of C&E into two parts is needed to express 
the basic narrowing strategy. The calculus will allow us to reduce an initial pair  0. E to 
solved pMrs C1.0 ,  C2. @ . . . .  such that 

�9 (Soundness) V i. SOL~(C,)  C SOL~(C,) C_ SOL~.(E) 

�9 (Completen+~) V 0 e SOL~(~. E) 3 i. 0 e SOL~(C,). 

Thus, our calculus "solves" by reducing 7~-solutions to ~-solutions. The two rules 
given in Figure 3.1 are called resolution rules because they are the primary rules for 
solving equation systems and because we want to distinguish them from the failure and 
simplification rules to be presented in the next section. With Robinson's (1965) resolution 
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solve(C. E) is 
1. if E is empty, then return C; 
2. choose don'~ care an equation P in E; 
3. choose don't know C .  E ~ such that  C. E ~ ' ~ , v  Cq E ~ by a step on P;  
4. solve(C'. E ' )  

FIC~U~tE 3.2. The basic solution procedure. 

rule our resolution rules have only in common that  they resolve something--in our case 
equations. The application rule in Figure 3.1 has to introduce new variables to obtain 
a renamed variant of the employed rewriting rule. The  following assumption makes sure 
that there are always enough new variables left. 

ASSUMPTION. In the rest of  this paper  we assume that  V / s  a ~nite  set of  

3.1. Let 7~ be  the system in Figure 1.1, V --- {y} ,  and consider the equat ion 
which has the unique solution (y -" 0). Then: 

O . 0 + y - "  0 
=r ~re,v 0 + y - 0 + y~. y~ - 0 by a resolution step using rule (3) 

r ~n,v 0 + y '-- 0 + y~ & y~ - 0 . 0 by a blocking step. 

THEOREM 3.2. (Soundness) I f C .  E ~-'~,v C ~. ff,~ by  a blocking or an application step, 
then SOLV~(C ' a Z ' )  C S O L ~ ( C  & E). 

PROOF. Let C. E r ~7r C I. E t and let O be an assignment such that VU1) (C  I. E ~) - -  

DO and 0(C' & E ' )  is valid in 7~. It  suffices to show that  0(C & E)  is valid in 7~. 
If C t & E ~ has been obtained from C.  E by a blocking step, then the claim is 

trivial. If an application step has been performed, then C.  E -- (C .  P & E l ) ,  
C r . E '  -- (C  & P/7c "-- u.  Pier ~-- v] ~ El) ,  and u ---* v is a rule of T~. It suffices 
to show that OP is valid in 7~. Since O(P/~r) -'T~ Ou and u -~ v is a rule of 9Z, we 
have O(P/Tr) = ~  Ov, Since O(P[~r .-- v]) = (OP)[~r ~-- 0v] is valid in 74, we know tha t  
(0P)[~- ~ 0(P/~r)] = 0P is valid in T~. []  

The nondeterministic solution procedure in Figure 3.2 is an operational formulat ion 
of the equation solving calculus in Figure 3.1. The procedure can be explained as a two 
person game played by a don' t  care player who makes the don't  care choices and a don ' t  
know player who makes the don' t  know choices. Given 7~, a pair 0. E,  V := N(E),  
and a solution 0 ~ S O L n ( E ) ,  the don't  care player wins if the procedure terminates 
with an equation system C such that  0 ~ SOLv(C);  the don' t  know player wins if the 
procedure terminates with an equation system C such that 0 E SOLV(C). We say tha t  
the procedure is complete if the don't  know player can" always win if he makes the right 
choices. In the following we will show the completeness of the procedure. 

An implementation of the basic solution procedure has to explore all alternatives of 
a don' t  know choice. In fact, the procedure generates a huge number of don't  know 
alternatives in step 3. One alternative is to block P; the other alternatives are obtained 
by applying a rule to P,  where every nonvariable occurrence of P and every rule of 7~ 
have to be considered. To be efficient, it is crucial to eliminate redundant  or inconsistent 
don't  know alternatives as early as possible. This wii1 be ~he theme of the next ~ection. 

GENERAL 
variables. 

EXAMPLE 
0 + y - 0 ,  
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The  appl icat ion rule needs to introduce new variables to obtain a renamed variant of a 
rewrit ing rule. The  choice of the new variables is obviously a don ' t  care nondeterminism, 
but  mak ing  this fact explicit is technically very tedious. For this reason the choice of 
new var iables  appears  as a don ' t  know nondeterminism in the procedure in Figure 3.2. 
This  p rob lem will be solved in the next section by the introduction of a simplification 
rule tha t  can  be used to  rename variables not occurring in V. 

The  basic idea behind the completeness proof is a lifting argument.  I f  8 6 SOLn(E) ,  
then this fact  can be verified by rewriting 8E into a trivial equation system. Now the 
idea is t h a t  a blocking step corresponds to the deletion of a trivial equation in ~E and 
an appl icat ion step corresponds to an innermost rewriting step on BE. 

We s t a r t  by sett ing up a calculus for verifying tha t  a ground equation system is valid 
in T4. T h e  two rules of the verification calculus correspond to the blocking and the 
appl icat ion rule of  the equation solving calculus: 

�9 ( V B )  P & E ~ S x  E if P is a trivial equation 
�9 (VA)  P & E-. " S n  P ly  ~ v] & E if P/Tr ---+ v is an instance of a rule of 74. 

The  rule (VB)  deletes a trivial equation and the rule (VA) applies a rewriting step. 

P R O P O S I T I O N  3 . 3 .  

�9 (Invariance) I r E  ~r, x E ' ,  then E is validin T4 if  and o n l y i f E '  is valid in T4. 

�9 (Terminat ion)  The  relation :'E ~r r~ E ' "  Js terminating. 

�9 (Completeness)  E is valid in 7"4 i f  and only i r E  vr,~ O. 

A n  7Z-triple 8. C.  E consists of an T~-assignment ~ and two equation systems C and 
E such tha t  ])(C. E) _ l)8, 0C is trivial, and 8E is valid in 7%. The  assignment 6 should 
be thought  of as the solution one wants  to find by  applying resolution steps to the pair 
C . E .  

PROPOSITION 3.4. IfO 6 S O L ~ ( E ) ,  then 8. •. E is an Ti-triple. Furthermore, ifO. C.  0 
is an T4-triple and V C V(C), ~hen 81V E SOL~(C) .  

We now define a reduction relation on T4-triples that  links resolution steps with their 
corresponding verification s t eps  We write 8. C .  E - r - * n , v  8 ~. Cq E ~ if 8. C .  E and 
~'. C ' .  E '  are bo th  T4-triples and 

�9 8 and 8 '  agree on V 
�9 C. E ~ C'. E' "---+'~.,v by a resolution rule a 
�9 * 8E v% ~ OtEt by the verification rule corresponding to or. 

PROPOSITION 3.5. (Termination) The triple relation "8. C.  E r ,r~,v 8 I. C ' .  E '"  is 
terminating. 

A t e r m  is called 7t-innermost if each of its proper subterms is 7~-normal, The  proof of 
the following theorem rests on the idea that  for a triple 8. C. E a verification step that  
rewrites an innermost te rm of 8E can be "pushed up" to an application step on C. E.  

THEOREM 3.6. (Push Up) I f  8. C.  E is an 7%'-triple and P is an equation in E, then 
there exists  a triple 8 I. C ' .  E '  such ~ha~ 8. C.  E r ~7~,v 8 I. C ~. E '  b y  a resolution step 
011 t 9, 

Pt~OOF, Let 8. C.  P & E  be an 7~-triple. Then 8P is valid in 74. Thus 8 P  is either 
trivial or can be rewritten. 
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1. Suppose 0P is a trivial equation. Then C. P & E --z-+n,v C & P .  E by the blocking 
rule and 0(P & E) vr~Tz t~E by the verification rule VB. Since tg. C & P .  E is an 7~-triple, 
this yields the claim. 

2. Suppose 0P can be rewritten. Then there exist a nonvariable occurrence 7r of P such 
that (tgP)/7c is 7~-innermost, a variant u --+ v of a rule of Td, and a substi tut ion r such tha t  
r = (OP)/Tr. Without  loss of generality we can assume that  79r = l)(u --+ v) and u ---* v 
has no variables in common with V, C.  Pb=E, and 790. Define C ~ := (C & -P/ r  - u) and 
E '  := (Pier ~-- v] & E).  Since 8P  & ~E1 J vr, n (~P ) [v  ~-- r & t)E1 by the verification 
rule VA and C. P & E  " ~z,y Cq  E ~ by the resolution rule A, it suffices to show tha t  
there exists an TO-assignment fl~ such that  790 ~ = :D0 tJ N(u --* v), fir agrees with fl on 798, 
0'(P/~r) = O'u, and 0 ' (P[~ ~ v]) is valid in 7~. 

To show this, define Ol as follows: if z e 79r then 0J~ := r otherwise O/z := 0z. To  
show that  t~ ~ is an 7e-assignment, it  suffices to show that  r is an 7C-assignment, which 
holds since 79r = Y(u ~ v) = ]3(u), r = 0(P/Tr) is n - innermost  and ground, and u 
isn't a variable. 

Since 79r = Y(u --+ v), we have :D0' = 790 U 79r = :DO t2 Y(u ---* v) as required. Since 
~0 and 79r = V(u --+ v) are disjoint, t?' and 0 agree on :DO. Furthermore, ~'(_P/Tr) -- 0 'u 
since e ( e / ~ )  = r 

Finally, 0'(PiTt ~ v]) = (t~P)[r ~- r is valid in 7d since r = n  r r  = 8(P/ lr) ,  
and ~P = (t~P)[Tr ~-- t~(P/Tr)] is valid in TO. [] 

COrtOLLAI~u 3.7. For everyTC-ariple ~. C. E there exist 0 ~ and C ~ such ~ha~ 
0. C . E  ~7' ~l. Cq O. TC.,V 

PROOF. Suppose that  0, C.  E is an ~-triple.  If E is empty, then the claim is trivial. 
Otherwise, the push up theorem applies and yields O. C.  E--z--~n,v tg'. C ~. E ~ for some 
triple 8~. C' .  E ~. Thus, using the termination property of the triple reduction relation, 
the claim follows by induction. [ ]  

COROLLARY 3.8. (Completeness) Let  0 ~ SOL~(E) .  Then there exisgs an equation 

system C such that ~. E --z-+~z,w(~ ) C.  0 and O ~ soLv(Z) (C) .  

PROOF. Let 0 @ S O L n ( E ) .  Then  t~. ~. E is an 7d-triple. By the preceding corollary 
we know that there exist 0 ~ and C ~ such that  0. r E .  " ~-,v(z) 0~" Cq r Thus,  we know 

that 0 = 0'Jv(~) ~ SOLV(~)(C). [] 

4. Failure and Simplification Rules 

In this section we present several optimizations for the basic solution procedure that  
was discussed in the last section. An implementation of this procedure must explore 
all alternatives of a don' t  know choice in step 3, which generates a huge search space. 
To reduce this search space, it is crucial to detect as early as possible whether a pair  
C, E is consistent, that  is, whether there is an assignment that  extends it to an 2 -  
triple. This is accomplished by so-called failure rules, which are decidable sufficient 
criteria for the inconsistency of a pair. The second method for cutt ing down the search 
space is the addition of so-called simplification rules whose application, in contrast  to 
the application of resolution rules, is don't  care ncndeterministic. By simplifying a pair 
with the simplification rules before the apphcation of a resolution step it is often possible 
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solve(C. E) is 
1. choose don'~ care C I. E I such that C. E ~---~* C'.  E '  "/~,V 

by simplification steps; 
2. if a failure rule applies to C' .  E 1, then fail; 
3. if E ~ is empty, then return C'; 
4. choose don't care an equation P in E ' ;  
5. choose don'i know C" .  E "  such that C ' .  E j ~ r , ~ , v  C" .  E "  

by  a resolution step on P; 
6. solve(C".  E " )  

FIGUI~E 4.1. The extended solution procedure. 

to reduce the number  of don' t  know resolution steps needed to reach a solved pair. 
Fur thermore ,  often a failure rule applies to an inconsistent pair only after it has been 
simplified. Figure 4.1 shows the extension of the basic solution procedure to failure and 
simplification rules. 

4.1 THE FAILURE RULES 

The following definitions are needed to formulate the failure rules. 
An equation system E is ~-consistent  if there is a substitution 0 such that  0E  is trivial. 

The  E-consistency of an equation system can be decided by a term unification algorithm. 
A pair C.  E is consistent in 7~ if there exists a substitution 0 such that  0. C .  E is an 

7~-triple. 
A funct ion symbol is called generating in 7~ if it occurs in at least one k-value.  A 

function symbol is called completely defined in T~ if it is not generating in 7~. In the 
rewriting system in Figure 1.1 the functions 0, s and p are generating and the functions 
+,  - and �9 are completely defined. 

Two function symbols ] and g are disjoint in 7~ if no ground equation of the form 
] ( s l ,  . . . .  sn) - '  g ( h  . . . . .  ~0~) is valid in 7~. 

A funct ion symbol f is called reducible in 7~ if there is a rule p in 7~ such that f is 
the top symbol of the left hand side of p. A function symbol is called irreducible in 7~ 
if it isn' t  reducible in 7~. The constant 0 is the only irreducible function symbol in the 
rewriting system in Figure 1.1. 

PP~OPOSITION 4.1. [ f  a function symbol  is irreducible in 7~, then it is generating in 7& 
Furthermore,  i f  f and g are distinct function symbols that are both irreducible in 7~, 
then f and g are disjoint in T~. 

PROPOSITION 4.2. (Failure Rules) A pair C.  E is inconsistent in T~ i f  one of ~he following 
conditions holds: 

1. C is not ~-consistent .  
2. C contains an equation x "-- t such that t is not  T~-normal. 
3. C contains an equation ~ "-- t such that t contains ~ completely defined function 

symbol ,  
4, C ---- [~b] for some substi tution ~b and ~bE contains an equation f ( s l  . . . . .  s~) - 

g ( t l , . . .  ,tin) such that f and g are disjoint. 
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The  requirement that the constraint part  of a pair be the equational representat ion of 
a substitution is not a real restriction since we will introduce a simplification rule tha t  
replaces the constraint part  by its most general unifier. 

The  concept of a completely defined function symbol is of little use for unsorted rewrit- 
ing systems. For instance, if we add to the system in Figure 1.1 the constants true and 
false, the functions +, - and * are no longer completely defined. This problem can be 
avoided by working with many-sorted rewriting systems. Since the power of the failure 
rule (3) increases with the number of completely defined functions, the presence of sorts, 
even without subsorts, can lead to smaller search spaces. 

4.2 TERM UNIFICATION AND EQUATION SYSTEMS 

T e r m  unification will be an important  part  of our optimized solution procedure. After 
every  resolution step the computation of the most general unifier of the constraint  par t  
of the obtained pair is at tempted.  If this a t tempt  fails, we know by the failure rule (1) 
t h a t  the obtained pair is inconsistent. Otherwise, the constraint  part can be replaced 
with the equational representation of its most general unifier, an optimization that  will 
be expressed by a simplification rule. If no other failure and simplication rules are 
employed, the thereby obtained soiution procedure performs essentially basic narrowing 
as described in (Hullot, 1980). 

In this subsection we review the necessary notations and results for te rm unification. 
An equation system S is called solved if it has the form xl --" sl & . . .  & r --" Sn 

where the variables xl ,  . . , ,  z,~ occur only once. Note that an equation system is solved if 
and only if it is the equational representation of an idempotent substitution. The let ter  
S will always range over solved systems. 

The  next theorem is the adaption of Robinson's (1965) unification theorem to our 
framework. 

THEOREM 4.3. A E-equation system E is E-consistent if  and only if there exists a solved 
D-equatlon system S such that '/)(S) C V and SOLV(E) = SOLV(S).  

f o r  an  example ,  cons ider  + s (0)  - + y) = - s(O)) .  T h e  
next  proposition says that  the solved system S is a fairly explicit representation of the 
solution set SOLV(S). 

PI~OPOSITION 4.4. If~D(S) C V, then SOL~(S) = {(O(S>)[v ] Vx E V. O(S)x is ground}. 

4.3 THE SIMPLIFICATION I~ULES 

Figure  4.2 and 4.3 show the simplification rules we will discuss in this paper. Three  of 
these rules-- the rewriting rule, the unfolding rule and the safe blocking rule SBl- -d id  
not  appear  in the literature so far. In conjunction with the don ' t  care selection of the 
equat ion to be resolved upon next, the unfolding rule can drastically reduce the don% 
know alternatives our solution procedure has to explore. The  rewriting rule, if used 
together  with the unfolding rule and the safe blocking rule SB1, results in a marriage of 
basic and normMizing narrowing tha t  enjoys the advantages of both  approaches. 

T h e  key property of the simplification rules is that their applicabion preserves the 
reachable solutions, tha t  is, if C. E .  s '7~,v C'.  E '  by a simplification step, then every 
solution that  can be reached fl'om C.  E can also be reached from C'.  E ' .  We postpone 
the proof of this claim to the next subsection. As a consequence of this preservation 
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U n i f i c a t i o n  

( U n i )  C .  E - ~ z , v  S .  E 

i f S  is solved, SOLW(C) = SOLW(s), :D<S) C W, and W = VU V(E) 

Rewriting 

(R) S .  P & E ' , ~ , v  S. P[~- +-- v] & E 

if ( S ) ( P / ~ )  -+ v is an instance of a rule of 7~ 

U n f o l d i n g  

(Unf) C.  P & E - ~ n , v  C.  ~ = P/or ~ P[~r ~ x] & E 

i f z  is a new variable, that  is, x ~ VU V(C. P & E ) ,  

and both P / r  and P[~r +-- x] contain at least one function symbol 

Safe Blocking 

(SBI) S,x--" t &  E '~:~,v S&z--" t. E 

if S contains an equation y -' s such that <S) t is a subterm of s 

(SB2) C . P & :  E - ~ z , v  C a P .  E 

if every function symbol occurring in P is irreducible 

D e c o m p  os i t ion  

(D) C. f(s l , . . . , s ,~)-f(h, . . . , t ,~)  & E �9 " " ~ , v  C .  s l  "--- t l  & . . .  & s n  "-- t,~ & E 

if f is decomposable 

FIGVRE 4.2. The simplification rules, part 1. 

property, a pair C.  E is inconsistent if it is inconsistent after it has been simplified. This 
fact greatly enhances the power of the failure rules. 

The following definition is needed for the decomposition rule. A function symbol ] 
is d e c o m p o s a b l e  in 7~ if for every ground equation f ( s l  . . . . .  sn)  --  f ( t l ,  , . . ,  t n )  that  is 
valid in 7~ the equations s1 - -  t l  . . . . .  so  "- to  are valid in 7E. In the rewriting system in 
Figure 1.1 the function symbols s and p are decomposable. 

PROPOSITION 4.5. E v e r y  i r reduc ibIe  f u n c t i o n  s y m b o l  is decomposab l e .  

The following rewriting system will be used in examples. 

(1) a p p ( n i l ,  x )  --+ x (Tgl) 
(2) app(=.y, z)  .app(y, z) 

7%1 is a confluent and terminating rewriting system. The function symbols nil  (the empty 
list) and '. ' (the cons operator) are irreducible and thus generating, decomposable and 
disjoint. The function symbol app (list concatenation) is completely defined. 
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S u b s u m p d o n  

( S )  S . P & Q & E  - ~ n , v  S . Q & E  

if  <s)P = < s ) q  

P e r m u t  a t ion  

(P1) C.s'-~&E - - ~ , v  C.~':-s&E 

(P2) S .  x "= s & t -'-- u s E * ~v..,v S .  z - s & x - u & E 

if ( S ) s  = ( S ) t  

(Pa) C .  E ' , n , v  C ' .  E '  

if C' .  E t is obtainable from C. E by replacing all occurrences 
ofr  with y, where x ~ V and y r V tJV(C. E) 

FIGURE 4.3. The simplification rules, part 2. 

EXAMPLE 4.6. (l~ewriting) We want to solve the equation a p p ( a p p ( x , y ) ,  z )  ..~ r~il in 
7~1 with respect to the variable z. This problem has an infinite search space if only  
unification is employed for simplification, but it has a finite search space if bo th  the 
unification and rewriting rule can be used. To see this, consider the derivation 

O.  app(app( z ,  y),  z )  -- n i l  
= r . g l , { ; )  a p p ( x , y )  "- a v p ( z q y ' , z ' )  . a p p ( z ' . a p p ( y ' , z ' ) ,  z) -- n i l  by A 

s ~Xl,{z) 0 �9 app(x ' . app (y ' ,  z'), z)  -- n i l  by Vni ,  

which can be continued infinitely often by applying rule (2) to the inner occurrence of 
app. ttowever, if the rewriting rule is available for simpIification, we can prune this  
infinite and inconsistent part of the search space by rewriting the above pair to 

"--~Zl,{~) ~b. x ' . app (app (y ' ,  z ' ) ,  z)  • rill by R. 

This pair can now be recognized as inconsistent by the failure rule (4) since the func t ion  
symbols '.' and ni l  are disjoint in T~I. 

The following derivation shows how the solution of the system can be computed:  

~ . a p p ( a p p ( x , y ) ,  z )  = n i l  
: 'r~l,{z} a p p ( x , y )  --'--. a p p ( n i l , x ' )  . app(x ' ,  z)  - n i l  by A 
,- '~:l,(~} 0 . app(x ' ,  z )  ~ n i l  by U n i  

'~ l , { z}  app(z ' ,  z )  "-- app(ni l ,  y ' )  . y '  - n i l  by A 
--~r ~zl,{z} app(x ' ,  z )  "-- app(ni l ,  y ' )  & yt - n i l .  0 by S e 2  

~l,{z} z '-=- ni l  . (3 by Uni.  

EXAMPLE 4.7. (Unfolding) We want to solve the equation app(x ,  app(y ,  z ) )  -- n i l  in 7Zl 
with respect to the variable z. This problem has a finite search space i f  the  unfolding 
rule can be used for simplification, while it has infinite search space otherwise. To see 
this, consider the derivation 
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O �9 app (x ,  app(y ,  z ) )  "-:- n i l  
r "R.l ,{x} app(y ,  z )  - a p p ( x ' . g ' , z ' )  . app(r  c q a p p ( y ' ,  z ' ) )  '-- n i l  by A 
s ~~1,{~} 0 �9 app (x ,  # . a p p ( y ' ,  z ' ) )  - n i l  by Uni, 

which can be continued infinitely &ten by applying rule (2) to the inner occurrence of app.  
t[owever, if we star t  with the unfolding rule, we can prune this infinite and inconsistent 
part of the search space and compute the solution as follows: 

r  avp(x, app(y, z)) - nil  
--2--~s ~1,1~} 0 �9 a p p ( x , x ' )  "-- n i l  & x '  ~ app(y ,  z )  by C n f  

�9 ~'~-1,{,} app( r  x 0 ":- app(n i l ,  y ' )  . y '  --  n i l  & x '  --  app(y ,  z)  by A 
~1,{~,1 x '-- n i l  & x ~ - n i l .  x '  - -  app(y ,  z)  by SB2 ,  Uni 

r,~l,{~} x - n i I  & x '  - n i l  ~ a p p ( y , z )  ~ a p p ( n i l ,  z ' )  . x '  =- z '  b y A  
>~1,{~} x --  n i l  . 0 by SB2,  Uni, 

Compared to ordinary narrowing, the basic narrowing strategy achieves a smaller 
search space by avoiding many derivations that  don' t  correspond to innermost rewriting 
chains. This becomes apparent in ~he proof of the push up theorem, where only innermost 
rewriting steps are pushed up, and with the failure rules (2) and (3). However, as the 
last example demonstrates, this innermost flavor of the basic narrowing strategy can be 
weakened by using the unfolding rule without losing the search space reductions. 

The last example also demonstrates that, in conjunction with the don ' t  care selection 
of the next equation to be resolved upon, the unfolding rule can lead to drastic search 
space reductions by breaking large equations with many don't know alternatives into 
small equations with few don't  know alternatives. For instance, if the extended solution 
procedure selects the equation 

 pp(app( , app( ', U')) -- 

in step 4, it must  explore the following five, not obviously inconsistent, don't know 
alternatives: 

(1) blocking the equation, 
(2) applying rule (1) of Tel to the left inner occurrence of app, 
(3) applying rule (2) of 7~1 to the left inner occurrence of app, 
(4) applying rule (1) of Tel to the right inner occurrence of app,  and 
(5) applying rule (2) of Tel to the right inner occurrence of app. 

The alternatives (2) and (3) or, alternatively, (4) and (5) seem to be redundant since it 
shouldn't  make a difference whether the left or right inner occurrence of app is considered 
first. This idea can be exploited by unfolding the right inner occurrence of app, which 
yields the equations 

z t  - -  a p p ( z ' ,  y ' )  ~ app (app( r  y) ,  z ' )  - z 

and thus eliminates the alternatives (2) and (3) if the left equation is considered first. 
In conjunction with the don't  care selection of the next equation to be resolved upon 

the unfolding rule can he used to obtain a variety of strategies that  reduce the don't  know 
alternatives a solution procedure has to consider. Two examples are the the left-to-right 
basic narrowing strategy in (Herold, 1986) and the selection narrowing strategy in (Bosco 
et al., 1987). Another example is the innermost constructor strategy in (Fribourg, 1985), 
which we will discuss in the next section. 
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Bosco et al. (1987) present a translation of basic narrowing into SLD-resolution (Lloyd, 
1984), which gives them implicitly the effect we would obtain by using the unfolding rule 
as often as possible. Complete unfolding, however, has the disadvantage of reducing the 
power of the rewriting rule. Nevertheless, Bosco et al.'s (1987) paper gave us the idea 
for the unfolding rule. 

The application conditions of the unfolding rule ensure that it can ' t  produce equations 
of the form x --" y, a restriction that  is needed to preserve the completeness of the extended 
solution procedure. 

EXAMPLE 4.8. (Safe Blocking) As we have seen in Example 4.6, using the rewriting rule 
for simplification may cut down an infinite search space to a finite one. A disadvantage 
of the rewriting rule is, however, that  it transfers terms from the constraint part  back 
into the unsolved part, thus increasing the search space again. To see this, let T~ be the 
rewriting system in Figure 1.1 and consider the rewriting step 

y - s ( , ( s ( z ) ) ) .  �9 + ; ( y )  - 0 
n,{y} y "-- s ( s ( s ( z ) ) )  . x + s ( s ( z ) )  - 0 by R,  

which carries the term s ( s ( z ) )  from the constraint part  into the  unsolved part .  This  
disadvantage can be completely avoided by using the unfolding and the safe blocking 
rule to transfer terms carried over by the rewriting rule back into the constraint part:  

8 ~z,{,j} y -- s ( s ( s ( z ) ) ) ,  x '  "-:- s ( s ( z ) )  & x + x '  -- 0 by U n f  

- 8- ~n,{y } y -- s ( s ( s ( z ) ) )  & x '  "-- s ( s ( z ) ) ,  x + z '  '-- 0 by SB2.  

EXAMPLE 4.9. (Naive Rewriting) The following restriction of the application rule, which 
we will refer to as the n a i ve  r e w r i t i n g  rule, seems to be a better alternative to the rewriting 
rule in Figure 4.2 since it doesn't transfer terms from the constraint part to the unsolved 
part:  

s .  p a ~ - - ~ , v  s a ( p / ~  - ~). P[~ ~ ~] a E 
if P/~r isn't a variable, 
u --* v is a variant of a rule of 7% containing only new variables, 
and ( S ) ( P / r )  is an instance of u. 

Kowever, this rule cannot be used as a simplification rule since, in general, its application 
is not don't  care nondeterministic. To see this, consider the rewriting system in Figure 
1.1 and the initial pair 

~ .  s(p(z + 0)) - '  O, 

which has the unique solution (z -- 0}. By applying the naive rewriting rule to s with 
rule (2) we obtain the pair 

~ ( p ( ~  + 0))  - ~ ( v ( ~ ' ) )  �9 ~ '  - 0, 

which, after a unification step, becomes 

x' "-- x + O . z'-- O. 

The  only resolution step that  applies to the unsolved equation of  this pair is blocking, 
which yields 

a:'---' a :+0  & x'-- '  0 . 0, 

a pair whose constraint part  is E-inconsistent. This shows that  the application of the 
naive rewriting rule is not don' t  care nondeterministic. 
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EXAMPL~ 4 .10 .  (Decomposition) Let  7r be the rewriting system in Figure 1.1 and con- 
sider the  equa t i on  s(~) --" s(y). Since s is decomposable in 7r (note that s is not irreducible 
in 7~), we know by the decomposition rule that the equation x - y, which is in solved 
form,  has the  same solutions in Tr as the equagion s(z) =- s(y). Without  the decomposi- 
t ion rule,  however,  our solution procedure canr~ot avoid to compute a second solved form 
t h a t  is r e d u n d a n t :  

r  - 

"~ ~z,{y} s(x)  "-- s(p(x')) . x' "-" s(y) by A 
,~.,{y} $ �9 x'  "=" s ( y )  by Uni 

-" - by  A 
....!_+~. . y -- p(y') ~ by SB2, Uni. 

,iYl 

W i t h  t h e  permuta t ion  rule P3 it is possible to rename auxiliary variables, that is, 
v~riables t h a t  don' t  occur in V. We have included this rule to show ghat the intro- 
duc t ion  o f  new variables by the application rule (Figure 3.1) is actually a don' t  care 
nonde t e rmin i sm .  

4.4 SOUNDNESS AND COMPLETENESS PROOFS 

THEOREM 4.11.  (Soundness) If  C.  E ~ , v  C'. E '  by a simplification s~ep, 
then SOL (C' a C_ SOL (C a E )  

PB.OOF. Let C. E--~7~,v C I. E' by a simplification step and let 0 be an assignment 
such t h a t  DO = V U V(C'.  E ' )  and 0(C' & E')  is valid in Tr We have to show that  
there  exists  an assignment 0 / such that  V U ]2(C & 1~) _C 738 I, 8' and 0 agree on V, and 
6r(C ~z E )  is valid in 7r Let the simplification rule employed in C. E ~ ~ , v  C I. E I be: 

Uni. T h e n  C ' .  E '  = S. E,  where S is solved, SOLw(C)  = SOLW(s)  and �9 _C 
W --'- V u V ( E ) .  It suffices to show that there exists a ground substitution t~ such that  
V U ]2(C & E )  C 730, 0Iv = n  0Iv, and 0(C & E) is valid in ?Z, since then defining 0'z as 
the n o r m a l  f o rm  of 0x for every ~ E 2)0 yields the claim. 

Since S is solved, we know that (S)S is a trivial equation system, which implies that  
6 ( S ) S  is a t r ivial  system. This  implies (O(S))Iw e SOLW(S) = soLW(C) .  Therefore, 
there  exis ts  a ground substitution 0 such that :P0 = W U Y(C) -- V U Y(E) U Y(C), 
OIw = (O(S})]w, and t~C is trivial. In particular, 0C is valid in 7r 

Since OS is valid in TO, we have 0 = ~  O(S}, which yields Olw =~ (O{S})Iw = Olw. 
Since W = V O ])(E),  this yields that  0E is valid in 7r and Olv =~z O[v. 

R. T h e n  C .  E ---- (S.  Pgz E l )  and C'.  E ' =  (S. P[~r ~-- v] 8z El) ,  where (S)(P/~r) ---* v 
is a n  in s t ance  of  a rule of 92. I t  suffices to show ~hat OP = (0P)[~r ~-- 0(P/~r)] is valid in 7r 
which in t u r n  follows from O(P/~r) = n  9v, since (0P)[Ir ~-- Ov] = O(P[rr ~-- v]) is valid in 
7Z. Since OS is valid in TO, we know that  9 =7~ O(S). Hence, O(P/Tr) =n  O(S}(P/~r) -'Ta ~v 
as requ i red .  

Uns T h e n  C .  E --- (C. P & E t )  and C'. E '  = (C. x - P/~r & P[~r ~-- x] & E~), 
where  x is a new variable. It suffices to show that OP = (0P)[~r ~-- O(P/~r)] is valid in 7Z, 
which holds  since 0r =~z O(P/~r) and (0P)[~r ~ 0~z] = O(P[rr ~ x]) is valid in 7r 

SB1 or SB2. Then  the claim is trivial. 
D. T h e n  the  claim follows from the congruence property of the relation "s = n  t". 
S. T h e n  C .  E = (S.  P & Q & E~) and C'.  E '  = (S. Q & E~), where (S)P  = (S)Q. 

I~ suffices t o  show that  OP is valid in TO. Since OS is valid in 7r we have 0 = n  O(S), and 
since OQ is valid in TO, we know that  O<S)Q is valid in TO. This yields that  OP is valid in 
Tr since ( S ) Q  = (S )P .  
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PI.  Then the claim is trivial. 
P2. T h e n C .  E =  (S. x ' = - s & t - "  u & Et) a n d C  '. E ' : ( S .  z-- '  s & : z - "  u & E l ) ,  

where (S)s = (S)t. It suffices to show that  8t = ~  8u. Since 0S is valid in 74, we know 
that  8 = n  8(S), which yields that  Ot = n  8(S}t = 8<S)s = n  Os -----Tr 8z =~. 8u. 

P3. Then C'. E'  has been obtained from C.  E by replacing all occurrences of  z with 
y, where z ~ V and y r V U Y(C. E). Thus 8' := 8[z ~-- 8y] yields the claim. [] 

Our next goal is to prove the completeness of the extended solution procedure in 
Figure 4.1. As before, the proof will be based on the notion of a triple reduction relation, 
which links steps on the resolution level with steps on the verification level. We star t  by 
giving the corresponding verification rule for every simplification rule: 

�9 (VUni), (VP3) E v ~ E  

�9 (VR)  P & E - ~ n  P[~r ~- v] & E if P/Tr ~ v is an instance of a rule of 7"4 

�9 (VUnf)  P & E " ~  s - P / r  & PITt ~ s] & E if s is the 7Z-normal form of P/Tr 

�9 (VSB1), (VSB2) P & E "%n E if P is a trivial equation 

�9 (VD) f ( s l , . . . , z n )  " - f ( t l , . . . , ~ , )  a E  '~ ,~s1~-~1 & . . .  & s . - - ~ .  & E i f f i s  
decomposable 

�9 (VS) P & P & E  " ~ , n P & E  

�9 (VP1) s - t & E  v s ~ t - - s  a E  

�9 (VP2) v - s & s - - u & E  ~ u v - - s ~ z v - u & E i f v i s T G n o r m a l .  

w~ E '  Then E is valid in 74 i f  and only i f  E '  PROPOSITION 4.12. (Invariance) Let E -  n . 
is valid in 7-4. 

The TC-complexity [IEl[n of an equation system E is defined as the maximal length of 
an TGrewriting derivation issuing from E.  

PROPOSITION 4.13. (Compatibility) I r E  V%~E', ~hen [[E[]n >_ [[E'[]n. 

Next we extend the simplification steps to TO-triples. 
We write 8. C. E ~ ~n,v 8'. C'. E '  if both 8. C. E and 0'. Cq E '  are TO-triples and 

�9 8 and 8' agree on V 
�9 C.E ~ ' E' ----+7~,v C . by some simplification rule 

�9 8 E - ~ n  8'E'  by the verification rule corresponding to ~. 

The next theorem is the counterpart  to the push up theorem for the resolution rules. 
Since the application of the simplification rules is supposed to be don't  care nondeter-  
ministic, we must be able to push down a simplification step fl'om the resolution level to 
the verification level. 

THEOREM 4.14. (Push Down) I f  C. E 8,;~,v C'. E '  by a simplification step and 
8. C.  E is an Td-triple, ~hen there exists an assignment 8' such that 

8. C. E "~,v S'. C'. E'. 

PROOF. Let 0. C.  E be an TO-triple. Then ];(C. E) C 7)0, 0C is trivial, and 0E 
is valid in "R. We will show ~hat for every simplification step C .  E ~ ~. ,v  C' .  /~t there  
exists an assignment 0' such that Y(C' .  E 1) C_ ~D0', 0 and 0' agree on V, 01C ' is trivial, 
and 8E-~-~nS 'E '  by the corresponding verification step. Let the simplification rule 
employed in C. E s ~rc, v C ' .  E ~ be: 
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Uni. T h e n  C'. E '  = S .  E,  where S is solved, SOLW(C)  = S O L W ( S ) ,  ~D(S) C_ W, and 
W = Y U 1~(E). Since 0C is trivial and W U l~(C) C :D0, we have 0[w 6 SOLW(C)  = 
S O L W ( S ) .  Therefore ,  there exists a ground subst i tu t ion 8 ~ such tha t  O' agrees with 0 on 
W, O'S is trivial, and :DO' = W u Y ( S ) .  Since Y(E)  C_ W, we know tha t  O'E = OE is valid 
in T~. Thus ,  it suffices t o  show that  8 ' z  is 7~-normal for every x E W U V(S) = W U 27(S). 

I f  x E W ,  then 8 'x  is 7~-normal, since 0re = 0x and 0x is 7Z-normal. If  x 6 Z(S>, 
then  there  is an equa t ion  y --  s in S such tha t  z occurs in s and y 6 :D(S) C_ W.  Hence, 
8'x is a s u b t e r m  of  the t e rm O's, which is 7~-normal since O's = O'y = 0y. Thus  0'r is 
7~-normal. 

R. T h e n  C .  E = (S .  P & Ez) and C ' .  E '  - (S.  Blur ~-- v] ~: Bz),  where ( S ) ( P / r )  -+ v 
is a n  ins tance  of a rule o{ T~. It suffices to prove tha t  OP--X~z 8(P[~r ~-- v]) by the  
verif icat ion rule VR,  since then  we can define 8' :=  0. 

Since 8. S .  E is an 7~-triple, 8S  is trivial. Hence 8 = 0(S}, which implies t ha t  
(O.P)/zr = @(P/Tr) = O(S}(P/~r). T h u s  OP "~,Tz(OP)[~r * -Ov]  by the  verification rule 
VR, since (S)(P/~r) -+ v is an  instance of a rule of  7Z. 

Unf.. T h e n  C .  E = (C.  P & E l )  and C'. E' = (C. ~ - P/~r g~ P[~r ,.-- ss] & El ) ,  
where z is a new variable. Defining 8' :=  0[x ~- s], where s is the 7~-normal form of  
O(P/~r), yields the  claim. 

SB1. T h e n  C.  /~ = (S .  r --  t & Ez)  and C'. E'  ---- (S &~ z '-- t .  El) ,  where S contains 
an equa t ion  y - s such tha t  (S)~ is a sub te rm of s. It suffices to show tha t  0~ - 0t is a 
tr ivial  equation,  since then we can define 8~ : -  0. 

Since ~. C .  E is an 7~-triple, we have tha t  8 -- O(S), 8y = 0s, and 0x - - n  0t. Since 
Ot = O(S)t and (S) t  is a sub te rm of s, we know tha t  0t is a sub te rm of  0s. Since 0s = 0y 
is an  7Z-value, 0t is an 7Z-value. Since @r is an 7~-value and Ox = n  ~t, we conclude that  

SB2. T h e n C .  E---- ( C . P  ~z E l )  and C ' .  E'---- (C & P .  Ez) ,  where every funct ion 
symbol  occurr ing  in P is irreducible. It  suffices to prove tha t  8 P  is trivial, since then  
we can  define 0 ~ :---- 8. Since 0 is normal  and every function symbol  occurr ing in P is 
irreducible,  8 P  cannot  be  rewrit ten.  Since OP is valid in 7~, ~his yields the claim. 

D, S, P1 or P2. For these rules 0 ~ :=  8 does the job. 
P3.  T h e n  C ~. E ~ ha~ been obtained f rom C .  E by  replaclng all occurrences of  ~s with 

y, where x ~ V and  y ~ V U V(C.  E).  Defining 8' :=  O[y ~- ~$] yields the  claim. []  

We wri te  O. C .  E ~ r ~ , v O  ~ . C .  E / i fO. C . E  ~ , v  On" C".  B n r,x. .vO,.  C t..SY 
for some 7Z-triple ~?n. Cn. Bn.  By the push down and the push  up theorem we know 
tha t  the ex tended solut ion procedure  builds a derivation 

O. C.  E sr,n,v O'. C'.  EJ -~7z , v  O n. C n, B n sr~r~,v . . .  , 

p rovided  the  right d o n ' t  know choices are made. Thus,  we know that  the procedure is 
complete  if we can show tha t  the triple reduct ion relation "8. C.  E s r ~ , v  0'. C' .  E TM is 
t e rmina t ing .  To do  this, we will define a complexi ty measure on triples t ha t  is decreased 
by resolu t ion  steps and not increased by simplification steps. A first a t t e m p t  to define 
the complex i ty  of  a tr iple 0. C.  E could be to use [[E[]~z. However, this doesn ' t  work 
since the resolut ion step B (blocking) doesn ' t  necessarily decrease IJEJJ~z. 

To  define a complexi ty  measure tha t  works, we need a few auxil iary definitions. For a 
t e rm s, let [s I be the  number  of function symbols occurr ing in s. For an  equat ion s - t, 
define [s --' t[ :=  0 if s and  t are variables and [s --  tJ :---- [s I + I~J - 1 otherwise. For an  
equa t ion  sy s t em E ,  let [El :=  ~ v e E  [P[ and ~E be the number  of equat ions occurr ing 
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in E .  With that we define the complexity of an 7~-triple as a triple of nonnegat ive 
integers: 

18. c .  El := (ll0Elln, IEI, BE) 

On these complexities we obtain a well founded ordering "18. C. E I > t9~C '. Et[ " by  
extending the usual ordering on integers lexicographically. 

THEOREM 4.15. (Compatibility) 

1. IfO. C. E r ~n,v 0'. C'. E' by a resolution step, then [0. C. E I > [9'C'. E' I 
2. IfO. C. E s ~n,v 8'. C'. E' by a simplification step, then [8. C. E[ _> [0'0'. E' I. 

PROOF. I. Since application steps decrease IIOEH~, and since blocking steps increase 
nei ther  [[OE[[n nor ]E[, but decrease BE, resolution steps decrease the complexity of a 
triple. 

2. Let 9. C. E ~ '~ ,v  0'. C/. E '  by a simplification step. By proposition 4.13, we 
know that  no simplification step increases [[OE[[n. Therefore, it suffices to show that  if 
a simplification step increases IE[, then it decreases [JOEl[n, and if a simplification step 
increases BE, then it decreases [El. The only rule that  can increase [E[ is the rewriting 
rule, which does decrease [[gEI]n. The  only rules that can increase BE are the unfolding 
and the decomposition rule, which do decrease [E[. [] 

COROLLARY 4.16. The relation "8. C. E ~r,~,v 8'. C'. E'" is terminating. 

COROLLARY 4.17. The solution procedure in Figure 4.1 is complete. 

T h e  proof method we have developped in this and the last section can be used to show 
the completeness of alternative sets of resolution and simplification rules. Given such an 
al ternat ive set of rules, the first step is to devise for every rule a suitable verification rule. 
The  verification rules are applied to ground equation systems and must  leave i~heir validi~;y 
invariant.  The combination of the given rules with their corresponding verification rules 
then  yields a reduction relation on triples. Next one defines a complexity measure on 
triples that  is decreased by resolution steps and not increased by  simplification steps. 
T h e n  one shows with a push up theorem that every unsolved triple can be reduced by  
a resolution step on any given equation. Finally, one shows with a push down theorem 
tha t  every triple can be reduced with any given simplification step. 

I f  one uses an alternative set of resolution rules but the same complexity measure we 
used here, the simplification rules discussed here can be used without  reproving anything.  
If the complexity measure is changed, it is still possible to reuse the push down theorem. 

5.  R e f i n e m e n t s  

In this section we discuss two refinements for the extended solution procedure. Both  of 
t h e m  depend on additional knowledge about the underlying rewriting system. 

5.1 l~EWRITING WITH :iNDUCTIVE CONSEQUENCES 

Let 7~ be the rewriting system in Figure 1.1 and consider the equation z+0  -- 0. Al though 
this equation has the unique solution Ix =" 0} in 7~, which is easily found, the extended 
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solution procedure nevertheless has an infinite search space for this equation. To  see this, 
consider the  derivation steps 

O.x+O---" 0 
r ~,{=} ~ + 0 -- s(x') + y ' .  s(x'  + y') -- 0 by A 

, ~ , { = }  z - -  s ( z ' )  & y '  -" 0 .  s (~ '  + y')  --" 0 by Uni, 

which can be continued infinitely often by applying rule (4) to the occurrence of  +. The 
obtained pair  is actual ly  inconsistent, but our simplification and failure rules are too 
weak ~o de t ec t  th is  inconsistency. 

We can get rid of this annoying problem if we add the rule z + 0 ~ z to the rewriting 
system. T h e n  the extended solution procedure can find the solution of = + 0 --" 0 by using 
simplification steps 0Ely. Since the equation z § 0 -- x is an inductive consequence of 7~ 
and the extended rewriting system still terminates, adding this rule doesn' t  change the 
solutions of an equation. We will show that  the solution procedure stays complete if the 
new rule is used for simplification with the rewriting rule but is not used for resolution 
with the appl icat ion rule. 

T w o  ground confluent and te~minating rewriting systems are equivalent if they have 
the same signature and every ground te rm has the same normal form in both systems. 
Equivalent  rewriting systems define, up to isomorphism, the same initial algebra. 

PR, OPOSITION 5.1. Let 7~ and ~ '  be two equivalent ground confluent and terminating 
rewriting systems. Then a ground equation is valid in ~ i f  and only i f  lt is valid in T~ I. 

PROPOSITION 5.2. Le~ 7~----- (E,g)  be a ground confluent and terminating rewriting 
system and s ---+ ~ be a rewriting rule that is an inductive consequence of "R.. Then 
T~' := ( ~ , g  U {s --* t}) is a ground confluent rewriting system. Furthermore, i f ~  ~ is 
terminating, then T~ and Tff are equivalent. 

THEOREM 5.3. Let  T~ -- (E, E) and 7~' = (E, g U  g ' )  be two equivalent ground confluen~ 
and termina#ing rewriting systems. Then the extended solution procedure in Figure 4A 
is complete i f  the rules in S are employed for resolution steps and the rules in E U s are 
employed for simplification steps. 

PROOF. I t  suffices to  show that  the Push Up Theorem stilt holds if only the  rules in 
g are available for application steps. This is the case since every ground t e rm that can 
be rewri t ten  with a rule in s U g~ can also be rewrit ten with a rule in s [] 

T h e  idea to use inductive consequences for rewriting also appears  in Fribourg (1985). 

5.2  FltEE REWR, ITING SYSTEMS 

A ground confluent and terminating rewriting system 7~ is called free if every function 
symbol  t h a t  is reducible in T~ is completely defined in 7~. l~ecall that  a function symbol 
f is reducible in 7~ if f is the top symbol of the left hand side of at least one rule of 7~, 
and tha t  f is completely defined in 7~ if f occurs in no 7~-value. The rewriting system 
7~1 in Subsection 4.3 is an example for a free rewriting system. The irreducible function 
symbols of  a free rewriting system are often called constructors. Furthermore,  a term is 
c~lled canonical in 7~ if it doesn ' t  contain a function symbol tha t  is reducible in 7L 

PI~OPOSITION 5.4. Le~ 7Z be a free rewriting system. Then a ground ~erm is an 7~-value 
if  and only i f  it is canonical. 

T h e  reason we discuss free rewriting systems here is that  for these systems the number 
of don ' t  know alternatives our so]ution procedure has to explore can be signific~ntJy 
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solve(C. E) is 
1. choose don't care C'. E'  such that C. E ~ ~* n ,v  C'.  E / by simplification 

steps and every equation in E I contains at least one simple term; 
2. if a failure rule applies to C ' .  E ' ,  then fail; 
3. if E j is empty~ then return CI; 
4. choose don't care an equation P in E I and a simple subterm P/~r in P; 
5. choose don'l know C ' .  EII such that  C I. E I r ~n,v C n. E "  

by an application step on P at zr 
6. solve(C". E") 

FIGURE 5.1. A solution procedure for free rewriting system. 

reduced. Given a free rewriting system 7~, we call a term f ( s z , . . . ,  s,~) simple in 7~ if 
its top symbol f is reducible in T~ and its arguments st ,  . . . ,  s,, are canonical in 7~. Th e  
solution procedure in Figure 5.1 restricts resolution steps to rule applications to don ' t  
care chosen simple subterms. To prove that  this procedure is complete for free rewrit ing 
systems, we have to show two things. First, it must always be possible to simplify a pair  
C.  E such that the unsolved part contains only equations that contain at least one simple 
term. This is the case since an equation that  doesn't contain a simple term contains only 
irreducible function symbols and can thus be blocked with the simplification rule SB2. 
Second, we need a stronger push up theorem: 

THEOREM 5.5. (Push Up for Free Rewriting Systems) Let T~ be a free rewriting system. 
Then, i f  S. C. E is an T~-triple, P is an equation in E, and P/lr is a simple sub,era of  
P, there exists a triple 8'. C'. E' such that 8. C. E r§ 8 I. C I. E'  by an application 
step on P at ~-. 

PROOF. Let 8. C. P&E be an 7~-triple and P/lr be a simple subterm of P .  Th en  
8(P/~r) is an innermost ground term. Thus there exist a variant u ---, v of a rule of 7~ 
and a substitution r such that  eu = (SP)/Tr. From here on the proof is identical with 
the proof of the push up theorem in Section 3. [] 

CO1%OLLAP~Y 5.6. The solution procedure in Figure 5.I is complete for free rewriting 
systems. 

Fribourg (1985) discusses a similar solution procedure for free conditional rewrit ing 
systems. He has the additional requirement that the left hand sides of all rules be simple 
terms.  

The re  is actually no need for reproving a stronger version of the push up theorem, 
since our simplification rules are already strong enough to justify the solution procedure  
for free rewriting systems. In fact, the solution procedure in Figure 5.1 just  realizes one 
of the  many strategies that  one can obtain by using the unfolding rule in conjunction 
with the don't  care selection of the next equation to be resolved upon. To see this, first 
notice that every equation that doesn't  contain a simple term can be safely blocked with 
the simplification rule SB2. Secondly, any simple term s contained in an equation can be 
unfolded into an equation x - s, which then can be chosen to be the next equation to be 
resolved upon. Blocking such an equation immediately yields an inconsistent pair, as we 
know by failure rule (3) since the top symbol of s is completely defined. Fur thermore,  
any application step to a proper subterm s/~r of s yields an inconsistent pair, as we know 
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by failure rule (1) since the top symbol of s/~r is irreducible, that  is, is different from the 
top symbol of the left hand side of any rewriting rule. Thus we are left with exactly the 
don ' t  know alternatives that  are considered by the solution procedure for free rewriting 
systems. 

T h e  left-go-right basic narrowing strategy in (IIerold, 1986) and the selection narrowing 
strategy in (Bosco et al., t987) are two further examples for the strategies tha t  can be 
obtained by  using the unfolding rule. 
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