Securing Quality-of-Service Route Discovery in
On-Demand Routing for Ad Hoc Networks

Yih-Chun Hu
UC Berkeley
yihchun@cs.cmu.edu

ABSTRACT

An ad hoc network is a collection of computers (nodes) that co-
operate to forward packets for each other over a multihop wire-
less network. Users of such networks may wish to use demand-
ing applications such as videoconferencing, Voice over IP, and
streaming media when they are connected through an ad hoc
network. Because overprovisioning, a common technique in wired
networks, is often impractical in wireless networks for reasons
such as power, cost, and government regulation, Quality of Service
(QoS) routing is even more important in wireless networks than in
wired networks. Though a number of QoS-routing protocols have
been proposed for use in ad hoc networks, security of such proto-
cols has not been considered.

In this paper, we develop SQoS, a secure form of QoS-Guided
Route Discovery for on-demand ad hoc network routing. SQoS re-
lies entirely on symmetric cryptography. Symmetric cryptographic
primitives are three to four orders of magnitude faster (in compu-
tation time) than asymmetric cryptography. In addition, we show
that in general, existing QoS-Guided Route Discovery can, for a
single Route Discovery, transmit a number of packets exponen-
tial in the number of network nodes, creating an opportunity for
Denial-of-Service (DoS) attacks. SQoS limits this overhead to be
linear in the number of network nodes by providing the source
with control over which Route Requests are forwarded.

Categories and Subject Descriptors

C.2.0 [General]: Security and protection (e.g., firewalls); C.2.2
[Network Protocols]: Routing protocols

General Terms

Performance, Design, Security

Keywords

Simulations, security, Quality-of-Service, QoS routing, ad hoc
networks, SQoS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SASN’04, October 25, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-972-1/04/0010 ...$5.00.

106

David B. Johnson
Rice University
dbj@cs.rice.edu

1. INTRODUCTION

An ad hoc network is a collection of computers (nodes) that co-
operate to forward packets for each other over a multihop wireless
network. The nodes in the network may move and radio prop-
agation conditions may change at any time, creating a dynamic,
rapidly changing network topology. An important application of
ad hoc networking technology is to enable communication in envi-
ronments in which there is no infrastructure, where the infrastruc-
ture has been destroyed, or when the infrastructure cannot be used
due to issues such as cost and security. A substantial amount of
research has been proposed in the field of ad hoc network routing,
and mature protocols such as DSR [20], AODV [31], OLSR [33],
and TBRPF [3] have emerged from standards discussions in the
Internet Engineering Task Force (IETF), the principle protocol
standards development organization for the Internet.

Users of ad hoc networks may wish to use demanding applica-
tions such as videoconferencing, Voice over IP, and streaming me-
dia when they are connected through an ad hoc network. Quality
of Service (QoS) has been an important area of research in wired
networks, as researchers have looked for solutions that provide
acceptable levels of performance for these types of applications.
When QoS routing is available in ad hoc networks, users will ex-
perience better performance while using these types of challenging
applications.

In wireless networks, QoS routing is even more important. That
is, in wired networks, overprovisioning can often be used to re-
duce the need for sophisticated QoS techniques in all but the most
demanding network applications. However, in wireless networks,
overprovisioning is often impossible or impractical, due to con-
straints on radio spectrum and power level, or because of interfer-
ence or noise within the radio spectrum. As a result, using a QoS
routing protocol to carefully choose routing paths with sufficient
resources may be the only way to provide sufficient resources in
wireless networks for many applications. This is even more im-
portant in ad hoc networks due to the frequent changes in routing
topology and the need to maximize the use of the shared radio re-
sources over multiple wireless hops. In addition, recent work on
route selection [10] shows that measuring link quality can signifi-
cantly improve network performance even for best-effort traffic.

Most work on QoS routing in ad hoc networks has focused on
the Integrated Services model [4], with flows and reservations,
rather than on the Differentiated Services [30] model, where cer-
tain packets are marked as having priority over unmarked packets.
One reason most researchers have chosen this direction is that, in
ad hoc networks, capacity and connectivity are quite dynamic. The
dynamic nature of ad hoc networks pose a significant challenge to

the negotiation of Service Level Agreements (SLA), which limit
the amount of marked traffic that any node can introduce.

Routing protocols for ad hoc networks can generally be divided
into two categories. A proactive (or periodic) routing protocol
attempts to allow each node using it to always maintain an up-to-
date route to each possible destination in the network; the protocol
periodically exchanges routing information with other nodes in or-
der to allow new routes to be discovered and existing routes to be
modified if they break due to factors such as node mobility and en-
vironmental changes. A reactive (or on-demand) routing protocol
only attempts to a discover a route to some destination when it has
a packet to route to that destination and does not already know a
route there; the protocol caches known routes and uses a flooding-
based discovery protocol when a needed route is not found in the
cache. For dynamically mobile ad hoc networks, reactive or on-
demand routing protocols often outperform proactive or periodic
ones, due to their ability to adjust the amount of network over-
head created to track the mobility in the network affecting current
communication [6, 19].

A number of protocols have been proposed for QoS routing in
ad hoc networks [5, 7, 8, 24, 25, 32, 38]. As designed, these
protocols are intended for operation in a trusted environment in
which all nodes are honest, and they do not consider the disrup-
tions that can be caused by a malicious attacker sending arbitrary
(e.g., forged) routing packets. In this paper, we discuss general
mechanisms for securing QoS routing in on-demand routing proto-
cols for ad hoc networks, and we apply these mechanisms to create
a new secure QoS routing protocol that we call SQoS. The opera-
tion of SQoS is based on DSR’s QoS-guided Route Discovery [25,
5] technique. We also show how our mechanisms can be applied
to the proposed AODV QoS extensions [32].

The rest of this paper is organized as follows. In Section 2,
we describe existing work on QoS-Guided Route Discovery. In
Section 3, we then present an overview of the cryptographic mech-
anisms that we use for securing QoS-Guided Route Discovery, and
Section 4 describes mechanisms for securing QoS-Guided Route
Discovery, including one mechanism (ROUTE REQUEST authenti-
cation) that is generally applicable to all secure on-demand routing
protocols. In Section 5, we then compare our SQoS protocol with
a protocol for securing QoS-Guided Route Discovery using pub-
lic key cryptography. We review related work in Section 6 and
conclude in Section 7.

2. QOS-GUIDED ROUTE DISCOVERY

In an on-demand ad hoc network routing protocol, such as
DSR [22, 21] or AODV [31, 32], a node (which we call the initia-
tor) can find a route to a destination node (which we call the rarget)
by performing a controlled flood of the network. In this Route
Discovery procedure, the initiator transmits a ROUTE REQUEST
packet, identifying the target to which the route is needed. Each
node receiving the ROUTE REQUEST in general retransmits the
REQUEST if it has not already forwarded a copy of it; when the tar-
get node receives the REQUEST, it returns a ROUTE REPLY to the
initiator, listing the route taken by the REQUEST, rather than for-
warding the REQUEST. Many optimizations have been defined for
this basic Route Discovery scheme to reduce the frequency of per-
forming Route Discovery and to limit the portion of the network
over which the ROUTE REQUEST flood must be forwarded.

For each individual Route Discovery attempt, each node that
forwards the ROUTE REQUEST does so only for the first REQUEST

107

it receives as part of that Route Discovery, in order to limit the
overhead of the flooding operation. In AODYV, this technique in
effect finds the path which forwards the REQUEST to the target
with the lowest latency; in DSR, this technique returns a set of
paths such that each strict prefix P of each path is the path that
forwarded the REQUEST to the last node of P with lowest latency
(the target node in DSR returns a ROUTE REPLY for each copy of
the ROUTE REQUEST that it receives).

In both cases, a node wishing to find a route with certain QoS
parameters (e.g., with a given maximum latency or a given avail-
able bandwidth) may not be able to find a route with sufficient
quality. In particular, because low-latency paths are preferred, a
node searching for a path along which to route a high-bandwidth
flow may not find an appropriate route with either DSR or AODV,
even if a route with sufficient bandwidth exists. To allow Route
Discovery to discover paths satisfying QoS constraints, Maltz in-
troduced QoS-Guided Route Discovery [5, 25], which allows a
node to specify QoS metrics that must be satisfied by a discovered
path. (The QoS-Guided Route Discovery technique was specified
in version 3 of the DSR Internet-Draft [5] in the IETF but was
removed in later drafts [22] to simplify the standard DSR proto-
col specification in accordance with the consensus of the MANET
Working Group.) In this section, we review the previous work in
QoS-Guided Route Discovery.

In QoS-Guided Route Discovery, ROUTE REQUEST packets are
constrained to paths fulfilling certain requirements. Often, a node
may already have a preexisting route to the destination; for exam-
ple, in DSR, a node may have a cached route, or in AODV, a node
may already have the destination in its routing table. When a node
has a preexisting route, it may either perform a QoS-Guided Route
Discovery, or it may attempt to establish a new flow along the pre-
existing route. If the node chooses to use the preexisting route and
the flow establishment is successful, it is not necessary to perform
a QoS-Guided Route Discovery, although one may be performed
in an attempt to find a better route. The decision about whether or
not to perform such a Discovery may be made based on resources
available along a preexisting route or the node’s estimate of the
probability of successful flow setup along that route. Alternatively,
a node may choose to always perform a second search requesting
a slightly higher level of resources than is available along the pre-
existing route.

To use this QoS-Guided Route Discovery mechanism, a node
sending a ROUTE REQUEST also inserts in the REQUEST an op-
tional QoS Request Header for each type of resource required.
Each QoS Request Header indicates the type of resource, the min-
imum acceptable resource level, and the resource level of the cur-
rent path. The resource level of the current path is initialized
to the desired resource level, but may be reduced as the ROUTE
REQUEST traverses the network. For example, an audio flow may
require at least 2.4 kbps of bandwidth but desire up to 128 kbps. In
this case, when it initiates the Route Discovery, the initiator node
specifies a minimum acceptable level of 2.4 kbps and a current
resource level of 128 kbps.

A node receiving a ROUTE REQUEST containing one or more
QoS Request Headers processes each QoS Request Header to de-
termine whether or not the node can support a new flow with re-
sources at a level at least equal to the minimum requested. If it is
unable to support the minimum requested resource level for any re-
quested resource, the node silently discards the ROUTE REQUEST.
If it is unable to support the current level specified in any QoS
Request Header in the packet, the node modifies the header by

setting the current level equal to the maximum resource level it
can support, and then forwards the ROUTE REQUEST normally. A
node able to support the current level specified in all QoS Request
Headers contained in the packet forwards the ROUTE REQUEST
packet normally without modifying the QoS Request Header.

‘We now consider the three common QoS metrics of bandwidth,
latency, and jitter. With the bandwidth metric, a node forwarding a
packet places in the current resource level the lesser of the resource
level that it received and its own resource level. When a node with
240 kbps of available bandwidth receives a REQUEST with a cur-
rent resource level of 640 kbps, it reduces the bandwidth level in
the REQUEST before forwarding it. For the metrics of latency and
jitter, each node actually increases the latency and jitter specified
in the REQUEST, and therefore adds the local latency or jitter to
the received value. For example, if a node receives a REQUEST
reflecting 20ms of latency and 5 ms of jitter, and the node itself
imposes 10 ms of latency with 3 ms of jitter, the REQUEST packet
it forwards will show 30 ms of latency and 8 ms of jitter.

The QoS Request Headers in a ROUTE REQUEST only deter-
mine if the requested resources are available along the path, lim-
iting the Route Discovery to return only paths that meet at least
the minimum levels of resources requested. A node that propa-
gates a ROUTE REQUEST containing QoS Request Headers may
also temporarily reserve the resources specified in the REQUEST
in order to improve the likelihood that the resources will still be
available when the flow begins using this route.

One important problem in QoS-Guided Route Discovery is
determining the resources available at any particular node. These
techniques are beyond the scope of this paper, but some earlier
work has addressed this problem. For example, Maltz describes
techniques for measuring latency and available bandwidth [25].
Any technique used to measure available performance may
themselves be manipulated by an attacker. In this paper, we
assume that such attacks can only reduce the measured available
resources, and, in doing so, reduce actual available resources.
For example, an attacker may reduce apparent bandwidth by
unnecessarily reserving the medium through the use of excessive
RTS and CTS packets [18, 2]; however, this attack actually does
reduce available bandwidth.

A routing protocol using QoS-Guided Route Discovery can
find suitable routes through the network. Once such a route is
found, the routing protocol either must reserve those resources for
a flow, or it will use that route on a best effort basis. For exam-
ple, when the route is used on a best effort basis, a source might
use the route until performance degrades to an unacceptable level,
at which point it would re-initiate QoS-Guided Route Discovery.
Alternatively, a protocol may allow a path establishment and re-
source reservation protocol, in which a source establishes a flow
along that path by sending an ESTABLISH FLOW packet along that
path [16]. Each node along the path receiving the ESTABLISH
FLOW packet reserves the resources needed by the flow and for-
wards the ESTABLISH FLOW packet to the next node on the path.
When a node that has been forwarding traffic for a flow is no longer
able to meet the QoS requirements of the flow, it sends a FLOW
ERROR packet to the source of the flow.

Though flow establishment requires two additional packet
types, they are specific to the routing protocol in use. In general,
ESTABLISH FLOW packets can be authenticated either through
broadcast authentication (e.g., as described in Section 4.1), or
through the use of pairwise authentication using shared keys be-
tween the source and each forwarding node. One of these two

108

types of authentication is generally required to secure other rout-
ing protocol messages. When each forwarding node can authen-
ticate the source, it can use policy to determine whether or not
that source is authorized to reserve these resources. In addition,
FLOW ERROR packets can be authenticated in the same way as
ROUTE ERROR packets used by on-demand routing protocols. For
example, when used with Ariadne using digital signatures, the
ESTABLISH FLOW packet can be digitally signed by the source,
so each forwarding node can ensure that the source is authorized
to make that reservation; likewise, each FLOW ERROR packet is
digitally signed by the node originating the ERROR, so the source
can ensure that the ERROR was in fact sent by a node on the
route. Because each routing protocol has different key setup re-
quirements and secures routing messages differently, we leave the
security of these control messages to the routing protocol; in the
rest of the paper, we focus on securing the QoS-Guided Route
Discovery mechanism itself.

3. CRYPTOGRAPHIC MECHANISMS

We design SQoS, our secure QoS routing protocol, by building
on existing security mechanisms. Specifically, SQoS builds on
hash chains and MW-chains, which we review in this section.

3.1 HASH CHAINS

One-way hash chains are a widely used cryptographic primitive.
One of the first uses of one-way chains was in one-time password
protocols [23, 14]. These chains are also used in other applica-
tions, such as efficient one-time signature algorithms [12, 28, 27,
35]. Coppersmith and Jakobsson present efficient mechanisms for
storing and generating values of hash chains [9].

We create a one-way chain by selecting the final value v, at ran-
dom, and by repeatedly applying a one-way hash function H, such
that v; = H[v;y1]. The last value generated in this way is called
the anchor; generally, an authentic anchor is published to allow
verification of hash chain elements. One-way chains have two
main properties (assuming H is a cryptographically secure one-
way hash function):

e Anybody can authenticate that a value v; really belongs to
the one-way chain, by using an earlier value v; of the chain
by checking that H/~'(v;) equals v;.

o Given the latest released value v; of a one-way chain, an ad-
versary cannot find a later value v; such that H/~*(v;) equals
v;. Even when value v,y is released, a second pre-image
collision resistant hash function prevents an adversary from
finding v | different from v;; | such that H[v},] equals v;.

These two properties result in authentication of one-way chain
values: if the current value v; belongs to the one-way chain, and
we see another value v; with the property that H/~/(v;) equals v;,
then v; also originates from the same chain and was released by
the creator of the chain.

3.2 THE MW CHAINS MECHANISM

In this section, we review the MW-chain mechanism [15], which
provides instant authentication and low storage overhead. First, we
describe the one-time signature, on which MW-chains are based.
In a signature, a node chooses a private key K, and from that pri-
vate key generates a verification key V. Given a message m, the
node can use K to form a signature s such that a node with V can

verify the signature; however, a node with V but not K cannot
generate a signature. A one-time signature is a type of signature
such that only one message m can be signed with a single key. For
example, in the Merkle-Winternitz one-time signature, two signa-
tures using the same key provide an attacker enough information
to forge certain other signatures.

The MW-chain is built on a certain type of one-time signature,
which we call a chainable signature. In a chainable signature, a
signature s on message m can be verified by comparing f(s,m) to
verification key V, and any verification key can be used as a sig-
nature key. One such one-time signature is the Merkle-Winternitz
signature.

To build an MW-chain of length ¢ from a chainable signature,
we pick a signing key K;. We then derive each signing key K; as
the public key corresponding to signing key K;. In particular, if
function G generates a verification key from a signature key, then
K; = G[K;y1]- Since G must be a secure one-way hash function,
an MW-chain has the same properties of a hash chain, and has the
additional property that a signature s using key K;,| can be used
to generate K; using the equation K; = f(s,m), but cannot be used
to derive K.

4. MECHANISMS FOR SECURING QOS
ROUTING

Our key observation for securing QoS routing is that properties
of interest in the route discovery and selection are generally mono-
tone; that is, the desirability of a path decreases as more nodes are
added. For example, the resources of bandwidth, latency, and jit-
ter all are monotone. In this paper, we design SQoS, a secure
QoS routing protocol that enforces monotonicity and strict mono-
tonicity in QoS metrics, preventing an attacker from subverting the
correct operation of the QoS routing.

4.1 BROADCAST AUTHENTICATION FOR
ROUTE REQUEST PACKETS

Our mechanisms for secure QoS Route Discovery require the
network to provide some form of broadcast authentication for the
immutable fields of ROUTE REQUEST packets; that is, any node
that receives a ROUTE REQUEST packet must be able to ascertain
that it was sent by the claimed initiator. Though this authentication
can be provided by a digital signature, the cost of verifying a dig-
ital signature creates the possibility of a Denial-of-Service (DoS)
attack; in this attack, an attacker floods a victim node with invalid
ROUTE REQUEST packets, forcing the victim to consume all of its
CPU time attempting to check the signatures on the REQUESTS.
An alternative to the use of digital signatures is to provide this
authentication using an efficient, instant broadcast authentication
mechanism such as HORS [34].

In SQoS, however, this authentication is integrated with a mech-
anism that prevents excessive flooding. In particular, since QoS-
Guided Route Discovery requires a flood of the network and hence
provides a means for an attacker to perform a Denial-of-Service
attack (consuming all network resources), a secure ad hoc network
routing protocol must enforce limits on the frequency at which
each node can initiate such flooding. For example, Ariadne [18]
uses a hash chain to provide this rate-limit. This technique has two
advantages. First, it allows any node to authenticate that a ROUTE
REQUEST did in fact originate from the initiator. Second, it uses
only efficient symmetric cryptography. However, this technique

109

does not prevent modification of the fields of the REQUEST. We
replace this hash chain with an MW-chain to prevent the modifi-
cation of the immutable fields of the REQUEST. A node uses one
MW-chain step for each Route Discovery, and uses the signature
from that MW-chain step to authenticate the immutable fields of
the ROUTE REQUEST.

For example, if the MW-chain allows the authentication of
different values, then an 80-bit one-way hash of the immutable
fields of the packet can be encoded as a single value authenticated
using this MW-chain. An attacker attempting to change any or all
of these immutable fields, then, will have a 2-80 probability of
preserving the correctness of the signature.

280

4.2 ENFORCING MONOTONICITY

To ensure monotonicity, the initiator of a QoS-Guided Route
Discovery creates a virtual hash chain for each QoS metric re-
quested. This virtual hash chain can be a traditional hash chain, as
described in Section 3.1, a skipchain [15] (which allows for more
efficient authentication of large changes in metric), or a hash tree
chain [15] (which enforce strict monotonicity, effectively requir-
ing each forwarder to change the QoS metric). In the rest of this
section, for simplicity, we will describe SQoS using a traditional
hash chain; however, SQoS can also be used with these other types
of one-way chains.

To generate this hash chain, the initial value (value farthest from
the anchor) is chosen to authenticate the maximum level of service
requested by this QoS-Guided Route Discovery for this metric.
Each step in the hash chain authenticates one quanta, which is
the smallest difference that can be represented for the authentica-
tion for that metric. The hash chain is generated to represent each
value between the maximum level of service (the initially gen-
erated value) and the minimum level of service (the anchor) re-
quested by the QoS-Guided Route Discovery. For example, if an
initiator is interested in a range of bandwidth between 2.4 kbps and
56 kbps, and bandwidth is specified in bits per second, the node
generates a hash chain of length 56000 — 2400 = 53600. Each
step in this chain represents 1 bps, such that the initially chosen
seed represents the 56 kbps level and the anchor represents the
2.4 kbps level. A ROUTE REQUEST packet includes the authen-
ticator for the metric currently claimed in that ROUTE REQUEST.
‘When a node forwarding the REQUEST reduces the metric claimed
in the REQUEST, it hashes the authenticator accordingly; for ex-
ample, if a node reduces the claimed bandwidth by 5 kbps, it ap-
plies the one-way hash function 5000 times. Each anchor is in-
cluded in the Route Discovery, sent with broadcast authentication
(as described in Section 4.1), allowing each recipient to authenti-
cate each claimed QoS metric.

The quantization of integer or fixed point values is simpler than
for floating point values. For example, the smallest step repre-
sentable with an integer is 1, and the range of a 32-bit signed inte-
ger value is 232, whereas a 32-bit signed floating point value in the
IEEE 754 standard can represent a step as small as 2~ 4% with a
range of 212°. We can overcome this difficulty by using a variable
step size; since n bits can represent at most 2" values, we conceptu-
ally sort all representable values, and correlate one step in a virtual
hash chain with one element in this conceptually sorted list. This
sorting can be achieved at low computational cost with proper data
representation; for example, finite positive numeric floating point
values in the IEEE 754 standard can be converted into their inte-
ger ranks by taking the 32-bit (or 64-bit) binary representation and

interpreting the opaque bit values as if those bits represented an
unsigned integer.

Even though hash functions are relatively fast to compute, fol-
lowing a hash chain of length 232 for each ROUTE REQUEST
packet would provide an opportunity for Denial of Service attacks
based on flooding REQUESTs with invalid metric authenticators.
To reduce the maximum amount of effort needed to verify any
single metric, SQoS uses a network-wide maximum number of
steps between the minimum level of service required and the max-
imum level that can be used. Instead of authenticating the exact
level of service, only the current step is authenticated, though a
more precise measurement is included in the forwarded REQUEST.
Since SQoS authenticates only the step (as opposed to the ex-
act metric value), an attacker can change the metric to any value
within the same step. For example, for the metric of bandwidth,
the span from minimum acceptable to maximum usable could be
as great as from 2.4 kbps to 2.4 Mbps for a conferencing applica-
tion. Divided logarithmically into 200 steps, each step represents
a factor of 1.035 increase, and a node claiming a bandwidth of
125 kbps would include an authenticator valid for any bandwidth
between 123.65 kbps and 128 kbps. In general, for each metric, the
initiator specifies a minimum level acceptable, a maximum level
usable, the number of steps between those two levels, and whether
those steps are calculated linearly or logarithmically.

To prevent an attack where a node uses maximum-length chains
for each of a number of metrics, the network-wide maximum can
provide the maximum number of steps summed across all metrics.
For example, if a total of 300 steps were allowed, a node may wish
to use 200 steps to represent bandwidth with logarithmic steps and
100 steps to represent latency with linear steps.

4.3 LIMITING OVERHEAD OF QOS-GUIDED
ROUTE DISCOVERY

In QoS-Guided Route Discovery, a forwarding node does
not perform duplicate suppression as standard Route Discovery
does. In standard Route Discovery, nodes having already for-
warded a ROUTE REQUEST from a Route Discovery ignore fur-
ther REQUESTSs from the same Discovery. In QoS-Guided Route
Discovery, a node should only ignore a REQUEST if it has for-
warded a better REQUEST. This raises three problems:

e An intermediate node may not know which tradeoffs be-
tween QoS metrics are preferred by the source (e.g., does
the source prefer 1 Mbps and 50 ms latency, or 2 Mbps and
75 ms latency?)

e An attacker can force a node to forward a large number of
ROUTE REQUESTs by broadcasting a single REQUEST mul-
tiple times, using progressively better metrics.

e If a node forwards each better REQUEST, an exponential
number of forwarded packets can result from a single Route
Discovery.

The first problem exists because different types of traffic de-
mand different link qualities. For example, voice traffic may
be very jitter-sensitive, somewhat latency-sensitive, and relatively
bandwidth insensitive, whereas a bulk data transfer may be highly
bandwidth-sensitive. A strict priority amongst the QoS parameters
may be impractical, since videoconferencing software may be able
to code video and audio at several quality (and hence bandwidth)

110

levels but also desire low latency and jitter; preferring bandwidth
(and hence video quality) over the latency and jitter metrics may
result in a path with suboptimal latency and jitter characteristics,
whereas optimizing latency and jitter may result in a bandwidth
level that requires the use of a lower-quality video codec.

Depending on how intermediate nodes in the node list are au-
thenticated, the second problem may or may not exist. In partic-
ular, if a digital signature or other instantly verifiable broadcast
authentication is used for node authentication, then each forward-
ing node can verify that the ROUTE REQUEST has traversed the
sequence of nodes listed in the node list. In this case, an attacker
can only play as many REQUESTS as it receives, because otherwise
the authenticated REQUEST proves that the attacker is behaving
maliciously. However, if the node authentication is performed at
the target, as in Ariadne [18], an attacker can perform this attack
at will.

The third problem, however, is fundamental when forwarding
latency of a ROUTE REQUEST packet at a node is not exactly cor-
related with the initiator’s route preference. For example, suppose
there are n nodes in addition to the initiator and the target, ar-
ranged in n/2 groups of 2 nodes as shown in Figure 1. Let group
0 represent the target and group n/2 + 1 represent the initiator.
If these groups are arranged such that both nodes in group i are
neighbors of all nodes in groups i — 1, and i+ 1, of the other node
in group i, and of no other nodes. Then each node in group 1
would forward 1 REQUEST, for a total of 2 REQUESTSs forwarded.
If the node in group 1 with the lowest level of resources was the
first to forward the REQUEST, then each node in group 2 would
forward both REQUESTS, for a total of 4 REQUESTSs forwarded.
Again, in the worst case, each node in group 3 would forward all
4 REQUESTS, for a total of 8 REQUESTs forwarded. In general,
group i would forward 2/ REQUEST packets, for a total number of
ROUTE REQUEST packet transmissions of

nj2
221 — 2%+1 1
i=0

SQoS solves all three problems by providing the source with
control over which ROUTE REQUESTs are re-forwarded. For
example, a node can include an evaluation function in each
REQUEST. This evaluation function can take the form of a func-
tion selected from a list, or can be more general, such as active
code, as has been proposed for Active Networks [37]. Each evalua-
tion function should take as input the metrics of interest and a max-
imum value, and should return an integer between 0 and a maxi-
mum value specified in the REQUEST. A node then can forward
an additional REQUEST only when the evaluation function returns
a larger value than it did the previous time, thus allowing each
node to bound the number of times it forwards a REQUEST from
any single Discovery. To prevent a DoS attack where the attacker
allows a REQUEST to be forwarded a large number of times, we
can specify as a network-wide parameter the maximum number
of REQUESTS that can be forwarded by a single node from a sin-
gle Route Discovery. Alternatively, we can limit the rate at which
REQUESTs can be forwarded for any particular node; since the
maximum return value of the evaluation function is authenticated,
a node can ignore REQUESTSs beyond a certain limit. To prevent
an attacker from specifying extremely CPU intensive programs,
SQoS uses a language with no loop or subroutine constructs, so
that runtime is proportional to program length. Other techniques
that can achieve the same result include the use of a “sandbox” that

Group 2

Group 4

Initiator

/

Group 1

—/

Group 3

Figure 1: Network topology used in counting ROUTE REQUESTSs forwarded by each node

limits resource consumption, or Proof Carrying Code [29] that en-
sures bounded runtime.

4.4 APPLICATION TO DSR

To perform secure QoS-Guided Route Discovery in on-demand
source routed protocols such as DSR [20], and in secure versions
of DSR such as Ariadne [18], an initiator using SQoS specifies
a list of metrics of interest, such as latency and bandwidth. For
each metric, the initiator indicates the maximum necessary level
and minimum desirable level, the length of the hash chain, and
whether steps are to be divided linearly or logarithmically.

To authenticate these levels, hash chain anchors, and other fields
of the ROUTE REQUEST, we add an authentication header to the
REQUEST based on an MW-chain; a node’s ith Route Discovery
is signed using private key K;, and since Route Discoveries flood
the entire network, most nodes will have already heard a signature
using the previous key K;_j. As a result, they need only follow
one step in the MW-chain to verify the signature, which results in
very efficient verification.

For example, in the topology shown in Figure 2, a node S may
initiate a ROUTE REQUEST to node D for a route to be used for a
videoconference. Node S may want bandwidth between 64 kbps
and 1.28 Mbps and may want latency between O ms and 200 ms.
Node S may allocate 200 logarithmically-divided steps to band-
width and 100 linearly-divided steps to latency, so each step of
bandwidth represents a factor of 1.015, and each step of latency
represents an additional 2ms. It then builds the hash chains for
authenticating bandwidth (h?) and for authenticating latency (hl-L).
For bandwidth authenticators, initiator S chooses hgoo and the hash
chain using h? =H [hl’il ; it then chooses latency authenticator
h%oo and computes the hash chain hl-L =H [hiL+1
in Section 4.2. The two anchors hOB and hﬁ are included in the
REQUEST packet. In addition, the initiator specifies some limit to
the number of REQUEST packets forwarded by any node as de-
scribed in Section 4.3; for example, the initiator may want each
node to forward at most 5 REQUESTSs from this Route Discovery,
and it may equally weight the 200 bandwidth and 100 latency
steps. A simple postfix program that would achieve this is 1
LOADSTEP 2 LOADSTEP 2 * + 5 * 400 /, where LOADSTEP is
a unary operator that loads current step number of the ith metric,
where i is the input value. For example, 1 LOADSTEP loads the
step that the bandwidth is on; if the bandwidth level is 1.28 Mbps,
which corresponds to bandwidth step 200, 1 LOADSTEP results in
the value 200 on the stack. The program above adds the bandwidth

], as described

111

step number to twice the latency step number (since there are a
maximum of 100) and scales the result to a value between 0 and
5. The initiator then signs the REQUEST using its next MW-chain
element. It then adds the current path bandwidth (1.28 Mbps) and
latency (0 ms) and the authenticators for those values. It also adds
a path list, which starts empty. Finally, it broadcasts the resulting
ROUTE REQUEST:

S —x: [ROUTE REQUEST,D,i,
(Bandwidth, 64000, 1280000, 200, Log, 45),
(Latency, 0,200, 100, Linear, #5),
5, (1 LOADSTEP 2 LOADSTEP 2 *

+ 5 % 400 /)}K:,

1280000, 18,4, 0, hro0, ()

As in DSR, each node keeps a table of ROUTE REQUEST
packets it has previously heard. However, unlike in DSR,
MW-chain position must be “hard state” to ensure security; that
is, if a node forgets its MW-chain position, the correct operation
of the protocol is jeopardized. As a result, each node need store
only information from the most recent REQUEST initiated by each
other node in the network. In addition to the MW-chain position
(which replaces the identifier) and initiator, the node stores three
additional values: the maximum output of the evaluation func-
tion (in this case, 5), the output of the evaluation function for the
REQUEST last forwarded from this Route Discovery, and a hash of
the immutable (signed) fields of the header. This hash prevents an
attacker from forging multiple REQUESTS using an old MW-chain
position once the new MW-chain signature has been revealed. It
also speeds up the verification of the signature.

‘When a node receives a REQUEST, it checks if it has received
a REQUEST with this or newer MW-chain position and authenti-
cates the signature. If the node has not previously seen a REQUEST
with this or newer MW-chain position, it forwards the REQUEST
and updates its table of previously heard REQUESTs. If a more
recent REQUEST has been heard, this REQUEST is discarded; if
a REQUEST from the same Route Discovery has been heard, the
node evaluates the new REQUEST according to the evaluation
function in the packet. If the evaluation function returns a higher
value for this new REQUEST than for the previously forwarded
REQUEST, it forwards this REQUEST and also updates the table of
previously forwarded REQUESTS. For example, a node hearing the
REQUEST above would check if it had heard REQUEST i or larger.
If it had not, it would authenticate the signature and evaluate the
evaluation function, which would return 5. The node would then

|

A

 J

 J

Cc

Figure 2: A Simple Example Ad Hoc Network Topology

note that for initiator S it had forwarded REQUEST i with value 5
of a maximum of 5.

When forwarding a ROUTE REQUEST, a node reduces the QoS
levels in the REQUEST to the levels that it can provide. For ex-
ample, a node A which adds 20 ms of latency and has 640 kbps
of available bandwidth would reduce the above REQUEST to re-
flect a 640 kbps bandwidth (based on the maximum of 640 kbps
and 1.28 Mbps) and 20 ms latency (based on the sum of 0 ms plus
20ms), as described in Section 2. It then computes the authenti-
cators for bandwidth and latency hlfs 4 and héo, and forwards the
ROUTE REQUEST:

A — x: [ROUTE REQUEST,D, i,
(Bandwidth, 64000, 1280000, 200, Log, h5),
(Latency, 0,200, 100, Linear, #5),
5,(1 LOADSTEP 2 LOADSTEP 2 *
+ 5 % 400 /)]g-,

640000, 1%, 20,15, , (A)

If node B, which adds 10 ms of latency and has 960 kbps of band-
width capacity, forwards this ROUTE REQUEST, it does not reduce
bandwidth, since it can support this flow. However, it increases la-
tency to 30 ms and computes authenticator hés. It also computes
the evaluation function, for which it receives a result of 4. It stores
this result in the table of forwarded REQUESTS, and forwards the
ROUTE REQUEST:

B—%: [ROUTE REQUEST,D,i,
(Bandwidth, 64000, 1280000, 200, Log, h5),
(Latency, 0,200, 100, Linear, k),
5,(1 LOADSTEP 2 LOADSTEP 2 *
+5 % 400 /)g,

640000, 155,30, ks, (A, B)

If node C, which adds 15 ms of latency and has 240 kbps of ca-
pacity, forwards this ROUTE REQUEST, it reduces bandwidth to
240 kbps and increases latency to 45 ms. The authenticators for
bandwidth and latency become hg9 and h%S. Node C also com-
putes the evaluation function, for which it receives a result of 4.
It stores this result in the table of forwarded REQUESTS, and for-
wards the ROUTE REQUEST:

C — x: [ROUTE REQUEST,D, i,
(Bandwidth, 64000, 1280000, 200, Log, hOB)s
(Latency, 0,200, 100, Linear,),
5, (l LOADSTEP 2 LOADSTEP 2 *
+ 5 % 400 /)|g-,

240000, 15, ,45,hk; (A, B,C)

Finally, for each ROUTE REQUEST the target receives, it returns
a ROUTE REPLY. This REPLY can be authenticated with a key
shared between the initiator and the target, or, if no such key ex-
ists, the initiator and target can use Diffie-Hellman key exchange
(or other key exchange that does not require communication) to
establish a key. Since we use MW-chain authentication to rate-
limit the number of Route Discoveries initiated by any node, an
attacker would need to compromise a large number of nodes to

112

overwhelm a victim with many legitimate REQUESTs for which
the victim needs to establish keys. In particular, for the ROUTE
REQUEST above, node D returns a ROUTE REPLY:

D — C : MACk,, [ROUTE REPLY, {,240000,45, (A, B,C)]

Each node forwards the ROUTE REPLY towards the source. A
complete execution of the secure QoS-Guided Route Discovery
protocol is shown in Figure 3.

4.5 APPLICATION TO AODV

The application of secure QoS-Guided Route Discovery to
AODV [31], and to secure versions of AODV such as ARAN [36]
and SAODV [39], is similar to the application to DSR and Ariadne.
‘We highlight the differences here.

Since AODV does not maintain a source route in its ROUTE
REQUEST packets (called RREQs in AODV), secure QoS-Guided
Route Discovery also does not require the source route. As a
result, during Route Discovery, downstream nodes do not know
the complete route that the RREQ followed, but instead only
know the address of the last node to forward the RREQ. Each
node forwarding an RREQ keeps a table of the previous hop for
each RREQ that it has forwarded. We can use this property to
improve routes even after an RREQ is forwarded, by modifying
the evaluation function to allow the return of fractional values.
An additional RREQ is forwarded for a Route Discovery if the
evaluation function applied to the new RREQ is at least 1 greater
than for the previously forwarded RREQ. If it is greater but not
sufficiently improved, the previous hop can be updated to reflect
the new path, but only if each metric of the new RREQ is at least
as good as the forwarded RREQ.

When AODV is used as the underlying routing protocol, the ini-
tiator of the Route Discovery is not provided with the addresses of
each forwarding node. As a result, authentication of a ESTABLISH
FLOW packet must be performed using broadcast authentication.
Fortunately, the two proposed schemes for securing AODV [39,
36] both use broadcast authentication to secure other protocol mes-
sages, so our secure QoS-Guided Route Discovery protocol can be
used without any additional key setup.

5. EVALUATION

To evaluate our protocol, we first analyze the security proper-
ties it provides. Then, to quantify the costs of our scheme, we
define a public-key based secure QoS-Guided Route Discovery
mechanism based on prior work in the related area of secure
ad hoc network routing. We then compare SQoS to this public-
key system, which we call the Public Key Secure QoS Route
Discovery (PK-Squared), and show that SQoS significantly out-
performs PK-Squared.

5.1 SECURITY ANALYSIS

To analyze the security achieved by our secure QoS-Guided
Route Discovery scheme, we examine the taxonomy of attacks

[ROUTE REQUEST, D, i, (Bandwidth, 64000, 1280000, 200, Log7hg), (Latency, 0,200, 100, Linear, hé),
[ROUTE REQUEST, D, i, (Bandwidth, 64000, 1280000, 200, Log, 45), (Latency, 0,200, 100, Linear, 45),
[ROUTE REQUEST, D, i, (Bandwidth, 64000, 1280000, 200, Log7hg), (Latency, 0,200, 100, Linear, hé),

[ROUTE REQUEST, D, i, (Bandwidth, 64000, 1280000, 200, Log7hg), (Latency, 0,200, 100, Linear, hé),

S — ok

5,(1 LOADSTEP 2 LOADSTEP 2 * + 5 * 400 /)]x-,1280000,%5,0, hjp, ()
A — %

5,(1 LOADSTEP 2 LOADSTEP 2 * + 5 * 400 /)]K;,640000,hf54,20,h30,(A)
B — %

5,(1 LOADSTEP 2 LOADSTEP 2 * + 5 * 400 /)]K;7640000,h’f54730,h§5,(A,B)
C—x:

5,(1 LOADSTEP 2 LOADSTEP 2 * + 5 * 400 /)]K;7240000,h§9,457h§87(A7B,C)
D— C: MACk,,[ROUTE REPLY, {,240000,45, (A,B,C)]
C—B: MACk,,[ROUTE REPLY, {,240000,45, (A,B,C)]
B—A: MACk,,[ROUTE REPLY, ,240000,45, (A,B,C)]
A—S: MACk, [ROUTE REPLY,,240000,45, (A, B,C)]

Figure 3: Secured QoS-Guided Route Discovery

provided by Hu et al [18] and Dahill et al [36]. In our analy-
sis, we consider only the additional risks posed by QoS-Guided
Route Discovery, and not those caused by the underlying ad hoc
network routing protocol. In particular, because QoS-Guided
Route Discovery can be implemented with only one additional
packet type (ESTABLISH FLOW), and because the authentication
of that packet can generally be performed in the same way as
for ROUTE REQUESTS, we ignore general routing attacks such as
corrupted node lists, wormhole attacks, routing message replay,
spoofed signaling, fabricated routing messages, routing loop for-
mation, and the participation of unauthorized nodes. We focus
instead on attacks specific to the QoS-Guided Route Discovery,
and in particular on unauthorized modification of QoS parameters.

An attacker can attempt to be chosen as the preferred route
by claiming more resources on paths that traverse the attacker.
However, with SQoS, an attacker is unable to claim significantly
higher resources than the path to the attacker; at most, an attacker
can claim the maximum amount of resources that are authenticated
with the step authenticator the attacker received. For example, if
an attacker receives an authenticator for bandwidth that can repre-
sent between 123.65 and 128 kbps, and the actual bandwidth up to
the attacker is 125 kbps, the attacker can at most claim slightly less
than 128 kbps. As a result, the discovered resource level will be
the same as the actual resource level, plus or minus the granularity
of a step size, except that any resource limits at the attacker will not
be discovered. Cryptographic mechanisms generally cannot force
the correct measurement of resources limits at the attacker, since
the attacker can intentionally measure resource limits incorrectly.

Multiple colluding attackers can forward metric authentication
data from the first attacker on the path to the last attacker on the
path, thus allowing the attackers to pretend that there is a direct
link with infinite resources between each pair of attackers. In gen-
eral, an attacker can tunnel packets between nodes controlled by
the attacker; SQoS does not defend against this attack.

5.2 SECURING QOS-GUIDED ROUTE
DISCOVERY USING PUBLIC KEY
CRYPTOGRAPHY

Awerbuch et al [1] proposed a secure routing protocol that uses
digital signatures at each hop to ensure that the proper metrics are

113

added. In their scheme, each node signs their address and up-
dates the metrics. Since the metric of each link is known to all
nodes, any node can verify the correct path metric, assuming that
all nodes on the path are correctly listed. In their protocol, a node
forwards any ROUTE REQUEST packet reflecting a better path than
the previously forwarded REQUEST packets, which, as described
in Section 4.3, can in worst case result in an exponential number
of ROUTE REPLY packets in response to a single Route Discovery.
We chose to use Awerbuch’s scheme in our comparison because
it is the only published secure ad hoc network routing protocol
that finds paths based on metrics other than hop count and latency,
and is thus readily modified to fit the requirements of QoS-Guided
Route Discovery.

We modify Awerbuch et al’s scheme to create PK-Squared,
our public-key based secure QoS-Guided Route Discovery mech-
anism. In PK-Squared, each node signs the current QoS metric up
to and including itself. That is, each node specifies the cumulative
metric for the subpath ending at that node. When forwarding a
ROUTE REQUEST, the node retains the signatures of all the other
hops on the path, and appends its own signature. Since our QoS
metrics are monotone, each node must claim a metric not better
than the previous node’s signature. A REQUEST not satisfying
this property can be discarded as malicious.

When a node using PK-Squared receives a ROUTE REQUEST, it
checks to see if it has previously heard a REQUEST from this Route
Discovery with a better path. If it has, then it silently discards
the REQUEST; otherwise, it authenticates each signature on the
REQUEST (possibly consulting a cache to speed up the verification
of the initiator’s signature). It then reduces the QoS parameters in
the REQUEST, signs the resulting REQUEST, and forwards it.

5.3 COMPARISON METHODOLOGY

To compare the efficiency of SQoS and PK-Squared, we timed
the operation of the primitives of SQoS and PK-Squared on a
Mobile Pentium 4 CPU running at 1.6 GHz, a processor commonly
used in current laptop computers. Our PK-Squared operations
were based on 1024-bit RSA, as implemented in the Crypto++
library. For a hash function, SQoS uses the Rijndael block ci-
pher [11] in the construction standardized by ISO/IEC 10118-2,
which was originally proposed by Matyas, Meyer, and Oseas [26].
For our purposes, this construction results in the hash function

Table 1: CPU Costs of SQoS Compared to PK-Squared on a 1.6 GHz Pentium 4

SQoS PK-Squared

Initiate Route Discovery 885 us 7669 us
Signature Overhead (bytes) 230 128
Accept initiator signature 645 us 401 us
Reject invalid signature 34 us 401 us
Additional cost to accept /-hop REQUEST 573 us (£—1)- 401 us
Packet forward after verification Ous 7669 us
Bytes added at each step 4 132
Number of packets per discovery 5n 2n/2+1
Hop-Drop Attack Helps Attacker No Yes
Metric granularity 300 Steps Infinite

H(x) = Eg(x) ®x, where K is a well-known key. For timing this
construction, we built our hash function implementation on top of
Gladman’s implementation of Rijndael [13].

5.4 RESULTS

In SQoS, a node initiating a Route Discovery must sign a
REQUEST using its MW-chain. This signature requires 172 hash
functions on average, or 322 us on the 1.6 GHz Pentium 4, and the
signature is 230 bytes. We also need to compute hash chains total-
ing at most 300 steps, which takes up to 563 us, for a total initial-
ization cost of 885 us. By comparison, the single RSA signature
required by PK-Squared takes 7669 us, and takes 128 bytes.

Each node needs to verify a Route Discovery only once, af-
ter which it can cache the hash of the immutable fields of the
REQUEST, which makes verification much faster. To verify the
initiator’s signature in In SQoS, this verification takes 645 us on
average, whereas in PK-Squared, this verification is a 1024-bit
RSA verify, which takes 401 us. However, rejecting an invalid sig-
nature in SQoS is much faster, since SQoS uses 19 separate hash
chains, any one of which can be used to discard the signature. As
aresult, an invalid signature takes only 34 us (amortized) to reject.
In particular, since a correctly verified hash chain element from an
invalid signature can be cached, it speeds up the verification of the
next valid signature, and represents a cost which would otherwise
be a part of the next successful verification.

Once the first REQUEST from a Route Discovery has been veri-
fied, SQoS requires only that a receiver verify up to 300 hash chain
steps at a cost of up to 563 us, and compute the evaluation func-
tion, which we assume has bounded cost of 10us. By contrast,
PK-Squared requires the node verify each signature on the path,
for a total cost of (£ — 1) -401 us when the path is of length .

When actually forwarding a REQUEST, a node using SQoS has
already followed all hash chains to their anchors, and thus can use
that precomputation to generate the authenticators at no cost. By
comparison, when forwarding a REQUEST in PK-Squared, a node
must perform an RSA signature, at a cost of 7669 us. Furthermore,
a node forwarding a REQUEST using SQoS increases the packet
length by only the length of an address, which in IPv4 is 4 bytes. In
PK-Squared, the node must add its address and its signature, which
together are 132 bytes, in addition to any QoS metric values which

114

it has changed, which are needed to verify previous signatures. For
example, if a node using PK-Squared increases path latency from
20 ms to 30 ms, it must place the new 30 ms time in the packet, but
must also include the old 20 ms value, which is needed to verify
previous signatures.

One type of attack against ad hoc network routing protocols is
the hop drop attack, in which a forwarding node removes a pre-
vious node from the source route. In SQoS, this hop drop attack
is not prevented (although our scheme can be used together with
a protocol like Ariadne, which does prevent hop drop), but it does
not allow the attacker to claim a better metric than it has. In par-
ticular, since the metric authenticators are not tied to the node list,
dropping nodes from the node list does not affect what metrics the
attacker can claim. By contrast, in PK-Squared, an attacker that
drops a hop, particularly a slow hop, can claim significantly better
routes than a legitimate node that does not drop a hop.

One benefit that the public key scheme does have, however, is
that it is capable of authenticating unlimited metric granularity,
whereas our scheme allows only 300 steps. However, we believe
that 300 steps provides a good tradeoff between performance and
step granularity; in our example, we bounded bandwidth to within
1.5% and latency to within 2 ms. Table 1 summarizes our results.
Figure 4 shows the worst-case total CPU time used for a Route
Discovery in a network where the topology is the topology de-
scribed in Section 4.3 and illustrated in Figure 1.

In this evaluation, we have focused on the cost of the mech-
anism rather than on the performance of a system using such a
mechanism. The main reason for not performing this evaluation is
that determining the available resources at a node remains an open
research challenge. In addition, Route Discovery is relatively rare,
and we can impose a limit on the number of Route Discoveries ini-
tiated by any node during any time period, which limits the impact
of the additional overhead within each ROUTE REQUEST packet.
Finally, the additional overhead is quite small. In particular, for
each QoS metric, we add a step count, step division (log or linear)
and authenticator, which is at most 12 bytes. The postfix evalua-
tion function language can be represented very compactly; if each
operation or small literal (under 200) can be represented in one
byte, then the evaluation function from Section 4.4 can be repre-
sented within 13 bytes.

SQoS
= = PK-Squared

10° F .

Y

Total CPU Time (seconds)
AN

.
15 20 25 30 35
Number of Intermediate Nodes (n)

10 . .
10

40

Figure 4: Worst-case CPU usage per Route Discovery in the
ad hoc network shown in Figure 1 with n total intermediate
nodes between Route Discovery initiator and target (logarith-
mic scale)

6. RELATED WORK

A number of distance-vector routing protocols have been pro-
posed that use hash chains to prevent malicious nodes from re-
ducing the advertised distance to the destination. For example,
SEAD proposes the use of a hash chain to secure metric and se-
quence number [17], and SAODV proposes the use of a hash
chain in each packet with the anchor authenticated using a pub-
lic key signature [39]. In this paper, we extend this approach to
metrics other than a hop count. We also introduce a methodol-
ogy for securely choosing a route other than the minimum-latency
route in an on-line fashion. In particular, our approach does not
require a node to buffer REQUESTS, since an attacker may at-
tempt to exploit this buffering to overflow the memory of legiti-
mate nodes.

Awerbuch et al [1] propose a security-centric routing which
uses digital signatures at each hop to ensure the proper metrics
are added. Their scheme enforces the correct metric computa-
tion at each hop, since the sender provides these metrics in the
ROUTE REQUEST. Our scheme does not require that local metrics
be known by other nodes, and does not require the overhead of a
digital signature at each hop. Their scheme also does not attempt
to prevent an exponential number of packets from being sent in
response to a single Route Discovery.

7. CONCLUSION

In this paper, we have presented and evaluated SQoS, an ef-
ficient secure on-demand QoS-Guided Route Discovery protocol
that can be applied to protocols such as DSR [20], AODV [31],
Ariadne [18], ARAN [36], and SAODV [39]. SQoS is efficient,
relying entirely on symmetric cryptography, as symmetric crypto-
graphic primitives are three to four orders of magnitude faster (in
computation time) than asymmetric cryptography.

Since most QoS metrics of interest are monotone, SQoS is de-
signed to prevent an attacker from arbitrarily reducing metrics that
should be monotonically increasing, and to prevent an attacker

115

from arbitrarily increasing a metric that should be monotonically
decreasing. As a result, an attacker cannot claim a metric sig-
nificantly better than it has heard. Without tamper-proof secure
hardware, it is impractical to force each node to claim a cor-
rect metric value for arbitrary metrics, but using our technique in
SQoS, an attacker cannot gain an arbitrary advantage over non-
attacking routes. In addition, SQoS uses a novel, generally appli-
cable technique that combines ROUTE REQUEST authentication
and rate-limiting. Finally, SQoS provides the initiator of a Route
Discovery with control over which ROUTE REQUEST packets to
forward at each node, thus preventing a potentially exponential
number of REQUESTSs from being forwarded in response to a sin-
gle Route Discovery as is possible in other protocols; this control
increases efficiency and prevents an opportunity for a Denial-of-
Service (DoS) attack based on using the routing protocol to easily
consume all network resources.

ACKNOWLEDGEMENTS

This research was supported in part by the U.S. Department of
Homeland Security (DHS) and the National Science Foundation
(NSF) under grant ANI-0335241, by the NSF under grants
CCR-0209204, CNS-0325971, and CNS-0338856, and by a gift
from Schlumberger. The views and conclusions are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either express or implied, of
DHS, NSF, Schlumberger, UC Berkeley, Rice University, or the
U.S. Government or any of its agencies.

8. REFERENCES

[1] Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru, and
Herbert Rubens. An On-Demand Secure Routing Protocol
Resilient to Byzantine Failures. In ACM Workshop on
Wireless Security (WiSe), September 2002.

John Bellardo and Stefan Savage. 802.11 Denial-of-Service
Attacks: Real Vulnerabilities and Practical Solutions. In
Proceedings of the USENIX Security Symposium, pages 15—
27, August 2003.

Bhargav Bellur and Richard G. Ogier. A Reliable, Efficient
Topology Broadcast Protocol for Dynamic Networks. In
Proceedings of the Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies
(INFOCOM ’99), pages 178—186, March 1999.

Bob Braden, David Clark, and Scott Shenker. Integrated
Services in the Internet Architecture: an Overview.
RFC 1633, June 1994.

Josh Broch, David B. Johnson, and David A. Maltz. The
Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks. Internet-Draft, draft-ietf-manet-dsr-03.
txt, October 1999. Work in progress. Available from
http://www.monarch.cs.rice.edu/internet-drafts/
draft-ietf-manet-dsr-03.txt.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun
Hu, and Jorjeta Jetcheva. A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols. In
Proceedings of the Fourth Annual International Conference
on Mobile Computing and Networking (MobiCom 1998),
pages 85-97, October 1998.

(2]

(3]

[4]

(5]

(6]

(7]

[8

—

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

Derya H. Cansever, Arnold M. Michelson, and Allen H.
Levesque. Quality of Service Support in Mobile Ad-Hoc IP
Networks. In Proceedings of the Military Communications
Conference (MILCOM 1999), pages 30-34, October 1999.

Shigang Chen and K. Nahrstedt. Distributed Quality-of-
Service Routing in Ad Hoc Networks. IEEE Journal
on Selected Areas in Communications, 17(8):1488-1505,
August 1999.

Don Coppersmith and Markus Jakobsson. Almost Optimal
Hash Sequence Traversal. In Proceedings of the Fourth
Conference on Financial Cryptography (FC ’02), Lecture
Notes in Computer Science, 2002.

Douglas S. J. De Couto, Daniel Aguayo, John Bicket,
and Robert Morris. A High-Throughput Path Metric for
Multi-Hop Wireless Routing. In Proceedings of the Ninth
Annual International Conference on Mobile Computing and
Networking (MobiCom 2003), pages 134-146, September
2003.

Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael,
March 1999.

Shimon Even, Oded Goldreich, and Silvio Micali. On-
line/off-line digital signatures. In Advances in Cryptology
— CRYPTO ’89, edited by Gilles Brassard, pages 263-277.
Springer-Verlag, 1989. Lecture Notes in Computer Science
Volume 435.

Brian Gladman. Cryptography Technology:
Implementations of AES (Rijndael) in C/C++ and
Assembler, June 2002. Available at http://fp.gladman.
plus.com/cryptography technology/rijndael/.

Neil M. Haller. The S/KEY One-Time Password System.
In Proceedings of the 1994 Symposium on Network and
Distributed Systems Security (NDSS '94), pages 151-157,
February 1994.

Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Efficient
Security Mechanisms for Routing Protocols. In Proceedings
of the 2003 Symposium on Network and Distributed Systems
Security (NDSS ’03), February 2003.

Yih-Chun Hu and David B. Johnson. Implicit Source Routing
in On-Demand Ad Hoc Network Routing. In Proceedings of
the Second Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2001), pages 1-10, October 2001.

Yih-Chun Hu, David B. Johnson, and Adrian Perrig. SEAD:
Secure Efficient Distance Vector Routing in Mobile Wireless
Ad Hoc Networks. In Fourth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA °02), pages
3—13, June 2002.

Yih-Chun Hu, Adrian Perrig, and David B. Johnson.
Ariadne: A Secure On-Demand Routing Protocol for
Ad Hoc Networks. In Proceedings of the Eighth Annual
International Conference on Mobile Computing and
Networking (MobiCom 2002), pages 12-23, September
2002.

Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz
Mielczarek, and Mikael Degermark. Scenario-based
Performance Analysis of Routing Protocols for Mobile
Ad-hoc Networks. In Proceedings of the Fifth Annual
International Conference on Mobile Computing and

116

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Networking (MobiCom 1999), pages 195-206, August 1999.

David B. Johnson. Routing in Ad Hoc Networks of Mobile
Hosts. In Proceedings of the IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’94), pages
158-163, December 1994.

David B. Johnson and David A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In Mobile
Computing, edited by Tomasz Imielinski and Hank Korth,
chapter 5, pages 153-181. Kluwer Academic Publishers,
1996.

David B. Johnson, David A. Maltz, and Yih-Chun Hu.
The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks. Internet-Draft, draft-ietf-manet-dsr-09.
txt, April 2003. Work in progress.

Leslie Lamport. Password authentication with insecure com-
munication. Communications of the ACM, 24(11):770-772,
November 1981.

Seoung-Bum Lee and Andrew T. Campbell. INSIGNIA:
In-Band Signaling Support for QoS in Mobile Ad Hoc
Networks. In Proceedings of the 5th International Workshop
on Mobile Multimedia Communications (MoMuC’98),
October 1998.

David A. Maltz. Resource Management in Multi-hop Ad Hoc
Networks. Technical Report CMU-CS-00-150, School of
Computer Science, Carnegie Mellon University, 1999.

Stephen Matyas, Carl Meyer, and Jonathan Oseas.
Generating Strong One-Way Functions with Cryptographic
Algorithm. IBM Technical Disclosure Bulletin, 27:5658—
5659, 1985.

Ralph C. Merkle. A digital signature based on a conventional
encryption function. In Advances in Cryptology — CRYPTO
’87, edited by Carl Pomerance, pages 369-378, Berlin, 1987.
Springer-Verlag. Lecture Notes in Computer Science Volume
293.

Ralph C. Merkle. A certified digital signature. In Advances in
Cryptology — CRYPTO ’89, edited by Gilles Brassard, pages
218-238, Berlin, 1989. Springer-Verlag. Lecture Notes in
Computer Science Volume 435.

George C. Necula and Peter Lee. Safe Kernel Extensions
Without Run-Time Checking. In Proceedings of the
2nd Symposium on Operating Systems Design and
Implementation (OSDI °96), pages 229-243, October
1996.

Kathleen Nichols, Steven Blake, Fred Baker, and David L.
Black. Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers. RFC 2474, December
1998.

Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-
Demand Distance Vector Routing. In Proceedings of the
Second IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA’99), pages 90-100, February 1999.

Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das.
Quality of Service for Ad hoc On-Demand Distance Vector
Routing. Internet-Draft, draft - ietf-manet-aodvgos-00.
txt, July 2000. Work in progress.

[33]

(34]

[35]

[36]

Amir Qayyum, Laurent Viennot, and Anis Laouiti.
Multipoint Relaying: An Efficient Technique for flooding
in Mobile Wireless Networks. Technical Report Research
Report RR-3898, INRIA, February 2000.

Leonid Reyzin and Natan Reyzin. Better than Biba: Short
One-Time Signatures with Fast Signing and Verifying.
In Information Security and Privacy — 7th Australasian
Conference (ACSIP 2002), edited by Jennifer Seberry, num-
ber 2384 in Lecture Notes in Computer Science. Springer-
Verlag, July 2002.

Pankaj Rohatgi. A Compact and Fast Hybrid Signature
Scheme for Multicast Packet Authentication. In
Proceedings of the 6th ACM Conference on Computer
and Communications Security (CCS ’99), pages 93-100,
November 1999.

Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine,

117

(37]

[38]

[39]

Elizabeth Royer, and Clay Shields. A Secure Routing
Protocol for Ad hoc Networks. In Proceedings of the
10th IEEE International Conference on Network Protocols
(ICNP ’02), November 2002.

David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall, and Gary J. Minden. A
Survey of Active Network Research. IEEE Communications
Magazine, 35(1):80-86, January 1997.

Hannan Xiao, W.K.G. Seah, A. Lo, and K.C. Chua. A
Flexible Quality of Service Model for Mobile Ad-Hoc
Networks. In Proceedings of the IEEE 51st Vehicular
Technology Conference (VT C Spring 2000), volume 1, pages
445-449, May 2000.

Manel Guerrero Zapata and N. Asokan. Securing Ad Hoc
Routing Protocols. In Proceedings of the ACM Workshop on
Wireless Security (WiSe), pages 1-10, September 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF00440042004a0020005000720069006e00740069006e00670020004f007000740069006f006e0073>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

