
Computational modeling of
Webster’s problem

Comp 140
Fall 2008

27 August 2008 (c) Devika Subramanian, 2008

The “word problem”
 The devil made a proposition to Daniel Webster.

The devil proposed paying Daniel for services in the
following way:"On the first day, I will pay you
$1,000 early in the morning. At the end of the day,
you must pay me a commission of $100. At the end
of the day, we will both determine your next day's
salary and my commission. I will double what you
have earned at the end of the day, but you must
double the amount that you pay me. Will you work
for me for a month?"

2

27 August 2008 (c) Devika Subramanian, 2008

Abstraction and automation

3

Answer

Relevant
input

AlgorithmRecipe
Construction

Recipe
Execution
(i.e., the cooking)

First we, as humans, design
a recipe.
Then we get the machine to
cook it.

27 August 2008 (c) Devika Subramanian, 2008

Abstraction
 Identifying the right level at

which to model/think about the
problem

 What is to be computed?
 What are the givens?
 What is the recipe for

computing what we need from
the givens?

 How do we precisely state the
recipe to a machine?

 Creative process, requires
human ingenuity and thought

4

Answer

Relevant
input

Algorithm
(mathematical
description of

recipe)

Word
Problem

ABSTRACTION

27 August 2008 (c) Devika Subramanian, 2008

Automation
 Communicating a precise

recipe to a machine.
 Computational mapping of

recipe to data structures
and control flow supported
by a programming language.

 Translating the
mathematical recipe into a
program using the chosen
computational mapping.

5

Algorithm/recipe
(mathematical
representation)

 Program

AUTOMATION

27 August 2008 (c) Devika Subramanian, 2008

The purpose of the
computation

 Should Webster take the devil’s deal
or not?

 We compute to find the answer to
this yes/no question.

 Questions of this form have a name in
computer science, they are called
decision problems.

6

27 August 2008 (c) Devika Subramanian, 2008

Modeling: extracting the
relevant pieces of information

 Not all details in the real-world word
problem may be necessary for getting to an
answer.

 What is the essence of the problem, i.e.
what is the relevant information?

 How do we express the essence, the
abstraction, in an unambiguous, well-defined
manner?

7

27 August 2008 (c) Devika Subramanian, 2008

What are the “givens”?
 How the game starts

 Webster gets a salary of 1000 on day 0.
 The devil’s commission at the end of day 0 is 100.

 How the game works (from day 0 on)
 Webster gets a salary at the start of the day.
 At the end of the day, Webster’s take is his salary minus the

commission he pays the devil.
 The following day, Webster’s salary is double his take from the

previous day.
 The following day, the devil’s commission is twice what he got

the previous day.
8

27 August 2008 (c) Devika Subramanian, 2008

The game illustrated

9

1000

Day 0

Webster’s
salary

100
Devil’s
commission

27 August 2008 (c) Devika Subramanian, 2008

The game continued

10

 900Webster’s
take

1000

Day 0

Webster’s
salary

100
Devil’s
commission

27 August 2008 (c) Devika Subramanian, 2008

The game continued

11

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

27 August 2008 (c) Devika Subramanian, 2008

The game continued

12

 200

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

27 August 2008 (c) Devika Subramanian, 2008

The game continued

13

 200

 1600

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

27 August 2008 (c) Devika Subramanian, 2008

The game continued

14

 200

 1600

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

 3200

Day 2

*2*2

27 August 2008 (c) Devika Subramanian, 2008

The game continued

15

 200

 1600

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

 3200

Day 2

*2*2 400

27 August 2008 (c) Devika Subramanian, 2008

The game continued

16

 200

 1600

 1800

Day 1

 900

1000

Day 0

100

*2

Webster’s
take

Webster’s
salary

Devil’s
commission

 3200

Day 2

*2*2 400

 2800

27 August 2008 (c) Devika Subramanian, 2008

The decision rule
 If Webster’s salary on day 30 < 0,

then reject the deal.
 since we count from day 0, “day 30” is

actually the 31st day
 Exercise: make another decision rule

for this problem

17

27 August 2008 (c) Devika Subramanian, 2008

Good notation
 Is key to writing down good recipes
 For this problem

 we abstracted the English language description of
a recipe into a pictorial notation.

 Pictorial notations are great for communicating
with most humans, but not precise enough for
computers (ref. CAPTCHAs).

 we need a more precise representation to
communicate with machines

18

27 August 2008 (c) Devika Subramanian, 2008

Choosing a language
 Pictures
 English

 Computers are not great at understanding human
languages

 To be fair, neither are humans…(why else do we have
the legal system?)

 What else could we use?
 Hint: how do scientists (natural, social) and engineers

communicate their ideas to their peers?

19

27 August 2008 (c) Devika Subramanian, 2008

Mathematics: the language of
science and computation
 Mathematics is precise and concise.
 Mathematics has well-defined, well-

understood operations.
 Mathematics is very expressive, it can

represent a lot of real-world phenomena.
 Computers understand Mathematics.

 at their heart, computers perform simple
mathematical functions, e.g. add, subtract.

20

27 August 2008 (c) Devika Subramanian, 2008

The main ingredients
 Webster’s salary:

 Varies each day
 So, we will introduce

 w0, w1, w2, …, w30 to denote his salary at the start of day 0, day
1, day 2, …, day 30

 Devil’s commission
 Varies each day
 So we introduce

 d0, d1, d2, …, d30 to denote his commission at the end of day 0,
day 1, day 2, …, day 30

21

Each box
in the
pictorial
notation
is an
ingredient
in the
recipe

27 August 2008 (c) Devika Subramanian, 2008

The supporting ingredients
 Webster’s take

 Varies each day
 Is the difference between Webster’s

salary at the start of the day and the
devil’s commission at the end of that day

 w0-d0, w1-d1, …, w30-d30

22

27 August 2008 (c) Devika Subramanian, 2008

The full recipe
 w0 = 1000, d0 = 100
 w1 = 2(w0 - d0) = 1800, d1 = 2d0 = 200
 w2 = 2(w1 – d1) = 3200, d2 = 2d1 = 400
 w3 = 2(w2 – d2) = 5600, d3 = 2d2 = 800
 ….
 w30 = 2(w29 – d29) = ??, d30 = 2d29 = ??

23

27 August 2008 (c) Devika Subramanian, 2008

The full recipe
 w0 = 1000, d0 = 100
 w1 = 2(w0 – d0) = 1800, d1 = 2d0 = 200
 w2 = 2(w1 – d1) = 3200, d2 = 2d1 = 400
 w3 = 2(w2 – d2) = 5600, d3 = 2d2 = 800
 ….
 w30 = 2(w29 – d29) = ??, d31 = 2d30 = ??

24

27 August 2008 (c) Devika Subramanian, 2008

Compact description of recipe

 Webster’s salary on day t+1 is twice
his take on day t for t=0 through t=29

 Algebra helps us succinctly describe
the pattern highlighted in red on slide
24.

25

27 August 2008 (c) Devika Subramanian, 2008

The full recipe
 w0 = 1000, d0 = 100
 w1 = 2(w0 - d0) = 1800, d1 = 2d0 = 200
 w2 = 2(w1 – d1) = 3200, d2 = 2d1 = 400
 w3 = 2(w2 – d2) = 5600, d3 = 2d2 = 800
 ….
 w30 = 2(w29 – d29) = ??, d30 = 2d29 = ??

26

27 August 2008 (c) Devika Subramanian, 2008

Compact recipe continued
 Devil’s commission on day t+1 is twice

his commission on day t for t = 0
through t = 29

 Algebra comes to our aid again!

27

27 August 2008 (c) Devika Subramanian, 2008

The full compact recipe
 Repeat these steps

for t = 0,1,2,…,29
t=0: Use w0 and d0 to calculate w1
and d1

t=1: Use w1 and d1 to calculate w2
and d2

……
Use w29 and d29 to calculate w30
and d30

 Apply decision rule

28

Reject deal if w30 < 0,
else accept deal

27 August 2008 (c) Devika Subramanian, 2008

The essence of the problem
 Only Webster’s salary and the Devil’s

commission are important here. (w
and d are the only sequences
constructed)

 The key thing is the relationship
between the salary and the
commission from one day to the next.
 use an algebraic equation to
represent this relationship succinctly.

 Compute only what you need to make
a decision (w30) [note that we only go
till t = 29]

 Apply your decision rule to solve
problem

29

Reject deal if w30 < 0,
else accept deal

27 August 2008 (c) Devika Subramanian, 2008

Automation
 Communicating a precise

recipe to a machine.
 Computational mapping of

recipe to data structures
and control flow supported
by a programming language.

 Translating the
mathematical recipe into a
program using the chosen
computational mapping.

30

Algorithm/recipe
(mathematical
representation)

 Program

AUTOMATION

27 August 2008 (c) Devika Subramanian, 2008

Mapping ingredient list to
computational structures

 Webster’s salary
 is a sequence of numbers, w0, .., w31

 naturally maps to Python list

 Devil’s commission
 is a sequence of numbers, d0, …, d31

 Naturally maps to Python list

31

w0 w1 w31

d0 d1 d31

Note: not the only possible mapping! The great joy of computer science is that there are
many good mappings of mathematical structures to computational ones.

27 August 2008 (c) Devika Subramanian, 2008

A nanotutorial on Python lists
 Create a list

 >>> numbers = [1,2,3,4,5,6,7,8,9,10]
 >>> emptyList = []

 Access elements of a list
 >>> numbers[0]

 # counting starts at 0

 >>> numbers[3:6]
 # first index inclusive, second index exclusive

 >>> emptyList[0]

32

27 August 2008 (c) Devika Subramanian, 2008

Nanotutorial on lists (contd.)
 Append an item to a list

 >>> numbers.append(11)
 Other list operations

 >>> dir(numbers)
 >>> help(numbers)

 Arithmetic operations: * for
multiplication, - for subtraction (infix)

33

27 August 2008 (c) Devika Subramanian, 2008

Expressing the recipe
 Start the w sequence as a list with a single

element 1000 in it
 Start the d sequence as a list with a single

element 100 in it

 How do you this in Python?

34

1000

100

w

d

27 August 2008 (c) Devika Subramanian, 2008

Python recipe

35

 w = [1000]
 d = [100]

27 August 2008 (c) Devika Subramanian, 2008

Compute the next w element
 Calculate twice the difference

between w0 and d0

 Add it to the end of the list w.

 How do you do this in Python?

36

1000w 1800

Day 0 Day 1

27 August 2008 (c) Devika Subramanian, 2008

Python recipe continued
 w.append(2*(w[0]-d[0]))

37

27 August 2008 (c) Devika Subramanian, 2008

Compute the next d element
 Calculate twice d0

 Add it to the end of list d
 d.append(2*d[0])

38

100d 200

Day 0 Day 1

27 August 2008 (c) Devika Subramanian, 2008

Continuing the computation
 In general, for any day t

 Calculate twice the difference between w[t]
and d[t] and add it to the end of list w.

 w.append(2*(w[t]-d[t]))

 Calculate twice d[t] and add it to the end of
list d

 d.append(2*d[t])

39

27 August 2008 (c) Devika Subramanian, 2008

How do you tell Python to
repeat actions?
 The phrase
 for x in aList:
 statements

 executes the indented statements
once for each element in aList.

 The function
range(3) creates the list [0, 1, 2]

40

27 August 2008 (c) Devika Subramanian, 2008

The final recipe in Python

41

w = [1000]
d = [100]
for t in range(30):
 w.append(2*(w[t]-d[t]))
 d.append(2*d[t])

Extend the sequences w
and d each value of t

Seed the two sequences
w and d

Go through t values in the order 0,1,2…,29

27 August 2008 (c) Devika Subramanian, 2008

The process

42

1000w

100d

Day 0

Day 0

w = [1000]
d = [100]

27 August 2008 (c) Devika Subramanian, 2008

The process contd.

43

1000w 1800

100d 200

Day 0 Day 1

Day 0 Day 1

w.append(2*(w[t]-d[t]))
d.append(2*d[t])

t = 0

Substitute t = 0 here
and perform the steps

27 August 2008 (c) Devika Subramanian, 2008

The process contd.

44

1000w 1800

100d 200

Day 0 Day 1 Day 2

3200

400

Day 0 Day 1 Day 2

w.append(2*(w[t]-d[t]))
d.append(2*d[t])

t = 1

Substitute t = 1 here
and perform the steps

27 August 2008 (c) Devika Subramanian, 2008

The process contd.

45

1000w 1800

100d 200

Day 0 Day 1 Day 2

3200

400

5600

800

w.append(2*(w[t]-d[t]))
d.append(2*d[t])

t = 2

Substitute t = 2 here
and perform the steps

27 August 2008 (c) Devika Subramanian, 2008

The final recipe in Python

46

w = [1000]
d = [100]
for t in range(30):
 print t,w[t],d[t]
 w.append(2*(w[t]-d[t]))
 d.append(2*d[t])

To see what Python is computing, ask it to print the new elements added to
the sequences (lists) w and d for each day t

27 August 2008 (c) Devika Subramanian, 2008

Evolution of the recipe

47

w0 = 1000
d0 = 100

w1 = 2*(w0-d0)
d1 = 2*d0

w2 = 2*(w1-d1)
d2 = 2*d1

w3 = 2*(w2-d2)
d3 = 2*d2
…
w30 = 2*(w29-d29)
d30 = 2*d29

w = [1000]
d = [100]

w.append(2*(w[0]-d[0]))
d.append(2*d[0])

w.append(2*(w[1]-d[1]))
d.append(2*d[1])
…………
w.append(2*(w[29]-d[29]))
d.append(2*d[29])

w = [1000]
d = [100]
for t in range(30):
 print t,w[t],d[t]
 w.append(2*(w[t]-d[t]))
 d.append(2*d[t])

Not mapped to lists Verbose computation
mapped to lists

Concise computation
mapped to lists

27 August 2008 (c) Devika Subramanian, 2008

A specific variation
 Modify the recipe so Webster’s

counteroffer is to negotiate the length of
time he will serve the devil with the $1000
start salary and $100 start commission for
the devil.
 How would you build a recipe for this situation?
 How would you map the recipe into a Python

program to calculate the answer?

48

27 August 2008 (c) Devika Subramanian, 2008

More specific variations
 Is there a value for the initial salary that makes it a good

deal for Webster? (assume Webster goes back with a
counteroffer on his start salary, instead of a straight yes/no
answer)
 How would you build a recipe to calculate this value?
 How would you map your recipe to a Python program

 Is there a value for the devil’s commission that makes it a
good deal for Webster? (assume Webster goes back with a
counteroffer on the devil’s commission, instead of a straight
yes/no answer)
 How would you build a recipe to calculate this value?
 How would you map your recipe to a Python program

49

27 August 2008 (c) Devika Subramanian, 2008

General questions to think about

 Are there other ways to represent
Webster’s decision problem? Are any of
them better than the one suggested here?
In what sense are they better?

 Are there other ways to map the
mathematical recipe to a computational
one? Are they better than the one used
here? In what sense are they better?

50

