
1

Formal Methods in Computer Security 1999

Covert Channels

1

Covert Channel Analysis

John McHugh

Portland State University

mchugh@cs.pdx.edu

Formal Methods in Computer Security 1999

Covert Channels

2

Covert Channels
• A covert channel is an information flow mechanism within a system

that is based on the use of system resources not normally intended for
communication between the users of the system.

• Storage Channels use system variables and  attributes (other than
time) to signal information, e.g. – file status

• Timing Channels vary the amount of time required to complete a
particular task, e.g. – influencing the number of CPU cycles
available to a given process in a given time frame.

• The division is not a hard and fast one.  Some channels can be
characterized as either.



2

Formal Methods in Computer Security 1999

Covert Channels

3

Storage Channels
a) The sending and receiving entities must have access to the same

shared resource or attribute.

b) There must be some means by which the sending entity can force
the shared resource or attribute to change.

c) There must be some means by which the receiving entity can
detect the change.

d) There must be some mechanism for initiating the communication
between the sending and receiving entities and for sequencing the
events correctly.  This mechanism could be a covert channel with a
lower bandwidth.

If a-c are satisfied, one must find a scenario that satisfies d.  If such a
scenario exists, a storage channel exists.

Formal Methods in Computer Security 1999

Covert Channels

4

Timing Channels
a) The sending and receiving entities must have access to the same

shared resource or attribute.

b) The sending and receiving entities must have access to a time
reference such as a real-time clock.

c) The sender must be capable of modulating the receiver’s perception
of time for detecting a change in the shared resource or attribute.

d) There must be some mechanism for initiating the channel and for
sequencing the events transmitted over it.

Any time a processor or memory is shared, there is a shared attribute.
A change in response time is detected by the receiving process by
means of monitoring the clock or its surrogate.



3

Formal Methods in Computer Security 1999

Covert Channels

5

Shared and Private Resources
• The identification of shared and private resources is a key  portion of

any  covert Channel analysis.

• If resources that are  private are considered to be shared, the
analysis is greatly complicated.

• If resources that are assumed to be private are shared the analysis
is incomplete.

In the case of systems with  informal specifications such as those
defined in natural languages, it is often not clear which resources are
intended to be shared.

• Even formal specifications do not solve the problem unless adequate
conventions are imposed by specifiers.

• Often additional shared resources are introduced during the
implementation of a system and do not show up in the specifications
analyzed for covert channels.

Formal Methods in Computer Security 1999

Covert Channels

6

Harmful Covert Channels

• Innocuous Cases

• The channel parallels an Overt (or legal) Channel

• The sender and receiver are the same (It's OK to talk to yourself)

• Dangerous Case

• The sender and receiver are not permitted to communicate under
the security policy of the system.



4

Formal Methods in Computer Security 1999

Covert Channels

7

Coding and Signaling

• Since the value of a resource modulated in a Covert Channel is not the
message being sent, the sender and receiver must agree on a suitable
encoding of the message to be sent.

• If a limited vocabulary will suffice, a few bits will do a lot of damage.

• When a covert channel is identified, bandwidth analysis is important,
but the analysis must take into account the nature of the information
that might be compromised.

• Work done at Bell Labs by Shannon is the root of such analysis.

• Since the typical Covert Channel scenario involves a Trojan Horse
program at either end, the question of encoding and the nature of the
information that might be compromised requires especial attention.

Formal Methods in Computer Security 1999

Covert Channels

8

Manual Analysis of
Specifications

• The basic problem is to identify the interactions between the user and
the TCB as well as the effect that each interaction has on the internal
state of the TCB.

• DTLS or equivalent should identify the operations. Check to make
sure that it is complete.  Look at the implementation if possible.

• Determine what the effect of each operation is on the data
components of the TCB.  Note that conditional operations pass
information from the condition determining components to those
that are assigned. Note attributes like status bits.

• Determine what information is returned to the caller and where it
comes from again noting conditional flows.  Pay especial attention
to error and abnormal returns.



5

Formal Methods in Computer Security 1999

Covert Channels

9

SRM – àla Kemmerer

• The SRM presents

• System resources and attributes

• System operations

• Rows contain:

• System resources and their attributes

• Columns contain:

• System operations

• Each cell of the matrix indicates whether a given operation reads or
modifies a system resource

Formal Methods in Computer Security 1999

Covert Channels

10

SRM - Continued

• This provides a concise and comprehensive display of data and
operational dependencies in the system under analysis.

• The SRM is suitable for both storage and timing channel analysis
provided timing resources are identified

• It provides a means of gaining a global insight into system
interdependencies

• The methodology can be applied to

• Informal descriptions

• Formal specifications

• Code



6

Formal Methods in Computer Security 1999

Covert Channels

11

Application
a) Identify and list shared resources and their attributes.

b) Identify and list primitive system operations.

c) Determine which primitives reference and/or modify which shared
resources.

d) Represent the results of (c) as a matrix.

e) Make indirect operations visible by generating transitive closure of the
matrix.

f) Identify the channels represented in the matrix.

g) Categorize the channels found:

1 – The channel is a legal one

2 – No useful information can be gained from this channel

3 – The sending and receiving process are the same

4 – It represents a genuine covert channel!

Formal Methods in Computer Security 1999

Covert Channels

12

The Shared Resource Matrix
(SRM)

• The results of the dependency analysis efforts can be presented in a
variety of forms. Collectively, we will refer to these as Shared
Resource Matrices (SRMs).

• The details presented in SRMs can go beyond those described in
Kemmerer's paper.

• Consider the following fragment of code:
A := B;

C := if D then E

          else F;



7

Formal Methods in Computer Security 1999

Covert Channels

13

The Basic SRM
In the style of [Kemmerer 83],  this would lead to an SRM of the
form:

Operation
Resource
Attribute

OP1

A M

B R

C M

D R

E R

F R

A := B;

C := if D then E

          else F;

Formal Methods in Computer Security 1999

Covert Channels

14

Adding Precision to the SRM

• The basic SRM crowds too much information into too little space.  It
can be extended to make its representation of information flow more
precise.

• Factoring independent information flows that occur within the
same operation (operation splitting)

• Recognizing that conditional flows take only one branch at a time
(Guard Expansion)

• Making explicit flows between private and shared resources (User
Flows)



8

Formal Methods in Computer Security 1999

Covert Channels

15

Operation Splitting

Operation
Resource
Attribute

OP1

A M

B R

C M

D R

E R

F R

Consideration of this SRM
gives the impression that
information flows from B to
C and from D,E, and F to A.

Examination of the code
shows that no such flows
exist. We can fix this by
separating the individual
operations into separate
columns.

A := B;

C := if D then E

          else F;

Formal Methods in Computer Security 1999

Covert Channels

16

Operation Splitting Results

Operation
Resource
Attribute

OP1 OP1

A

B

C

D

E

F

M

R

M

R

R

R

A := B;

C := if D then E

          else F;



9

Formal Methods in Computer Security 1999

Covert Channels

17

Guard Expansion

Operation
Resource
Attribute

OP1 OP1

A

B

C

D

E

F

M

R

M

R

R

R

A := B;

C := if D then E

          else F;

Consideration of this
SRM  still gives a false
impression that
information always
flows from D to C and
from E to C.

Examination of the code
shows that one or the
other occurs; not both at
the same time. Again,
we can split the cases.

Formal Methods in Computer Security 1999

Covert Channels

18

Guard Expansion Results
Operation

Resource
Attribute

OP1

G1 G2 G3
A

B

C

D

E

F

M

R

M

R

R

M

R

R

A := B;

C := if D then E

          else F;

Legend

G1 = True

G2 = D

G3 = not D



10

Formal Methods in Computer Security 1999

Covert Channels

19

Flows from Private to
Shared Resources

Our example code fragment is not part of a system routine.  Usually
we deal with kernelized systems in which users communicate with the
system and the outside world via calls on kernel routines.  Data
contained in the users space is considered to be a private resource.
Information about it can be transferred to shared resources via:

• User Parameters or

• The act of making a kernel call

Formal Methods in Computer Security 1999

Covert Channels

20

Flows from Shared to
Private Resources

Information about shared resources is transferred to the users private
resources as a result of returns from these calls.  These can take the
form of:

• Return values

• Modified User Parameters or other data

• Error signals and exceptions



11

Formal Methods in Computer Security 1999

Covert Channels

21

Adding User Flows

B R

Operation
Resource
Attribute

OP1

G1 G2 G3
A

C

D

E

F

M

M

R

R

M

R

R

A := B;

C := if D then E

          else F;

Legend

G1 = True

G2 = D

G3 = not D

We can indicate these flows,
called user flows in the
SRM.  In this example, we
assume that the call to the
routine containing the
fragment returns no distinct
information to its caller.

User In R R R

User Out

Formal Methods in Computer Security 1999

Covert Channels

22

Searching for Covert Channels
• The tools that we will discuss later support a mechanized analysis of

the SRM.  This is based on an assignment of security  levels to the
internal components of the state.

• We want to develop an intuitive approach to the analysis.

• Look at cases where a modify is done by one operation and a read
by another.

• Look at resources that are not polyinstantiated on a per subject or
per security level

• Try to find a scenario where a modification by one subject could
be detected by another.

• It takes practice.  Think nasty devious thoughts.  Look at things upside
down, inside out, and backwards.  Forget what the system is supposed
to do.  Concentrate on what you can make it do. Look for
combinations of actions.  Only one weak link is needed



12

Formal Methods in Computer Security 1999

Covert Channels

23

So You Found a Channel?
• Once you have found a real live covert channel, the question is what

can it do.  We will discuss this in more detail later, but there are two
issues:

• How much can it carry

• How fast can it carry it

• The answer to the first question depends on the freedom that the user
has in manipulating the channel.  Figure Log2(choices) per execution
of the scenario.  For many channels, this may be a very small number
of bits. It can be less than 1.

• The answer to the second question is a function of the system speed.
How many complete scenarios per second can be executed?

• These answers are tempered by several factors.  If other system
activity reduces the probability of a clear signal being received, the
capacity is reduced.  On the other hand, if the sender and receiver have
an efficient code (1 if by land, 2 if by sea), only a few bits (total) are
needed.

Formal Methods in Computer Security 1999

Covert Channels

24

Dependencies

A Dependency is a relationship that supports the ability to make a
fuzzy inference.

• Strong dependencies allow near-certainty of inference

• Weak dependencies admit uncertainty in the inference but:

• Statistical techniques can improve the certainty over time and
redundancy

• Global knowledge can reduce uncertainty



13

Formal Methods in Computer Security 1999

Covert Channels

25

Dependency Examples

• A : = B;

If we observe A, we can be sure that we know B exactly
• A : = If  X  then  B  else  C  Fi;

If we observe A, we know B or C exactly.  If we know X, we
know whether its B or C

If we observe A and know B, we may know C  (unless it equals B)

If we observe A and know B and C, we can determine X exactly

Formal Methods in Computer Security 1999

Covert Channels

26

More Examples

• A(I) : = B

If we know that no element of A equaled B prior to the
assignment, and we know B, then we know I if we look at all the
elements of A

• A : = B + Rand (-1,1)

Let Rand be a random noise source uniformly     distributed over [-
1..1].  If we assume that B         changes slowly and we observe A
sufficiently     often, we can determine B.



14

Formal Methods in Computer Security 1999

Covert Channels

27

Specification Decomposition

• The objective of specification decomposition is to derive a set of
dependencies for each system operation.

• Each dependency contains:

• A single system resource that is the target of the information
transfer

• A boolean expression based on the values of system resources that
is TRUE when and only when the transfer takes place

• A list of system resources that are sources of the information
transferred to the target

Formal Methods in Computer Security 1999

Covert Channels

28

Operation Splitting

• We want one target per dependency.  Some operations affect more
than one resource.

• Assigning a structure to a similar structure can be viewed as a set
of parallel assignments, each with a distinct source and targets

• Assignment of a single source to multiple targets can be viewed as
multiple assignments

• Independent assignments are no problem

• Need to look for side effects (size changes, etc.) and split them out
too.



15

Formal Methods in Computer Security 1999

Covert Channels

29

Dependencies as
Guarded Assignments

• As an intermediate step, specification decomposition can be viewed as
producing a set of guarded assignment statements of the form.

• IF (G) Then T : = S

• G is the boolean guard expression

• T is the target resource expression

• S is a source expression

• All the guards taken together completely cover the input space of the
operation.

Formal Methods in Computer Security 1999

Covert Channels

30

Guards

• The conditions under which flows occur are determined by guards.
Guards can arise in two ways:

• Explicit statements in the specifications
If OK_TO (write, file, user)

Then apnd (file, data)

• Implicit conditions associated with transformations of
specifications as when an array element is a target.
A[i] := x is A := A’ with ([I] : = x);

• Which becomes
A[I#1] : =

if(I#1 =I)Then X Else = A’[I#1] Fi;



16

Formal Methods in Computer Security 1999

Covert Channels

31

From Guarded Assignments
to Dependencies

• Once the specification has been transformed into guarded assignments,
we can determine the dependencies.   Each dependency is a triple

(T, {S}, G) where

• T is the target of the dependency

• {S} is the set of sources of the dependency

• G is the guard expression of the dependency

Formal Methods in Computer Security 1999

Covert Channels

32

Side Effects

• Operations on structures can have side effect.  In the Gypsy
Information Flow Tool, we introduced the concept of "Name
Resources."
• The array case A(I) : = B can be viewed as an assignment to

both the element and the static name resource
• A(I) <- B, I

• Name(A) <- I

• For dynamic structure, other resources may be involved. Consider
the sequence operation  A : = B @ C

• A <- B, C

• Size (A) <- Size (B), Size (C)



17

Formal Methods in Computer Security 1999

Covert Channels

33

Example

If A.LEV ≥ B.LEV Then A.CNTS(I) := B.CNTS(j)
Target Expression A.CNTS(i)

Source Expression B.CNTS(I)

Guard Expression  A.LEV ≥ B.LEV

Formal Methods in Computer Security 1999

Covert Channels

34

Example contd.

• This gives rise to two dependencies.

• Dependency 1 is the element modification
• Target - A.CNTS(I)

• Source SourcesB.CNTS(J), J, Name(B.CNTS)

• Guard Sources - A.LEV, B.LEV

• Target Source - I

• Dependency 2 is the Array modification
• Target - Name(A.CNTS)

• Source SourcesB.CNTS(J), J, Name(B.CNTS)

• Guard Sources - A.LEV, B.LEV

• Target Source - I



18

Formal Methods in Computer Security 1999

Covert Channels

35

Information Flow Techniques

• Theoretical Considerations

• Security Labeling of Resources

• Identification of Sources and Targets

• Structured Objects and Indirect Flows

• Information Flow Formulae

• Relation to Bell and LaPadula Security Models

Formal Methods in Computer Security 1999

Covert Channels

36

 Theoretical Considerations

• It is popular to view secure computer systems as a kernelized state
machine.

• A good match for most operating systems

• Well-developed theory of state machines exists

• Early specification systems (HDM, FDM) based on state machine
model



19

Formal Methods in Computer Security 1999

Covert Channels

37

Security Policies And Labeling

• Since covert channels refer to the flow of information contrary to some
established policy, such a policy must be identified. The policy must
characterize secure information flows in a manner which distinguishes
them from insecure flows.

• A set of security attributes (e.g. levels, categories, domains, etc.)

• A comparison function for the attributes that determines when
information can flow from an entity having one attribute value to
one having another attributes value

• A method of assigning security attributes to all system resources

Formal Methods in Computer Security 1999

Covert Channels

38

 Labeling

• Every system resource must be labeled.

• This makes sense for things that normally hold information.

• It is artificial for others.

• What is the level of a label, a file name, a user-ID

• Appropriate labeling is often the key to successful covert
channel analysis.



20

Formal Methods in Computer Security 1999

Covert Channels

39

A Security Policy Example
Consider our fragment of code:

A := B;

C := if D then E

          else F;

• Security Attributes:

• L1, L2, & L3, where (L1 < L2 < L3)

• Security Relation:

• GE (Greater Than or Equal To)

• Level Assignment:
     A:  L3     D:  L1

     B:  L2     E:  L2

     C:  L2     F:  L3

Formal Methods in Computer Security 1999

Covert Channels

40

A General Analysis Paradigm

• Assume specifications describe a  state machine.  All system resources
are represented by the state. All operations are represented by actions
that alter the state and/or return information about the state.

• The specification is transformed  by reducing the effects of each action
to a series of guarded assignment statements operating on the primitive
components of the state.

• Identify  information flow targets and sources.  For each target,
determine its source.  These results are available for a variety of forms
of analysis

• Shared Resource Matrices

• Information Flow Formula



21

Formal Methods in Computer Security 1999

Covert Channels

41

Information Flow Formulae
TCB Unit UTCB Unit U

Guard G

Target T

G

T

S

For each g in G:
   dominates(level_of (T), 
                     level_of (g) )

For each s in S:
  G -> dominates(level_of (T), 
                            level_of (s) )

For each t in T:
  G -> dominates(level_of (T), 
                             level_of (t) )

Formal Methods in Computer Security 1999

Covert Channels

42

An Example of
Information Flow Formulae

G1:

L3 ≥ L2  level_of(A) ≥ level_of(B)

G2:

L2 ≥ L1  level_of(C) ≥ level_of(D)

D → L2 ≥ L2 if guard is true, level_of(C) ≥ level_of(E)

G3:

L2 ≥ L1 level_of(C) ≥ level_of(D))

¬D → L2 ≥ L3 if guard is false, level_of(C) ≥ level_of(F)

Remember:  L1 < L2 < L3



22

Formal Methods in Computer Security 1999

Covert Channels

43

Relationship Between
 SVCs and SRMs

• SRMs are a fairly direct representations of the results of the
dependency analyses.  The rows represents the canonical state leaves
and the columns represent i/o with the user.  The transitive closure
represents indirect references to system resources.

• SVCs are putative theorems that are related to the non-transitive reads
in the SRM; however, this is not a one to one correspondence.

• When looking at the most refined SRM representations of
dependencies, one SVC would be generated for each non-transitive
read indicated

• In practice, many of these SVCs reduce to the same expression

Formal Methods in Computer Security 1999

Covert Channels

44

Relationship to Bell and
LaPadula

• Bell and LaPadula models consider only information containing
"objects" as in need of protection.

• Our model is similar, but views every system, resource as an
"object" with the potential for containing information.

• In addition, we are concerned with actual transfers of information,
rather than permission for access.


