
  

Principles of Program Design

What should be taught in core 
programming curricula



  

Basic Principles
 Design the data first and let the structure of the 

data guide the structure of the code.
 Design for unit testing.
 Document all code with contracts.  
 Avoid mutation.
 Avoid duplicating code [use patterns].
 Look for higher-order solutions (code as data).
 Simpler is better, if it meets requirements.
 In OO programs, maximize polymorphism.



  

Relationship to Extreme 
Programming
 XP only mandates

 Design for unit testing
 Simpler is better

 XP focuses on program evolution rather than 
program structure

 XP program evolution must be guided by 
intelligent design; otherwise the resulting 
code will be ugly



  

Design Principles To 
Supplement XP
 Data Directed Design

 Taught in Comp 210
 Key observation: most program data types have 

natural formulations as free term (word) algebras 
which are represented in OO languages using the 
composite pattern.

Aside: free term algebras are simply context free 
grammars that define trees rather than strings.



  

Design Principles To 
Supplement XP
 Document code with contracts when feasible

Why?  So that the intended behavior of the 
code can be understood without reading the 
code.  
Reverse engineering contracts from code is 
extremely difficult and error-prone.  Unit tests 
(examples) can help, but good contracts are 
equally important.

 Partial contracts are better than no contracts.



  

Design Principles To Supplement XP
 Avoid Mutation.  

 Mutating data breaks algebraic laws that we take for 
granted such as “substituting equals for equals”.

 If a method uses mutation, it can potentially modify any 
accessible object.  Hence, it is difficult to determine if 
calling such a method can break a given program invariant.

 In the absence of mutation, objects can safely be shared 
(rather than copied).  Example: DAG tree representations.

 Objects subject to mutation cannot be used in contexts that 
depend on immutable values such as hash table keys.

 In multi-threaded programs, access to immutable data does 
not need not be synchronized



  

When Mutation is Justified

 When execution recapitulates evolution.  
Many programs model processes that 
change over time (physical simulations, 
financial transactions, etc.).  The data 
representing entities in the model changes as 
the modeled entities change.  Examples: 
 Solving a time dependent partial differential 

equation
 Banking software
 Document editor



  

When Mutation Is Justified 
(cont.)
 When faster algorithms require mutation.  

Examples:
 Depth-first searching of a DAG.
 Memo-ization of a recursively defined function 

(dynamic programming from a functional 
perspective)

 Avoiding recopying when attributing a tree, as in a 
compiler.



  

When Mutation is Justified 
(cont.)
 When the most accurate data model requires 

circularity.
 Example: Josephus problem (see Knuth, The Art 

of Computer Programming, Volume 1: 
Fundamental Algorithms)

   You cannot build circular structures without 
performing mutation.



  

When Mutation is Justified 
(cont.)
 When instrumenting a program.  Examples:

 Inserting print statements to log debugging output.
 Maintaining event counters.  (How many times is 

a particular constructor called?)

   Note that instrumentation involves modeling 
the execution of a program, a process that 
unfolds in time.  Hence, this justification is 
really a special case of “execution 
recapitulating evolution”.



  

When Mutation is Justified 
(cont.)
 When interacting with hardware (e.g., 

controlling devices via device registers)
 When interacting with agents external to the 

program.  Some interactions can be modeled 
using lazy functional programming, e.g., 
interaction involving console input and 
output.  But this form of modeling does not 
address external persistent data structures 
like file systems.



  

Use Closures To Represent 
Dynamic Behavior


	Principles of Program Design
	Basic Principles
	Relationship to Extreme Programming
	Design Principles To Supplement XP
	Slide 5
	Slide 6
	When Mutation is Justified
	When Mutation Is Justified (cont.)
	When Mutation is Justified (cont.)
	Slide 10
	Slide 11
	Use Closures To Represent Dynamic Behavior

