
J, Symbolic Computation (1989) 7, 295-317

Basic Narrowing Revisited

W E R N E R NUTT, PIERI~E RETYt AND GERT SMOLKA

FB Informatik, Universit~$ Kaiserslautern,
6750 Kaiserslau~ern, West Germany

and

t Centre de Recherche en Infovmatique de Nancy,
Campus Scientifique BP 239, 54506 Vand~uvre, France

In this paper we study basic narrowing as a method for solving equations in the
initial algebra specified by a ground confluent and terminating term rewriting
system. Since we are interested in equation solving, we don't study basic narrow~
ing as a reduction relation on terms but consider immediately its reformulation
as an equation solving rule. This reformulation leads to a technically simpler
presentation and reveals that the essence of basic narrowing can be captured
without recourse to term unification.

We present an equation solving calculus that features three classes of
rules, l~esolution rules, whose application is don't know nondeterministic, are
the basic rules and suffice for a complete solution procedure. Failure rules detect
inconsistent parts of the search space. Simplification rules, whose application is
don't care nondeterministic, enhance the power of the failure rules and reduce
the number of necessary don't know steps.

Three of the presented simplification rules are new. The rewriting rule
allows for don't care nondeterministic rewriting and thus yields a marriage of
basic and normalizing narrowing. The safe blocking rule is specific to basic nar-
rowing and is particularly useful in conjunction with the rewriting rule. Finally,
the unfolding rule allows for a variety of search strategies that reduce the number
of don't know alternatives that need to be explored.

1. I n t r o d u c t i o n

Narrowing first appeared in the context of resolution based theorem proving as an adap-
tion of the paramodulat ion rule (Robinson & Wos,1969) to canonical term rewriting
systems (Slagle, 1974; Lankford, 1975). Fay (1978) realized that narrowing can be em-
ployed as a universal unification procedure that solves equations in the theory defined
by a canonical rewriting system. Hullot (1980) continued Fay's (1978) work and devised
a new narrowing strategy called basic narrowing. Kirchner (1985) extended narrowing
to rewriting modulo equations. Kaplan (1984) and Huflmann (1985) investigated nar-
rowing for conditional term rewriting systems. The recent interest in logic programming
with equations (Dershowitz & Plaisted, 1985; Goguen & Meseguer, 1986) has generated
much work on universal unification (often called E-unification) (Gallier & Snyder, 1987;
HSIldobler, 1987; Martelli et al., 1986) and narrowing (Dosco et al., 1987; Fribourg,

295
0747-7171/89/030295+23 $03.00/0 �9 1989 Academic Press Limited

296 W. Nutt et al.

1985; :losephson &= Dershowitz, 1986; R~ty et al., 1985; You ~z Subrahmanyam, 1986) in
particular.

Technically, narrowing combines term unification and rewriting. To perform a nar-
rowing step on a term t means to replace t by O(t[rr ~-- v]), where t/~r is a nonvariable
subterm of t , u --+ v is a variable disjoint copy of a rule, and 0 is the most general unifier
of the subterm t/Tr and the left hand side u of the rule. The thus obtained narrowing
relation extends the rewriting relation since every rewriting step is also a narrowing step.

Fay's (1978) unification procedure employs a normalizing narrowing strategy, where a
proper narrowing step is only performed if no rewriting step is possible. In other words,
after every proper narrowing step the obtained te rm is rewritten to normal form. While
the application of a rewriting step is don' t care nondeterministic (that is, it doesn't
mat te r which rewriting step is applied next), the application of a narrowing step is don't
know nondeterministic (that is, it matters which narrowing step is applied next). The
advantage of normalizing narrowing over pure narrowing is tha t it yields a unification
procedure with a smaller search space.

Hullot 's (1980) basic narrowing strategy obtains a search space reduction by restricting
narrowing steps to subterrns tha t were not introduced by instantiation. The drawback of
this s t ragtegy is tha t the application of a narrowing step that is actually a rewriting step
is no longer don't care nondeterministic, l~ecently, the authors (R~ty, 1987; Smolka &
Nutt, 1987) devised special rewriting rules that are compatible with the basic narrowing
strategy and whose application is still don't care nondeterrninistic. This present paper
combines and simplifies our results.

We s tudy basic narrowing and its optimizations as a method for solving equations
in the initial algebra specified by a ground confluent and terminating term rewriting
system. Since we are interested in equation solving, we don't study basic narrowing as
a reduction relation on terms but consider immediately its reformulation as an equation
solving rule. This reformulation leads to a technically simpler presentation and reveals
that the essence of basic narrowing can be captured without recourse to term unification.

There are several advantages gained from weakening the usual confluence requirement
to ground confluence. Applications in algebraic specification and logic programming
usually employ initial algebra semantics, which means that ground confluence rather
than full confluence is the natural requirement. A typical example is the specification of
the integers shown in Figure 1. This specification is a terminating and ground confluent
rewriting system, which is not confluent since, for instance, x �9 y and ((x * y) + y) + (- y)
are two distinct normal forms of p(s(x)) �9 y. An automatic completion of this system
seems to be difficult if not impossible, tLety et al. (1985) give a confluent extension of this
system by adding thir teen inductive consequences. This more than doubles the original
rules and thus increases the search space of a narrowing based unification procedure. To
be able to weaken the usual confluence requirement to ground confluence, completeness
must be defined with respect to solutions, which map variables into irreducible ground
terms, ra ther than unifiers, which map variables to terms possibly containing variables.

Our equation solving calculus employs three classes of rules: resolution rules whose
application is don' t know nondeterministic, simplification rules whose application is don't
care nondeterministic, and failure rules allowing to prune inconsistent parts of a search
tree. The resolution rules are the basic rules and suffice for a complete solution procedure.
The purpose of the simplification rules is to reduce the search space. In some cases, the
use of simplification rules can cut down an infinite search space to a finite one.

Three of the presented simplification rules are new. The rewriting rule allows for don't

Basic Narrowing Revisited 297

(1) v(8(~)) -~
(2) s(v(~)) -~

(3) O-by--~y

(4) s(x) + y ---+ s(x + y)

(5) p(~) + ~ -~ p(z + y)

(6) - o ~ o

(7) -~ (~) -~ p (- ~)
(8) -p (~) -~ ~ (-~)

(9) 0 . y - + 0

(10) 8 (~) , y - . (~ �9 y) + y
(11) p (: c) , y ~ (x . y) + (- y)

FIGURE 1.1. A specification of the integers as a ground confluent and terminating
rewriting system.

care nondeterministic rewriting and thus yields a marriage of basic and normalizing
narrowing that enjoys the advantages of both approaches. The safe blocking rule is
specific to basic narrowing and is particulary useful in conjunction with the rewriting
rule. Finally, the unfolding rule allows for a variety of search strategies that reduce the
number of don't know alternatives that need to be explored.

Our equation solving calculus is the basis for a class of solution procedures, where the
don't know application of a resolution step is followed by the don't care application of
finitely many simplification steps. The completeness of these procedures is shown with a
new proof technique yielding a scheme that is easily applied to additional or alternative
rules. As an application of our proof scheme, we show the completeness of an innermost
constructor strategy similar to the one proposed by Fribourg (1985).

The paper is organized as follows. In Section 2 we fix our notation for equations and
rewriting systems. In Section 3 we present two resolution rules that yield a complete
but very inefficient solution procedure. In Section 4, which is the heart of the paper, we
extend the equation solving calculus with failure and simplification rules, thus obtaining a
far more efficient solution procedure. In Section 5 we show the completeness of a solution
procedure that uses inductive consequences for rewriting and prove the completeness of
an innermost constructor strategy.

For most applications the use of many-sorted or even order-sorted (many-sorted with
subsorts) equational logic is essential. Nevertheless, in this paper we consider only un-
sorted logic since it suffices to demonstrate our ideas. The generalization of our results
to the many-sorted case without subsorts is straightforward. The generalization to the
order-sorted case is also not difficult if sort-decreasing rewriting systems (Smolka et al.,
1987) are employed.

2. Equa t ions and Rewr i t ing Sys tems

In this section we review the necessary notations for equations and rewriting systems.
The reader not familiar with the theory of term rewriting systems may consult (Huet,
1980; Huet 8z Oppen, 1980).

298 W. Nutt et aL

We a s s u m e t h a t a se t offunc~ion symbols (ranged over by f , g, and h) and an infinite
set of variables (r a n g e d over b y z, y, z) are given. Eve ry func t ion symbol comes wi th an
arity, w h i c h is a n o n n e g a t i v e integer.

T e ~ (r ~ . g e a o~er by ~, t, ~, a~d ,) ~ . d o r 1 6 2 1 6 2 1 6 2 of t~rm~ (:anged over by ~) are
defined a s u s u a l . W e use s/~r t o denote the subterm ors at occurrence zr and s[zr +-- t] to
deno te t h e t e r m o b t a i n a b l e f rom s b y replacing the s u b t e r m a t occurrence zr wi th t. A n
equation s "-- t is a n o r d e r e d pa i r consist ing of two te rms s and t. The l e t t e r P will a lways
range ove r e q u a t i o n s . A n equation sys tem is a bag P1 & �9 "' 8z Pn of equat ions; we use
@ to d e n o t e t h e e m p t y equation sys tem. T h e l e t t e r E will a lways range over equa t ion
sys tems . A n e q u a t i o n is cal led trivial if i t has t he form s - s; an equa t ion sys tem is
cal led trivial i f e a c h o f i t s equat ions is t r ivial .

A syntact ical o b j e c t is e i ther a te rm, an equation~ or an equa t ion system. A syn tac t i ca l
ob j ec t is c a l l e d ground i f it does not conta in variables . We use Y(O) to denote the set of
va r i ab le s o c c u r r i n g i n a syn tac t i ca l ob jec t O.

A signature is a s e t e f funct ion symbols . The l e t t e r ~, wil l a lways range over s ignatures.
A s y n t a c t i c a l o b j e c t is cal led a E-ob jec t if every funct ion symbol occurr ing in i t is in E.

Let E b e a s i g n a t u r e . A E-substitution.is a funct ion f rom E - t e r m s into E - t e r m s such
t h a t 0 f (s l , . . . , s n) -" f (Os l , . . . ,Osn) and :Dr9 := {s I 0 z r x} is finite. In abuse of
n o t a t i o n , T)~ is c a l l e d the domain of 8 and g0 : : {t?z [z E :D0} is called the codomain of
0. F u r t h e r m o r e , 27t~ :---])(CO) is called the set of variabJes introduced by 8. The let ters
9, r a n d r wi l l a l w a y s range over subs t i tu t ions . T h e compos i t ion of E - subs t i t u t i ons is
aga in a E - s u b s t i t u t i o n . E - subs t i t u t i ons are ex tended to syn tac t ica l E - o b j e c t s as usual.
A s u b s t i t u t i o n 0 is ground if Oz is a g round t e rm for al l x E :D0. A subs t i t u t i on 0 is
idempotent i f 00 = 0. No te t h a t 0 is i dempo ten t if and only if �9 and Z0 are disjoint .

T h e equational representation [0] of a subs t i t u t i on 6 is the equa t ion sys t em

~1 - 0 x I 8~ . . . & mn -- 0xn

where { x l , . . . , z.} = T)t~. T w o subs t i t u t i ons are equal if and only if their equat ional
r e p r e s e n t a t i o n s a r e equa l . Conversely, every E-equa t ion sys t em x l - s l & - -. & zn -:-" sn
such t h a t ~1 x,, a r e d i s t inc t variables is the equa t iona l r ep resen ta t ion of some E-
s u b s t i t u t i o n , w h i c h w e d e n o t e with (x l - s l & . - - & ~ , - - sn>. Note tha t 0 = ([0]> for
every s u b s t i t u t i o n 8.

Let 0 b e a s u b s t i t u t i o n and V be a set of var iables . The res t r ic t ion (91 u of 0 to
V is de f i ned by : 0 I v (x) := 0x if z E V, otherwise 0 I v (z) : = x. Fu r the rmore , the
update tg[y ~-- s] o f ~ a t y w i th s is defined by: 0[y ~ s](~) := s i f z = y, otherwise

A s y n t a c t i c a l o b j e c t O is called an instance of a syn tac t i ca l ob jec t O ' if there is
a s u b s t i t u t i o n 0 s u c h t h a t O = 0 0 t. A syn tac t i ca l ob jec t O i s cal led a variant of a
s y n t a c t i c a l o b j e c t 0 ' i f O is ob t a inab l e f rom O r by cons is ten t var iab le renaming, t h a t is~
there ex i s t s u b s t i t u t i o n s t9 and r such tha t O ' = 6 0 and O = r

Let --~ be a b i n a r y re la t ion on a set M. Then we use ---+* to deno te the reflexive and
t r a n s R i v e c l o s u r e o f --+. The re la t ion --+ is called confluent if for al l a, b, and c in M such
t h a t a --+* b a n d a =-+* c there exists a d in M such tha~ b --+* d and c ---+* d. Fur the rmore ,
-+ is ca l l ed terminat ing i f t he re is no infinite chain a l -+ a2 --+ a3 -+ - �9 -.

A E-rewri t ing rule s -+ t is an equat ion s A t such t h a t s i sn ' t a var iab le and every
va r i ab le o c c u r r i n g in t h e r ight hand side t occurs in the left hand side s. A rewriting
system Tr -- (E , g) cons i s t s of a s ignature E and a set $ of E- rewr i t ing rules. A rewri t ing
s y s t e m Tr = (~3, g) de f ines a b ina ry re la t ion n cal led the rewriting relation of 7~ on

Basic Narrowing Revisited 299

the set of all E-terms as follows: s ~ t if and only if there exists an occurrence ~r of s
and an instance u ~ v of a rule of 7~ such that s/Tr = u and t = s[~r *-- v]. A t e rm s is
7~-normM if there is no te rm t such that s ~ , t . A te rm t is an Ti-normal form of a t e r m
s if s n~*t and ~ is 7~-normal. An ~-value is an 7~-normalc~round term. A rewrit ing
sy s t em 7~ = (E, s is ground confluent if the restriction of - - ~ to the set of all ground
E - t e r m s is confluent.

T h e initiaI algebra Z(7~) specified by a ground confluent and terminat ing rewrit ing
sy s t em 7~ = (E, s can be defined as follows:

�9 The carrier of Z(7~) is the set of all T~-values.
�9 The denotation fx(~) of a function symbol in ~. is given by f z (~) (s l , . . . , sn) -~ s,

where s is the 7~-normal form of f (8 1 , . . . , s ,) .

A ground E-equation s - ~ is valid in (the initial algebra of) 7-t if s and t have the
s ame 7~-normal form. We write 7~ ~ s - ~ or s =n ~ if s - t is valid in ~ . A ground
E-equat ion system is valid in (the initial algebra of) 7~ if each of its equations is valid in
7~. We write 7~ ~ E if E is valid in 7t. A E-equation s - t is an inductive consequence
of ~ if every ground instance of s - t is valid in 7~. Two ground ~-subst i tu t ions ~ and
r are equal in Tt (write ~ = n r if 230 = 23r and ~x = n e x for every x E 23/~.

Let 7~ = (E, s be a ground confluent and terminating rewriting system. Then we
have:

�9 "s - -n t" is a congruence on the set of all ground E-terms, tha t is, "s - ' n ~" is an
equivalence relation satisfying

�9 "0 = n 9" is an equivalence relation on the set of all ground E-substi tutions.
If 0 = n r then Os = ~ r for every term s such tha t Y(s) C 23/? = 23r

3. T h e B a s i c R e s o l u t i o n R u l e s

In this section we develop a simple equation solving calculus that captures the essence of
Hul lo t ' s (1980) basic narrowing method. This calculus is the basis for a simple solut ion
procedure whose soundness and completeness we will prove. In the next section we will
p resen t several extensions for this calculus, thus obtaining a refined solution procedure
wi th a much smaller search space. In particular, the basic calculus to be presented in
this section does not yet incorporate te rm unification, which will only be added in the
nex t section.

GENERAL ASSUMPTION. In the rest o f this paper we assume that 7Z = (E, s is a
ground confluent and terminating rewriting system; furthermore, we assume that there
is at least one ground E-term.

We star t by defining the solutions of an equation system in the initial algebra of 7Z.
A subst i tut ion O is an 7"C-assignment if 8x is an 7Z-value for all ~ 6 230. We use ASSTe to
denote the set of all 7~-assignments. With that we define the set of all 7~-solutions of an
equat ion system E as

SOL (E) := {0 e ASS I 23e = ^ BE).

300 W . N u t t e t al.

Blocking

(B) C. P & E C & P . E

Application

(A) C. P E ,x,v C (P / . E

if Pier isn't a variable and u ~ v is a variant of a rule of Tr
having no variables in common with C. P & E or V

FIGIJI~E 3.1. The basic resolution ru~es.

An equat ion solving procedure for 7~ is a procedure that enumerates S O L~(E) .
For technical reasons that will become apparent soon, we need to relativize the solu-

tions of an equation system with respect to a set of "primary variables". The Tr
of a ~-equat iou system E with respect to a set V of variables are defined as follows:

{Olv leeAss A Z) 0 = V U V (E) A

Note tha t SOLx(27) = SOLV(E)(E). For convenience, we write S O L , (E) for
SOL~m,O)(E), where (~, $) is the rewriting system with signature D and no rules. Note

that S O L , (E) can be represented rather explicitly by the most general unifier of E,
which can be computed using term unification. This will be discussed in Subsection 4.2.

In the literature, narrowing is usually presented for confluent rewriting systems and
completeness is shown with respect to all unifiers, which include nonground substitu-
tions. Since we have weakened the confluence requirement to ground confluence, we have
to restr ict our a t ten t ion to ground substitutions. Nevertheless, the ground confluence
approach subsumes the conventional approach. To see this, assume a confluent rewriting
system is given. We can extend this system by adding infinitely many constants to its
signature, one for each variable. Then the solutions with respect to the extended system,
which is still ground confluent, exactly correspond to the unifiers with respect to the
original system.

The rules of our equation solving calculus, which are given in Figure 3.1, apply to pairs
C. E consisting of two equation systems C and ~7; C is called the constraint part and
E is called the unsolved part. The division of C&E into two parts is needed to express
the basic narrowing strategy. The calculus will allow us to reduce an initial pair 0. E to
solved pMrs C1.0 , C2. @ such that

�9 (Soundness) V i. SOL~(C,) C SOL~(C,) C_ SOL~.(E)

�9 (Completen+~) V 0 e SOL~(~. E) 3 i. 0 e SOL~(C,).

Thus, our calculus "solves" by reducing 7~-solutions to ~-solutions. The two rules
given in Figure 3.1 are called resolution rules because they are the primary rules for
solving equation systems and because we want to distinguish them from the failure and
simplification rules to be presented in the next section. With Robinson's (1965) resolution

Basic Narrowing Revisited 301

solve(C. E) is
1. if E is empty, then return C;
2. choose don'~ care an equation P in E;
3. choose don't know C . E ~ such that C. E ~ ' ~ , v Cq E ~ by a step on P;
4. solve(C'. E ')

FIC~U~tE 3.2. The basic solution procedure.

rule our resolution rules have only in common that they resolve something--in our case
equations. The application rule in Figure 3.1 has to introduce new variables to obtain
a renamed variant of the employed rewriting rule. The following assumption makes sure
that there are always enough new variables left.

ASSUMPTION. In the rest of this paper we assume that V / s a ~nite set of

3.1. Let 7~ be the system in Figure 1.1, V --- {y} , and consider the equat ion
which has the unique solution (y -" 0). Then:

O . 0 + y - " 0
=r ~re,v 0 + y - 0 + y~. y~ - 0 by a resolution step using rule (3)

r ~n,v 0 + y '-- 0 + y~ & y~ - 0 . 0 by a blocking step.

THEOREM 3.2. (Soundness) I f C . E ~-'~,v C ~. ff,~ by a blocking or an application step,
then SOLV~(C ' a Z ') C S O L ~ (C & E).

PROOF. Let C. E r ~7r C I. E t and let O be an assignment such that VU1) (C I. E ~) - -

DO and 0(C' & E ') is valid in 7~. It suffices to show that 0(C & E) is valid in 7~.
If C t & E ~ has been obtained from C. E by a blocking step, then the claim is

trivial. If an application step has been performed, then C. E -- (C . P & E l) ,
C r . E ' -- (C & P/7c "-- u. Pier ~-- v] ~ El) , and u ---* v is a rule of T~. It suffices
to show that OP is valid in 7~. Since O(P/~r) -'T~ Ou and u -~ v is a rule of 9Z, we
have O(P/Tr) = ~ Ov, Since O(P[~r .-- v]) = (OP)[~r ~-- 0v] is valid in 74, we know tha t
(0P)[~- ~ 0(P/~r)] = 0P is valid in T~. []

The nondeterministic solution procedure in Figure 3.2 is an operational formulat ion
of the equation solving calculus in Figure 3.1. The procedure can be explained as a two
person game played by a don' t care player who makes the don't care choices and a don ' t
know player who makes the don' t know choices. Given 7~, a pair 0. E, V := N(E),
and a solution 0 ~ S O L n (E) , the don't care player wins if the procedure terminates
with an equation system C such that 0 ~ SOLv(C); the don' t know player wins if the
procedure terminates with an equation system C such that 0 E SOLV(C). We say tha t
the procedure is complete if the don't know player can" always win if he makes the right
choices. In the following we will show the completeness of the procedure.

An implementation of the basic solution procedure has to explore all alternatives of
a don' t know choice. In fact, the procedure generates a huge number of don't know
alternatives in step 3. One alternative is to block P; the other alternatives are obtained
by applying a rule to P, where every nonvariable occurrence of P and every rule of 7~
have to be considered. To be efficient, it is crucial to eliminate redundant or inconsistent
don't know alternatives as early as possible. This wii1 be ~he theme of the next ~ection.

GENERAL
variables.

EXAMPLE
0 + y - 0 ,

302 W. Nutt et al.

The appl icat ion rule needs to introduce new variables to obtain a renamed variant of a
rewrit ing rule. The choice of the new variables is obviously a don ' t care nondeterminism,
but mak ing this fact explicit is technically very tedious. For this reason the choice of
new var iables appears as a don ' t know nondeterminism in the procedure in Figure 3.2.
This p rob lem will be solved in the next section by the introduction of a simplification
rule tha t can be used to rename variables not occurring in V.

The basic idea behind the completeness proof is a lifting argument. I f 8 6 SOLn(E) ,
then this fact can be verified by rewriting 8E into a trivial equation system. Now the
idea is t h a t a blocking step corresponds to the deletion of a trivial equation in ~E and
an appl icat ion step corresponds to an innermost rewriting step on BE.

We s t a r t by sett ing up a calculus for verifying tha t a ground equation system is valid
in T4. T h e two rules of the verification calculus correspond to the blocking and the
appl icat ion rule of the equation solving calculus:

�9 (V B) P & E ~ S x E if P is a trivial equation
�9 (VA) P & E-. " S n P ly ~ v] & E if P/Tr ---+ v is an instance of a rule of 74.

The rule (VB) deletes a trivial equation and the rule (VA) applies a rewriting step.

P R O P O S I T I O N 3 . 3 .

�9 (Invariance) I r E ~r, x E ' , then E is validin T4 if and o n l y i f E ' is valid in T4.

�9 (Terminat ion) The relation :'E ~r r~ E ' " Js terminating.

�9 (Completeness) E is valid in 7"4 i f and only i r E vr,~ O.

A n 7Z-triple 8. C. E consists of an T~-assignment ~ and two equation systems C and
E such tha t])(C. E) _ l)8, 0C is trivial, and 8E is valid in 7%. The assignment 6 should
be thought of as the solution one wants to find by applying resolution steps to the pair
C . E .

PROPOSITION 3.4. IfO 6 S O L ~ (E) , then 8. •. E is an Ti-triple. Furthermore, ifO. C. 0
is an T4-triple and V C V(C), ~hen 81V E SOL~(C) .

We now define a reduction relation on T4-triples that links resolution steps with their
corresponding verification s t eps We write 8. C . E - r - * n , v 8 ~. Cq E ~ if 8. C . E and
~'. C ' . E ' are bo th T4-triples and

�9 8 and 8 ' agree on V
�9 C. E ~ C'. E' "---+'~.,v by a resolution rule a
�9 * 8E v% ~ OtEt by the verification rule corresponding to or.

PROPOSITION 3.5. (Termination) The triple relation "8. C. E r ,r~,v 8 I. C ' . E '" is
terminating.

A t e r m is called 7t-innermost if each of its proper subterms is 7~-normal, The proof of
the following theorem rests on the idea that for a triple 8. C. E a verification step that
rewrites an innermost te rm of 8E can be "pushed up" to an application step on C. E.

THEOREM 3.6. (Push Up) I f 8. C. E is an 7%'-triple and P is an equation in E, then
there exists a triple 8 I. C ' . E ' such ~ha~ 8. C. E r ~7~,v 8 I. C ~. E ' b y a resolution step
011 t 9,

Pt~OOF, Let 8. C. P & E be an 7~-triple. Then 8P is valid in 74. Thus 8 P is either
trivial or can be rewritten.

Basic Narrowing Revisited 303

1. Suppose 0P is a trivial equation. Then C. P & E --z-+n,v C & P . E by the blocking
rule and 0(P & E) vr~Tz t~E by the verification rule VB. Since tg. C & P . E is an 7~-triple,
this yields the claim.

2. Suppose 0P can be rewritten. Then there exist a nonvariable occurrence 7r of P such
that (tgP)/7c is 7~-innermost, a variant u --+ v of a rule of Td, and a substi tut ion r such tha t
r = (OP)/Tr. Without loss of generality we can assume that 79r = l)(u --+ v) and u ---* v
has no variables in common with V, C. Pb=E, and 790. Define C ~ := (C & -P/ r - u) and
E ' := (Pier ~-- v] & E). Since 8P & ~E1 J vr, n (~P) [v ~-- r & t)E1 by the verification
rule VA and C. P & E " ~z,y Cq E ~ by the resolution rule A, it suffices to show tha t
there exists an TO-assignment fl~ such that 790 ~ = :D0 tJ N(u --* v), fir agrees with fl on 798,
0'(P/~r) = O'u, and 0 ' (P[~ ~ v]) is valid in 7~.

To show this, define Ol as follows: if z e 79r then 0J~ := r otherwise O/z := 0z. To
show that t~ ~ is an 7e-assignment, it suffices to show that r is an 7C-assignment, which
holds since 79r = Y(u ~ v) =]3(u), r = 0(P/Tr) is n - innermost and ground, and u
isn't a variable.

Since 79r = Y(u --+ v), we have :D0' = 790 U 79r = :DO t2 Y(u ---* v) as required. Since
~0 and 79r = V(u --+ v) are disjoint, t?' and 0 agree on :DO. Furthermore, ~'(_P/Tr) -- 0 'u
since e (e / ~) = r

Finally, 0'(PiTt ~ v]) = (t~P)[r ~- r is valid in 7d since r = n r r = 8(P/ lr) ,
and ~P = (t~P)[Tr ~-- t~(P/Tr)] is valid in TO. []

COrtOLLAI~u 3.7. For everyTC-ariple ~. C. E there exist 0 ~ and C ~ such ~ha~
0. C . E ~7' ~l. Cq O. TC.,V

PROOF. Suppose that 0, C. E is an ~-triple. If E is empty, then the claim is trivial.
Otherwise, the push up theorem applies and yields O. C. E--z--~n,v tg'. C ~. E ~ for some
triple 8~. C' . E ~. Thus, using the termination property of the triple reduction relation,
the claim follows by induction. []

COROLLARY 3.8. (Completeness) Let 0 ~ SOL~(E) . Then there exisgs an equation

system C such that ~. E --z-+~z,w(~) C. 0 and O ~ soLv(Z) (C) .

PROOF. Let 0 @ S O L n (E) . Then t~. ~. E is an 7d-triple. By the preceding corollary
we know that there exist 0 ~ and C ~ such that 0. r E . " ~-,v(z) 0~" Cq r Thus, we know

that 0 = 0'Jv(~) ~ SOLV(~)(C). []

4. Failure and Simplification Rules

In this section we present several optimizations for the basic solution procedure that
was discussed in the last section. An implementation of this procedure must explore
all alternatives of a don' t know choice in step 3, which generates a huge search space.
To reduce this search space, it is crucial to detect as early as possible whether a pair
C, E is consistent, that is, whether there is an assignment that extends it to an 2 -
triple. This is accomplished by so-called failure rules, which are decidable sufficient
criteria for the inconsistency of a pair. The second method for cutt ing down the search
space is the addition of so-called simplification rules whose application, in contrast to
the application of resolution rules, is don't care ncndeterministic. By simplifying a pair
with the simplification rules before the apphcation of a resolution step it is often possible

304 W. Nutt et al.

solve(C. E) is
1. choose don'~ care C I. E I such that C. E ~---~* C'. E ' "/~,V

by simplification steps;
2. if a failure rule applies to C' . E 1, then fail;
3. if E ~ is empty, then return C';
4. choose don't care an equation P in E ' ;
5. choose don'i know C" . E " such that C ' . E j ~ r , ~ , v C" . E "

by a resolution step on P;
6. solve(C". E ")

FIGUI~E 4.1. The extended solution procedure.

to reduce the number of don' t know resolution steps needed to reach a solved pair.
Fur thermore , often a failure rule applies to an inconsistent pair only after it has been
simplified. Figure 4.1 shows the extension of the basic solution procedure to failure and
simplification rules.

4.1 THE FAILURE RULES

The following definitions are needed to formulate the failure rules.
An equation system E is ~-consistent if there is a substitution 0 such that 0E is trivial.

The E-consistency of an equation system can be decided by a term unification algorithm.
A pair C. E is consistent in 7~ if there exists a substitution 0 such that 0. C . E is an

7~-triple.
A funct ion symbol is called generating in 7~ if it occurs in at least one k-value. A

function symbol is called completely defined in T~ if it is not generating in 7~. In the
rewriting system in Figure 1.1 the functions 0, s and p are generating and the functions
+, - and �9 are completely defined.

Two function symbols] and g are disjoint in 7~ if no ground equation of the form
] (s l , sn) - ' g (h ~0~) is valid in 7~.

A funct ion symbol f is called reducible in 7~ if there is a rule p in 7~ such that f is
the top symbol of the left hand side of p. A function symbol is called irreducible in 7~
if it isn' t reducible in 7~. The constant 0 is the only irreducible function symbol in the
rewriting system in Figure 1.1.

PP~OPOSITION 4.1. [f a function symbol is irreducible in 7~, then it is generating in 7&
Furthermore, i f f and g are distinct function symbols that are both irreducible in 7~,
then f and g are disjoint in T~.

PROPOSITION 4.2. (Failure Rules) A pair C. E is inconsistent in T~ i f one of ~he following
conditions holds:

1. C is not ~-consistent .
2. C contains an equation x "-- t such that t is not T~-normal.
3. C contains an equation ~ "-- t such that t contains ~ completely defined function

symbol ,
4, C ---- [~b] for some substi tution ~b and ~bE contains an equation f (s l s~) -

g (t l , . . . ,tin) such that f and g are disjoint.

Basic Narrowing Revisited 305

The requirement that the constraint part of a pair be the equational representat ion of
a substitution is not a real restriction since we will introduce a simplification rule tha t
replaces the constraint part by its most general unifier.

The concept of a completely defined function symbol is of little use for unsorted rewrit-
ing systems. For instance, if we add to the system in Figure 1.1 the constants true and
false, the functions +, - and * are no longer completely defined. This problem can be
avoided by working with many-sorted rewriting systems. Since the power of the failure
rule (3) increases with the number of completely defined functions, the presence of sorts,
even without subsorts, can lead to smaller search spaces.

4.2 TERM UNIFICATION AND EQUATION SYSTEMS

T e r m unification will be an important part of our optimized solution procedure. After
every resolution step the computation of the most general unifier of the constraint par t
of the obtained pair is at tempted. If this a t tempt fails, we know by the failure rule (1)
t h a t the obtained pair is inconsistent. Otherwise, the constraint part can be replaced
with the equational representation of its most general unifier, an optimization that will
be expressed by a simplification rule. If no other failure and simplication rules are
employed, the thereby obtained soiution procedure performs essentially basic narrowing
as described in (Hullot, 1980).

In this subsection we review the necessary notations and results for te rm unification.
An equation system S is called solved if it has the form xl --" sl & . . . & r --" Sn

where the variables xl , . . , , z,~ occur only once. Note that an equation system is solved if
and only if it is the equational representation of an idempotent substitution. The let ter
S will always range over solved systems.

The next theorem is the adaption of Robinson's (1965) unification theorem to our
framework.

THEOREM 4.3. A E-equation system E is E-consistent if and only if there exists a solved
D-equatlon system S such that '/)(S) C V and SOLV(E) = SOLV(S).

f o r an example , cons ider + s (0) - + y) = - s(O)) . T h e
next proposition says that the solved system S is a fairly explicit representation of the
solution set SOLV(S).

PI~OPOSITION 4.4. If~D(S) C V, then SOL~(S) = {(O(S>)[v] Vx E V. O(S)x is ground}.

4.3 THE SIMPLIFICATION I~ULES

Figure 4.2 and 4.3 show the simplification rules we will discuss in this paper. Three of
these rules-- the rewriting rule, the unfolding rule and the safe blocking rule SBl- -d id
not appear in the literature so far. In conjunction with the don ' t care selection of the
equat ion to be resolved upon next, the unfolding rule can drastically reduce the don%
know alternatives our solution procedure has to explore. The rewriting rule, if used
together with the unfolding rule and the safe blocking rule SB1, results in a marriage of
basic and normMizing narrowing tha t enjoys the advantages of both approaches.

T h e key property of the simplification rules is that their applicabion preserves the
reachable solutions, tha t is, if C. E . s '7~,v C'. E ' by a simplification step, then every
solution that can be reached fl'om C. E can also be reached from C'. E ' . We postpone
the proof of this claim to the next subsection. As a consequence of this preservation

306 W. Nutt et aL

U n i f i c a t i o n

(U n i) C . E - ~ z , v S . E

i f S is solved, SOLW(C) = SOLW(s), :D<S) C W, and W = VU V(E)

Rewriting

(R) S . P & E ' , ~ , v S. P[~- +-- v] & E

if (S) (P / ~) -+ v is an instance of a rule of 7~

U n f o l d i n g

(Unf) C. P & E - ~ n , v C. ~ = P/or ~ P[~r ~ x] & E

i f z is a new variable, that is, x ~ VU V(C. P & E) ,

and both P / r and P[~r +-- x] contain at least one function symbol

Safe Blocking

(SBI) S,x--" t & E '~:~,v S&z--" t. E

if S contains an equation y -' s such that <S) t is a subterm of s

(SB2) C . P & : E - ~ z , v C a P . E

if every function symbol occurring in P is irreducible

D e c o m p os i t ion

(D) C. f(s l , . . . , s ,~)-f(h, . . . , t ,~) & E �9 " " ~ , v C . s l "--- t l & . . . & s n "-- t,~ & E

if f is decomposable

FIGVRE 4.2. The simplification rules, part 1.

property, a pair C. E is inconsistent if it is inconsistent after it has been simplified. This
fact greatly enhances the power of the failure rules.

The following definition is needed for the decomposition rule. A function symbol]
is d e c o m p o s a b l e in 7~ if for every ground equation f (s l sn) -- f (t l , , . . , t n) that is
valid in 7~ the equations s1 - - t l so "- to are valid in 7E. In the rewriting system in
Figure 1.1 the function symbols s and p are decomposable.

PROPOSITION 4.5. E v e r y i r reduc ibIe f u n c t i o n s y m b o l is decomposab l e .

The following rewriting system will be used in examples.

(1) a p p (n i l , x) --+ x (Tgl)
(2) app(=.y, z) .app(y, z)

7%1 is a confluent and terminating rewriting system. The function symbols nil (the empty
list) and '. ' (the cons operator) are irreducible and thus generating, decomposable and
disjoint. The function symbol app (list concatenation) is completely defined.

Basic Narrowing Revisited 307

S u b s u m p d o n

(S) S . P & Q & E - ~ n , v S . Q & E

if <s)P = < s) q

P e r m u t a t ion

(P1) C.s'-~&E - - ~ , v C.~':-s&E

(P2) S . x "= s & t -'-- u s E * ~v..,v S . z - s & x - u & E

if (S) s = (S) t

(Pa) C . E ' , n , v C ' . E '

if C' . E t is obtainable from C. E by replacing all occurrences
ofr with y, where x ~ V and y r V tJV(C. E)

FIGURE 4.3. The simplification rules, part 2.

EXAMPLE 4.6. (l~ewriting) We want to solve the equation a p p (a p p (x , y) , z) ..~ r~il in
7~1 with respect to the variable z. This problem has an infinite search space if only
unification is employed for simplification, but it has a finite search space if bo th the
unification and rewriting rule can be used. To see this, consider the derivation

O. app(app(z , y), z) -- n i l
= r . g l , { ;) a p p (x , y) "- a v p (z q y ' , z ') . a p p (z ' . a p p (y ' , z ') , z) -- n i l by A

s ~Xl,{z) 0 �9 app(x ' . app (y ' , z'), z) -- n i l by Vni ,

which can be continued infinitely often by applying rule (2) to the inner occurrence of
app. ttowever, if the rewriting rule is available for simpIification, we can prune this
infinite and inconsistent part of the search space by rewriting the above pair to

"--~Zl,{~) ~b. x ' . app (app (y ' , z ') , z) • rill by R.

This pair can now be recognized as inconsistent by the failure rule (4) since the func t ion
symbols '.' and ni l are disjoint in T~I.

The following derivation shows how the solution of the system can be computed:

~ . a p p (a p p (x , y) , z) = n i l
: 'r~l,{z} a p p (x , y) --'--. a p p (n i l , x ') . app(x ' , z) - n i l by A
,- '~:l,(~} 0 . app(x ' , z) ~ n i l by U n i

'~ l , { z} app(z ' , z) "-- app(ni l , y ') . y ' - n i l by A
--~r ~zl,{z} app(x ' , z) "-- app(ni l , y ') & yt - n i l . 0 by S e 2

~l,{z} z '-=- ni l . (3 by Uni.

EXAMPLE 4.7. (Unfolding) We want to solve the equation app(x , app(y , z)) -- n i l in 7Zl
with respect to the variable z. This problem has a finite search space i f the unfolding
rule can be used for simplification, while it has infinite search space otherwise. To see
this, consider the derivation

308 W, Nutt et al.

O �9 app (x , app(y , z)) "-:- n i l
r "R.l ,{x} app(y , z) - a p p (x ' . g ' , z ') . app(r c q a p p (y ' , z ')) '-- n i l by A
s ~~1,{~} 0 �9 app (x , # . a p p (y ' , z ')) - n i l by Uni,

which can be continued infinitely &ten by applying rule (2) to the inner occurrence of app.
t[owever, if we star t with the unfolding rule, we can prune this infinite and inconsistent
part of the search space and compute the solution as follows:

r avp(x, app(y, z)) - nil
--2--~s ~1,1~} 0 �9 a p p (x , x ') "-- n i l & x ' ~ app(y , z) by C n f

�9 ~'~-1,{,} app(r x 0 ":- app(n i l , y ') . y ' -- n i l & x ' -- app(y , z) by A
~1,{~,1 x '-- n i l & x ~ - n i l . x ' - - app(y , z) by SB2 , Uni

r,~l,{~} x - n i I & x ' - n i l ~ a p p (y , z) ~ a p p (n i l , z ') . x ' =- z ' b y A
>~1,{~} x -- n i l . 0 by SB2, Uni,

Compared to ordinary narrowing, the basic narrowing strategy achieves a smaller
search space by avoiding many derivations that don' t correspond to innermost rewriting
chains. This becomes apparent in ~he proof of the push up theorem, where only innermost
rewriting steps are pushed up, and with the failure rules (2) and (3). However, as the
last example demonstrates, this innermost flavor of the basic narrowing strategy can be
weakened by using the unfolding rule without losing the search space reductions.

The last example also demonstrates that, in conjunction with the don ' t care selection
of the next equation to be resolved upon, the unfolding rule can lead to drastic search
space reductions by breaking large equations with many don't know alternatives into
small equations with few don't know alternatives. For instance, if the extended solution
procedure selects the equation

 pp(app(, app(', U')) --

in step 4, it must explore the following five, not obviously inconsistent, don't know
alternatives:

(1) blocking the equation,
(2) applying rule (1) of Tel to the left inner occurrence of app,
(3) applying rule (2) of 7~1 to the left inner occurrence of app,
(4) applying rule (1) of Tel to the right inner occurrence of app, and
(5) applying rule (2) of Tel to the right inner occurrence of app.

The alternatives (2) and (3) or, alternatively, (4) and (5) seem to be redundant since it
shouldn't make a difference whether the left or right inner occurrence of app is considered
first. This idea can be exploited by unfolding the right inner occurrence of app, which
yields the equations

z t - - a p p (z ' , y ') ~ app (app(r y) , z ') - z

and thus eliminates the alternatives (2) and (3) if the left equation is considered first.
In conjunction with the don't care selection of the next equation to be resolved upon

the unfolding rule can he used to obtain a variety of strategies that reduce the don't know
alternatives a solution procedure has to consider. Two examples are the the left-to-right
basic narrowing strategy in (Herold, 1986) and the selection narrowing strategy in (Bosco
et al., 1987). Another example is the innermost constructor strategy in (Fribourg, 1985),
which we will discuss in the next section.

Basic Narrowing Revisited 309

Bosco et al. (1987) present a translation of basic narrowing into SLD-resolution (Lloyd,
1984), which gives them implicitly the effect we would obtain by using the unfolding rule
as often as possible. Complete unfolding, however, has the disadvantage of reducing the
power of the rewriting rule. Nevertheless, Bosco et al.'s (1987) paper gave us the idea
for the unfolding rule.

The application conditions of the unfolding rule ensure that it can ' t produce equations
of the form x --" y, a restriction that is needed to preserve the completeness of the extended
solution procedure.

EXAMPLE 4.8. (Safe Blocking) As we have seen in Example 4.6, using the rewriting rule
for simplification may cut down an infinite search space to a finite one. A disadvantage
of the rewriting rule is, however, that it transfers terms from the constraint part back
into the unsolved part, thus increasing the search space again. To see this, let T~ be the
rewriting system in Figure 1.1 and consider the rewriting step

y - s (, (s (z))) . �9 + ; (y) - 0
n,{y} y "-- s (s (s (z))) . x + s (s (z)) - 0 by R,

which carries the term s (s (z)) from the constraint part into the unsolved part . This
disadvantage can be completely avoided by using the unfolding and the safe blocking
rule to transfer terms carried over by the rewriting rule back into the constraint part:

8 ~z,{,j} y -- s (s (s (z))) , x ' "-:- s (s (z)) & x + x ' -- 0 by U n f

- 8- ~n,{y } y -- s (s (s (z))) & x ' "-- s (s (z)) , x + z ' '-- 0 by SB2.

EXAMPLE 4.9. (Naive Rewriting) The following restriction of the application rule, which
we will refer to as the n a i ve r e w r i t i n g rule, seems to be a better alternative to the rewriting
rule in Figure 4.2 since it doesn't transfer terms from the constraint part to the unsolved
part:

s . p a ~ - - ~ , v s a (p / ~ - ~). P[~ ~ ~] a E
if P/~r isn't a variable,
u --* v is a variant of a rule of 7% containing only new variables,
and (S) (P / r) is an instance of u.

Kowever, this rule cannot be used as a simplification rule since, in general, its application
is not don't care nondeterministic. To see this, consider the rewriting system in Figure
1.1 and the initial pair

~ . s(p(z + 0)) - ' O,

which has the unique solution (z -- 0}. By applying the naive rewriting rule to s with
rule (2) we obtain the pair

~ (p (~ + 0)) - ~ (v (~ ')) �9 ~ ' - 0,

which, after a unification step, becomes

x' "-- x + O . z'-- O.

The only resolution step that applies to the unsolved equation of this pair is blocking,
which yields

a:'---' a :+0 & x'-- ' 0 . 0,

a pair whose constraint part is E-inconsistent. This shows that the application of the
naive rewriting rule is not don' t care nondeterministic.

310 W. Nut t e~ hi.

EXAMPL~ 4 .10 . (Decomposition) Let 7r be the rewriting system in Figure 1.1 and con-
sider the equa t i on s(~) --" s(y). Since s is decomposable in 7r (note that s is not irreducible
in 7~), we know by the decomposition rule that the equation x - y, which is in solved
form, has the same solutions in Tr as the equagion s(z) =- s(y). Without the decomposi-
t ion rule, however, our solution procedure canr~ot avoid to compute a second solved form
t h a t is r e d u n d a n t :

r -

"~ ~z,{y} s(x) "-- s(p(x')) . x' "-" s(y) by A
,~.,{y} $ �9 x' "=" s (y) by Uni

-" - by A
....!_+~. . y -- p(y') ~ by SB2, Uni.

,iYl

W i t h t h e permuta t ion rule P3 it is possible to rename auxiliary variables, that is,
v~riables t h a t don' t occur in V. We have included this rule to show ghat the intro-
duc t ion o f new variables by the application rule (Figure 3.1) is actually a don' t care
nonde t e rmin i sm .

4.4 SOUNDNESS AND COMPLETENESS PROOFS

THEOREM 4.11. (Soundness) If C. E ~ , v C'. E ' by a simplification s~ep,
then SOL (C' a C_ SOL (C a E)

PB.OOF. Let C. E--~7~,v C I. E' by a simplification step and let 0 be an assignment
such t h a t DO = V U V(C'. E ') and 0(C' & E') is valid in Tr We have to show that
there exists an assignment 0 / such that V U]2(C & 1~) _C 738 I, 8' and 0 agree on V, and
6r(C ~z E) is valid in 7r Let the simplification rule employed in C. E ~ ~ , v C I. E I be:

Uni. T h e n C ' . E ' = S. E, where S is solved, SOLw(C) = SOLW(s) and �9 _C
W --'- V u V (E) . It suffices to show that there exists a ground substitution t~ such that
V U]2(C & E) C 730, 0Iv = n 0Iv, and 0(C & E) is valid in ?Z, since then defining 0'z as
the n o r m a l f o rm of 0x for every ~ E 2)0 yields the claim.

Since S is solved, we know that (S)S is a trivial equation system, which implies that
6 (S) S is a t r ivial system. This implies (O(S))Iw e SOLW(S) = soLW(C) . Therefore,
there exis ts a ground substitution 0 such that :P0 = W U Y(C) -- V U Y(E) U Y(C),
OIw = (O(S})]w, and t~C is trivial. In particular, 0C is valid in 7r

Since OS is valid in TO, we have 0 = ~ O(S}, which yields Olw =~ (O{S})Iw = Olw.
Since W = V O])(E), this yields that 0E is valid in 7r and Olv =~z O[v.

R. T h e n C . E ---- (S. Pgz E l) and C'. E ' = (S. P[~r ~-- v] 8z El) , where (S)(P/~r) ---* v
is a n in s t ance of a rule of 92. I t suffices to show ~hat OP = (0P)[~r ~-- 0(P/~r)] is valid in 7r
which in t u r n follows from O(P/~r) = n 9v, since (0P)[Ir ~-- Ov] = O(P[rr ~-- v]) is valid in
7Z. Since OS is valid in TO, we know that 9 =7~ O(S). Hence, O(P/Tr) =n O(S}(P/~r) -'Ta ~v
as requ i red .

Uns T h e n C . E --- (C. P & E t) and C'. E ' = (C. x - P/~r & P[~r ~-- x] & E~),
where x is a new variable. It suffices to show that OP = (0P)[~r ~-- O(P/~r)] is valid in 7Z,
which holds since 0r =~z O(P/~r) and (0P)[~r ~ 0~z] = O(P[rr ~ x]) is valid in 7r

SB1 or SB2. Then the claim is trivial.
D. T h e n the claim follows from the congruence property of the relation "s = n t".
S. T h e n C . E = (S. P & Q & E~) and C'. E ' = (S. Q & E~), where (S)P = (S)Q.

I~ suffices t o show that OP is valid in TO. Since OS is valid in 7r we have 0 = n O(S), and
since OQ is valid in TO, we know that O<S)Q is valid in TO. This yields that OP is valid in
Tr since (S) Q = (S)P .

Basic Narrowing Revisited 311

PI. Then the claim is trivial.
P2. T h e n C . E = (S. x ' = - s & t - " u & Et) a n d C '. E ' : (S . z-- ' s & : z - " u & E l) ,

where (S)s = (S)t. It suffices to show that 8t = ~ 8u. Since 0S is valid in 74, we know
that 8 = n 8(S), which yields that Ot = n 8(S}t = 8<S)s = n Os -----Tr 8z =~. 8u.

P3. Then C'. E' has been obtained from C. E by replacing all occurrences of z with
y, where z ~ V and y r V U Y(C. E). Thus 8' := 8[z ~-- 8y] yields the claim. []

Our next goal is to prove the completeness of the extended solution procedure in
Figure 4.1. As before, the proof will be based on the notion of a triple reduction relation,
which links steps on the resolution level with steps on the verification level. We star t by
giving the corresponding verification rule for every simplification rule:

�9 (VUni), (VP3) E v ~ E

�9 (VR) P & E - ~ n P[~r ~- v] & E if P/Tr ~ v is an instance of a rule of 7"4

�9 (VUnf) P & E " ~ s - P / r & PITt ~ s] & E if s is the 7Z-normal form of P/Tr

�9 (VSB1), (VSB2) P & E "%n E if P is a trivial equation

�9 (VD) f (s l , . . . , z n) " - f (t l , . . . , ~ ,) a E '~ ,~s1~-~1 & . . . & s . - - ~ . & E i f f i s
decomposable

�9 (VS) P & P & E " ~ , n P & E

�9 (VP1) s - t & E v s ~ t - - s a E

�9 (VP2) v - s & s - - u & E ~ u v - - s ~ z v - u & E i f v i s T G n o r m a l .

w~ E ' Then E is valid in 74 i f and only i f E ' PROPOSITION 4.12. (Invariance) Let E - n .
is valid in 7-4.

The TC-complexity [IEl[n of an equation system E is defined as the maximal length of
an TGrewriting derivation issuing from E.

PROPOSITION 4.13. (Compatibility) I r E V%~E', ~hen [[E[]n >_ [[E'[]n.

Next we extend the simplification steps to TO-triples.
We write 8. C. E ~ ~n,v 8'. C'. E ' if both 8. C. E and 0'. Cq E ' are TO-triples and

�9 8 and 8' agree on V
�9 C.E ~ ' E' ----+7~,v C . by some simplification rule

�9 8 E - ~ n 8'E' by the verification rule corresponding to ~.

The next theorem is the counterpart to the push up theorem for the resolution rules.
Since the application of the simplification rules is supposed to be don't care nondeter-
ministic, we must be able to push down a simplification step fl'om the resolution level to
the verification level.

THEOREM 4.14. (Push Down) I f C. E 8,;~,v C'. E ' by a simplification step and
8. C. E is an Td-triple, ~hen there exists an assignment 8' such that

8. C. E "~,v S'. C'. E'.

PROOF. Let 0. C. E be an TO-triple. Then];(C. E) C 7)0, 0C is trivial, and 0E
is valid in "R. We will show ~hat for every simplification step C . E ~ ~. ,v C' . /~t there
exists an assignment 0' such that Y(C' . E 1) C_ ~D0', 0 and 0' agree on V, 01C ' is trivial,
and 8E-~-~nS 'E ' by the corresponding verification step. Let the simplification rule
employed in C. E s ~rc, v C ' . E ~ be:

312 W . N u t t et al,

Uni. T h e n C'. E ' = S . E, where S is solved, SOLW(C) = S O L W (S) , ~D(S) C_ W, and
W = Y U 1~(E). Since 0C is trivial and W U l~(C) C :D0, we have 0[w 6 SOLW(C) =
S O L W (S) . Therefore , there exists a ground subst i tu t ion 8 ~ such tha t O' agrees with 0 on
W, O'S is trivial, and :DO' = W u Y (S) . Since Y(E) C_ W, we know tha t O'E = OE is valid
in T~. Thus , it suffices t o show that 8 ' z is 7~-normal for every x E W U V(S) = W U 27(S).

I f x E W , then 8 'x is 7~-normal, since 0re = 0x and 0x is 7Z-normal. If x 6 Z(S>,
then there is an equa t ion y -- s in S such tha t z occurs in s and y 6 :D(S) C_ W. Hence,
8'x is a s u b t e r m of the t e rm O's, which is 7~-normal since O's = O'y = 0y. Thus 0'r is
7~-normal.

R. T h e n C . E = (S . P & Ez) and C ' . E ' - (S. Blur ~-- v] ~: Bz), where (S) (P / r) -+ v
is a n ins tance of a rule o{ T~. It suffices to prove tha t OP--X~z 8(P[~r ~-- v]) by the
verif icat ion rule VR, since then we can define 8' := 0.

Since 8. S . E is an 7~-triple, 8S is trivial. Hence 8 = 0(S}, which implies t ha t
(O.P)/zr = @(P/Tr) = O(S}(P/~r). T h u s OP "~,Tz(OP)[~r * -Ov] by the verification rule
VR, since (S)(P/~r) -+ v is an instance of a rule of 7Z.

Unf.. T h e n C . E = (C. P & E l) and C'. E' = (C. ~ - P/~r g~ P[~r ,.-- ss] & El) ,
where z is a new variable. Defining 8' := 0[x ~- s], where s is the 7~-normal form of
O(P/~r), yields the claim.

SB1. T h e n C. /~ = (S . r -- t & Ez) and C'. E' ---- (S &~ z '-- t . El) , where S contains
an equa t ion y - s such tha t (S)~ is a sub te rm of s. It suffices to show tha t 0~ - 0t is a
tr ivial equation, since then we can define 8~ : - 0.

Since ~. C . E is an 7~-triple, we have tha t 8 -- O(S), 8y = 0s, and 0x - - n 0t. Since
Ot = O(S)t and (S) t is a sub te rm of s, we know tha t 0t is a sub te rm of 0s. Since 0s = 0y
is an 7Z-value, 0t is an 7Z-value. Since @r is an 7~-value and Ox = n ~t, we conclude that

SB2. T h e n C . E---- (C . P ~z E l) and C ' . E'---- (C & P . Ez) , where every funct ion
symbol occurr ing in P is irreducible. It suffices to prove tha t 8 P is trivial, since then
we can define 0 ~ :---- 8. Since 0 is normal and every function symbol occurr ing in P is
irreducible, 8 P cannot be rewrit ten. Since OP is valid in 7~, ~his yields the claim.

D, S, P1 or P2. For these rules 0 ~ := 8 does the job.
P3. T h e n C ~. E ~ ha~ been obtained f rom C . E by replaclng all occurrences of ~s with

y, where x ~ V and y ~ V U V(C. E). Defining 8' := O[y ~- ~$] yields the claim. []

We wri te O. C . E ~ r ~ , v O ~ . C . E / i fO. C . E ~ , v On" C". B n r,x. .vO,. C t..SY
for some 7Z-triple ~?n. Cn. Bn. By the push down and the push up theorem we know
tha t the ex tended solut ion procedure builds a derivation

O. C. E sr,n,v O'. C'. EJ -~7z , v O n. C n, B n sr~r~,v . . . ,

p rovided the right d o n ' t know choices are made. Thus, we know that the procedure is
complete if we can show tha t the triple reduct ion relation "8. C. E s r ~ , v 0'. C' . E TM is
t e rmina t ing . To do this, we will define a complexi ty measure on triples t ha t is decreased
by resolu t ion steps and not increased by simplification steps. A first a t t e m p t to define
the complex i ty of a tr iple 0. C. E could be to use [[E[]~z. However, this doesn ' t work
since the resolut ion step B (blocking) doesn ' t necessarily decrease IJEJJ~z.

To define a complexi ty measure tha t works, we need a few auxil iary definitions. For a
t e rm s, let [s I be the number of function symbols occurr ing in s. For an equat ion s - t,
define [s --' t[:= 0 if s and t are variables and [s -- tJ :---- [s I + I~J - 1 otherwise. For an
equa t ion sy s t em E , let [El := ~ v e E [P[and ~E be the number of equat ions occurr ing

Basic Narrowing Revisited 313

in E . With that we define the complexity of an 7~-triple as a triple of nonnegat ive
integers:

18. c . El := (ll0Elln, IEI, BE)

On these complexities we obtain a well founded ordering "18. C. E I > t9~C '. Et[" by
extending the usual ordering on integers lexicographically.

THEOREM 4.15. (Compatibility)

1. IfO. C. E r ~n,v 0'. C'. E' by a resolution step, then [0. C. E I > [9'C'. E' I
2. IfO. C. E s ~n,v 8'. C'. E' by a simplification step, then [8. C. E[_> [0'0'. E' I.

PROOF. I. Since application steps decrease IIOEH~, and since blocking steps increase
nei ther [[OE[[n nor]E[, but decrease BE, resolution steps decrease the complexity of a
triple.

2. Let 9. C. E ~ '~ ,v 0'. C/. E ' by a simplification step. By proposition 4.13, we
know that no simplification step increases [[OE[[n. Therefore, it suffices to show that if
a simplification step increases IE[, then it decreases [JOEl[n, and if a simplification step
increases BE, then it decreases [El. The only rule that can increase [E[is the rewriting
rule, which does decrease [[gEI]n. The only rules that can increase BE are the unfolding
and the decomposition rule, which do decrease [E[. []

COROLLARY 4.16. The relation "8. C. E ~r,~,v 8'. C'. E'" is terminating.

COROLLARY 4.17. The solution procedure in Figure 4.1 is complete.

T h e proof method we have developped in this and the last section can be used to show
the completeness of alternative sets of resolution and simplification rules. Given such an
al ternat ive set of rules, the first step is to devise for every rule a suitable verification rule.
The verification rules are applied to ground equation systems and must leave i~heir validi~;y
invariant. The combination of the given rules with their corresponding verification rules
then yields a reduction relation on triples. Next one defines a complexity measure on
triples that is decreased by resolution steps and not increased by simplification steps.
T h e n one shows with a push up theorem that every unsolved triple can be reduced by
a resolution step on any given equation. Finally, one shows with a push down theorem
tha t every triple can be reduced with any given simplification step.

I f one uses an alternative set of resolution rules but the same complexity measure we
used here, the simplification rules discussed here can be used without reproving anything.
If the complexity measure is changed, it is still possible to reuse the push down theorem.

5. R e f i n e m e n t s

In this section we discuss two refinements for the extended solution procedure. Both of
t h e m depend on additional knowledge about the underlying rewriting system.

5.1 l~EWRITING WITH :iNDUCTIVE CONSEQUENCES

Let 7~ be the rewriting system in Figure 1.1 and consider the equation z+0 -- 0. Al though
this equation has the unique solution Ix =" 0} in 7~, which is easily found, the extended

314 W. Nutt el el.

solution procedure nevertheless has an infinite search space for this equation. To see this,
consider the derivation steps

O.x+O---" 0
r ~,{=} ~ + 0 -- s(x') + y ' . s(x' + y') -- 0 by A

, ~ , { = } z - - s (z ') & y ' -" 0 . s (~ ' + y') --" 0 by Uni,

which can be continued infinitely often by applying rule (4) to the occurrence of +. The
obtained pair is actual ly inconsistent, but our simplification and failure rules are too
weak ~o de t ec t th is inconsistency.

We can get rid of this annoying problem if we add the rule z + 0 ~ z to the rewriting
system. T h e n the extended solution procedure can find the solution of = + 0 --" 0 by using
simplification steps 0Ely. Since the equation z § 0 -- x is an inductive consequence of 7~
and the extended rewriting system still terminates, adding this rule doesn' t change the
solutions of an equation. We will show that the solution procedure stays complete if the
new rule is used for simplification with the rewriting rule but is not used for resolution
with the appl icat ion rule.

T w o ground confluent and te~minating rewriting systems are equivalent if they have
the same signature and every ground te rm has the same normal form in both systems.
Equivalent rewriting systems define, up to isomorphism, the same initial algebra.

PR, OPOSITION 5.1. Let 7~ and ~ ' be two equivalent ground confluent and terminating
rewriting systems. Then a ground equation is valid in ~ i f and only i f lt is valid in T~ I.

PROPOSITION 5.2. Le~ 7~----- (E,g) be a ground confluent and terminating rewriting
system and s ---+ ~ be a rewriting rule that is an inductive consequence of "R.. Then
T~' := (~ , g U {s --* t}) is a ground confluent rewriting system. Furthermore, i f ~ ~ is
terminating, then T~ and Tff are equivalent.

THEOREM 5.3. Let T~ -- (E, E) and 7~' = (E, g U g ') be two equivalent ground confluen~
and termina#ing rewriting systems. Then the extended solution procedure in Figure 4A
is complete i f the rules in S are employed for resolution steps and the rules in E U s are
employed for simplification steps.

PROOF. I t suffices to show that the Push Up Theorem stilt holds if only the rules in
g are available for application steps. This is the case since every ground t e rm that can
be rewri t ten with a rule in s U g~ can also be rewrit ten with a rule in s []

T h e idea to use inductive consequences for rewriting also appears in Fribourg (1985).

5.2 FltEE REWR, ITING SYSTEMS

A ground confluent and terminating rewriting system 7~ is called free if every function
symbol t h a t is reducible in T~ is completely defined in 7~. l~ecall that a function symbol
f is reducible in 7~ if f is the top symbol of the left hand side of at least one rule of 7~,
and tha t f is completely defined in 7~ if f occurs in no 7~-value. The rewriting system
7~1 in Subsection 4.3 is an example for a free rewriting system. The irreducible function
symbols of a free rewriting system are often called constructors. Furthermore, a term is
c~lled canonical in 7~ if it doesn ' t contain a function symbol tha t is reducible in 7L

PI~OPOSITION 5.4. Le~ 7Z be a free rewriting system. Then a ground ~erm is an 7~-value
if and only i f it is canonical.

T h e reason we discuss free rewriting systems here is that for these systems the number
of don ' t know alternatives our so]ution procedure has to explore can be signific~ntJy

Basic Narrowing Revisited 315

solve(C. E) is
1. choose don't care C'. E' such that C. E ~ ~* n ,v C'. E / by simplification

steps and every equation in E I contains at least one simple term;
2. if a failure rule applies to C ' . E ' , then fail;
3. if E j is empty~ then return CI;
4. choose don't care an equation P in E I and a simple subterm P/~r in P;
5. choose don'l know C ' . EII such that C I. E I r ~n,v C n. E "

by an application step on P at zr
6. solve(C". E")

FIGURE 5.1. A solution procedure for free rewriting system.

reduced. Given a free rewriting system 7~, we call a term f (s z , . . . , s,~) simple in 7~ if
its top symbol f is reducible in T~ and its arguments st , . . . , s,, are canonical in 7~. Th e
solution procedure in Figure 5.1 restricts resolution steps to rule applications to don ' t
care chosen simple subterms. To prove that this procedure is complete for free rewrit ing
systems, we have to show two things. First, it must always be possible to simplify a pair
C. E such that the unsolved part contains only equations that contain at least one simple
term. This is the case since an equation that doesn't contain a simple term contains only
irreducible function symbols and can thus be blocked with the simplification rule SB2.
Second, we need a stronger push up theorem:

THEOREM 5.5. (Push Up for Free Rewriting Systems) Let T~ be a free rewriting system.
Then, i f S. C. E is an T~-triple, P is an equation in E, and P/lr is a simple sub,era of
P, there exists a triple 8'. C'. E' such that 8. C. E r§ 8 I. C I. E' by an application
step on P at ~-.

PROOF. Let 8. C. P&E be an 7~-triple and P/lr be a simple subterm of P . Th en
8(P/~r) is an innermost ground term. Thus there exist a variant u ---, v of a rule of 7~
and a substitution r such that eu = (SP)/Tr. From here on the proof is identical with
the proof of the push up theorem in Section 3. []

CO1%OLLAP~Y 5.6. The solution procedure in Figure 5.I is complete for free rewriting
systems.

Fribourg (1985) discusses a similar solution procedure for free conditional rewrit ing
systems. He has the additional requirement that the left hand sides of all rules be simple
terms.

The re is actually no need for reproving a stronger version of the push up theorem,
since our simplification rules are already strong enough to justify the solution procedure
for free rewriting systems. In fact, the solution procedure in Figure 5.1 just realizes one
of the many strategies that one can obtain by using the unfolding rule in conjunction
with the don't care selection of the next equation to be resolved upon. To see this, first
notice that every equation that doesn't contain a simple term can be safely blocked with
the simplification rule SB2. Secondly, any simple term s contained in an equation can be
unfolded into an equation x - s, which then can be chosen to be the next equation to be
resolved upon. Blocking such an equation immediately yields an inconsistent pair, as we
know by failure rule (3) since the top symbol of s is completely defined. Fur thermore,
any application step to a proper subterm s/~r of s yields an inconsistent pair, as we know

316 W. Nutt et al.

by failure rule (1) since the top symbol of s/~r is irreducible, that is, is different from the
top symbol of the left hand side of any rewriting rule. Thus we are left with exactly the
don ' t know alternatives that are considered by the solution procedure for free rewriting
systems.

T h e left-go-right basic narrowing strategy in (IIerold, 1986) and the selection narrowing
strategy in (Bosco et al., t987) are two further examples for the strategies tha t can be
obtained by using the unfolding rule.

Werner Nutt and Gert Smolka's research w~s funded by the Bundesminister ffir Forschung
nnd Technologie under grant ITR8501A. We are grateful to Hans-Jiirgen Bfirckert and Manfred
Schmidt-Schauss for many discussions on the topic of this paper.

R e f e r e n c e s

Bosco, P.G., G~ovannetti, E., Moiso, C. (1987). Refined Strategies for Semantic Unification. Proc.
of the International]olnt Conference on Theory and Practice of Software Development,
Springer LNCS 250, 276-290.

Dershowitz, N., Plaisted, D. (1985). Logic Programming cum Applicative Programming. Proe.
of the 1985 Symposium on Logic Programming, Boston, 54-67.

Fay, M. (1979). First Order Unification in an Equational Theory. Proc. of the 4th Wor'kshop on
Automated Deduction, Austin, Texas, 161-167.

Fribourg, L. (1985). SLOG: A Logic Programming Language Interpreter Based on Clausal Su-
perpositlon and P~ewriting. Proc. of the 1985 Symposium on Logic Programming, Boston~
172-184.

Gallier, J., Snyder, W. (1987). A General Complete E-Unification Procedure. Pxoc. of the 2nd
In~eJ:national Conference on Rewriting Techniques and Applications, Springer LNCS 256~
216-227.

Goguen, 3.A., .~eseguer, J. (t986). Eqlog: ~quality, Types, and Generic ~odules for Logic Pro-
gramming. In DeGroot, D., Lindstrom, G. (Eds.), Logic Programming, Functions, Relations~
and Equations, Prentice Hall, 179-210.

Herold~ A. (1986). Narrowing Techniques Applied to Idempotent Unification. SEKI Report SR-
86-16, FB Informatik, Universit~t Kaiserslautern, West Germany.

]-ISlldobler, S. (1987). A Unification Algorithm for Confluent Theories. Proc. of the 14th In-
ternational Conference on Automata, Languagesj and Programming, Springer LNCS 267j
31-41.

Huetj G. (1980). Confluent Reductions: Abstract Properties and Applications to Term l~ewriting
Systems. Journal of the ACM 27(4), 797-821.

tinct, G., Oppen, D.C. (1980). Equations and Rewrite Rules: A Survey. In Book, R. (Ed.),
Formal Languagues: Perspectives and Open Problems, Academic Press, 349-405.

Eu]lot, J.-M. (1980). Canonical Forms and Unification. Proc. of the 5tl~ Conference on Auto-
mated Deduction, Springer LNCS 87, 318-334.

Euflmann, I-I. (1985). Unification in Conditional Equational Theories. Pzoc. of the EUROCAL
'85~ Springer LNCS 204, 543-553.

Josephs0n, A., Dershowitz, N. (19861. An Implementation of Narrowing: The RITE Way. Proc.
of the 1986 Symposium on Logic Programming, Salt Lake City, 187-197.

Kaplan, S. (1984). Fair Conditional Term Rewriting Systems: Unification, Termination, and
Confluence. Technical Report No. 194, Laboratoire de Recherche en Informatique, Univer-
sit~ de Paz'is-Sud, Centre d'Orsay.

Kirchner, C. (1985). Mgthodes et ou~ils de conception systgmatique d'algorithmes d'unificatlon
da~s les t~dories ~quationefles, These d'~tat de l'Universit~ de Nancy I, 1985.

Basic Narrowing Revisited 317

Lankford, D.S. (1975). Canonical Inference, TechnicM Report ATP-32, Department of Mathe-
matics and Computer Science, University of Texas at Austin.

Lloyd, J.W. (1984). Foundations of Logic Programming. Springer Verlag.
Martelli, A., Moiso, C., Rossi, G.F. (1986). An Algorithm for Unification in Equational Theories.

Proc. of the 1986 Symposium on Logic Programming, Salt Lake City, 180-186.
R~ty, P.~ Kirchner, C., Kirchner, H., Lescanne, P. (1985). NARROWER.: A New Algorithm

for Unification and its Application to Logic Programming. Proc. of the 1st Interne~tional
Conference on Rewriting Techniques and Applications, Springer LNCS 202, 141-157.

l~ty, P. (1987). Improving Basic Narrowing Techniques. PJ:oc. of the 2nd International Confer-
ence on Rewriting Techniques and Applications, Springer LNCS 256, 228-241.

Robinson, G.A., Wos, L. (1969). Paramodulation and Theorem-Proving in First-Order Theories
with Equality. Machine Intelligence 4, Edinburgh University Press,]35-150.

Robinson, J.A. (1965). A Machine-Oriented Logic Based on the Resolution Principle. JouJ:naI
of the ACM 12, 23-41.

Slagle, J.R. (1974). Automated Theorem Proving for Theories with Simplifiers, Commutativity,
and Associativity. Journal of the ACM, 21(4), 622-642.

Smolka, G., Nutt, W. (1987). Lazy Basic Order-Sorted Narrowing. Presented at the 1st Work-
shop on Unification, Val d'Ajol, France.

Smo]ka, G., Nutt, W., Qoguen, J.A., Meseguer, J. (1987). Order-Sorted Equational Computa-
tion. SEKI Report SIL-87-14, FB Informatlk, Universits Kaiserslautern, West Germany.
To appear in Ait-Kaci, H., Nivat, M., Resolution of Equations in Algebraic S~ructures,
Academic Press.

You, J.-H., Subrahmanyam, P.A. (1986). A Class of Confluent Term Rewriting Systems and
Unification. Journal of Automated Reasoning 2(4) 391-418.

