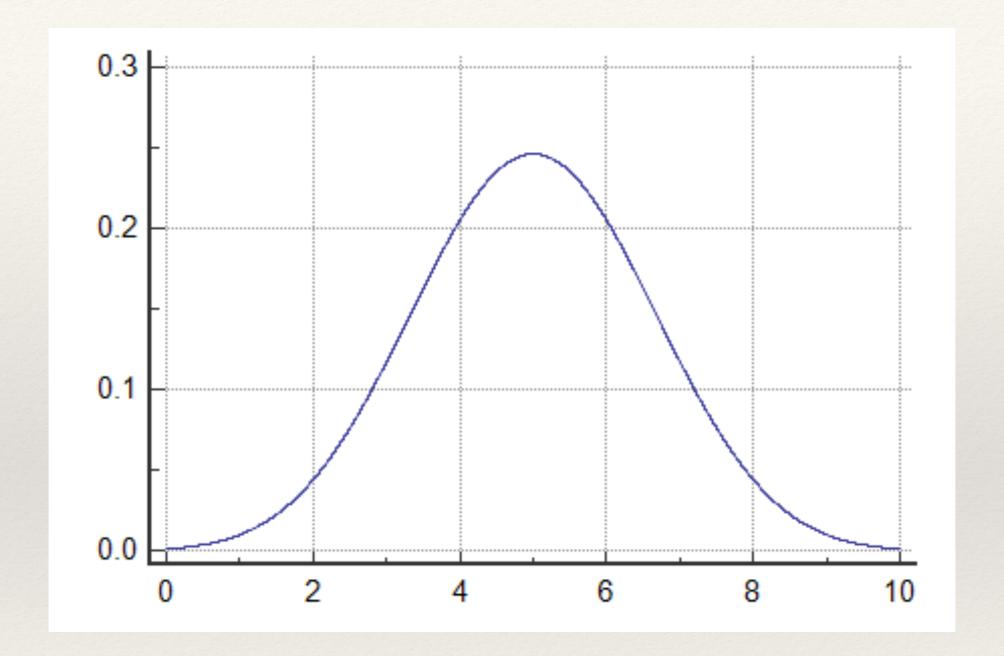
COMP 480/580 Probabilistic Algorithms and Data Structures

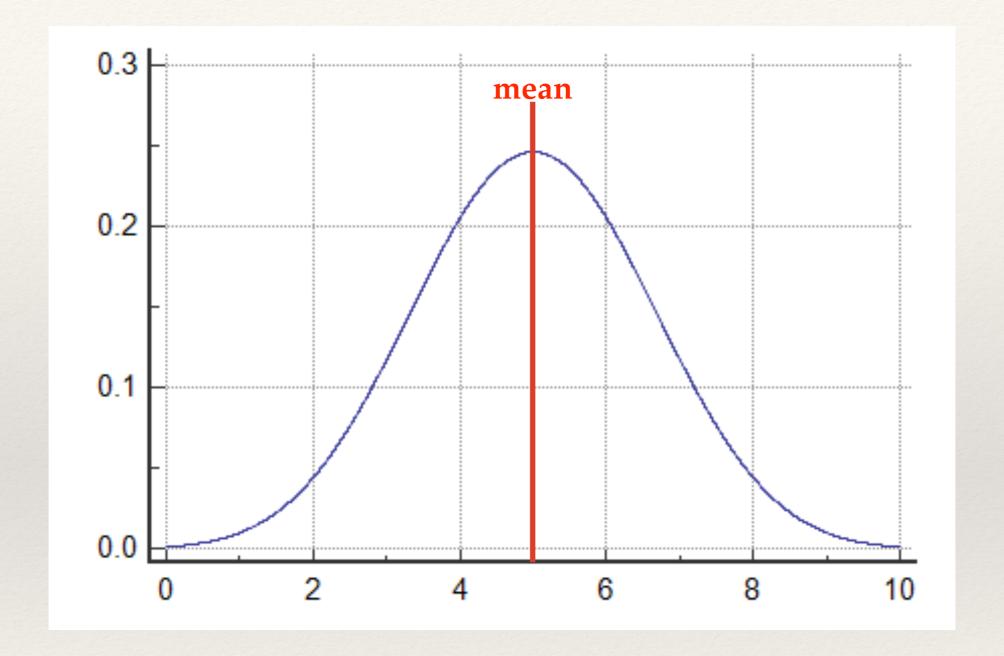
Tail Bounds

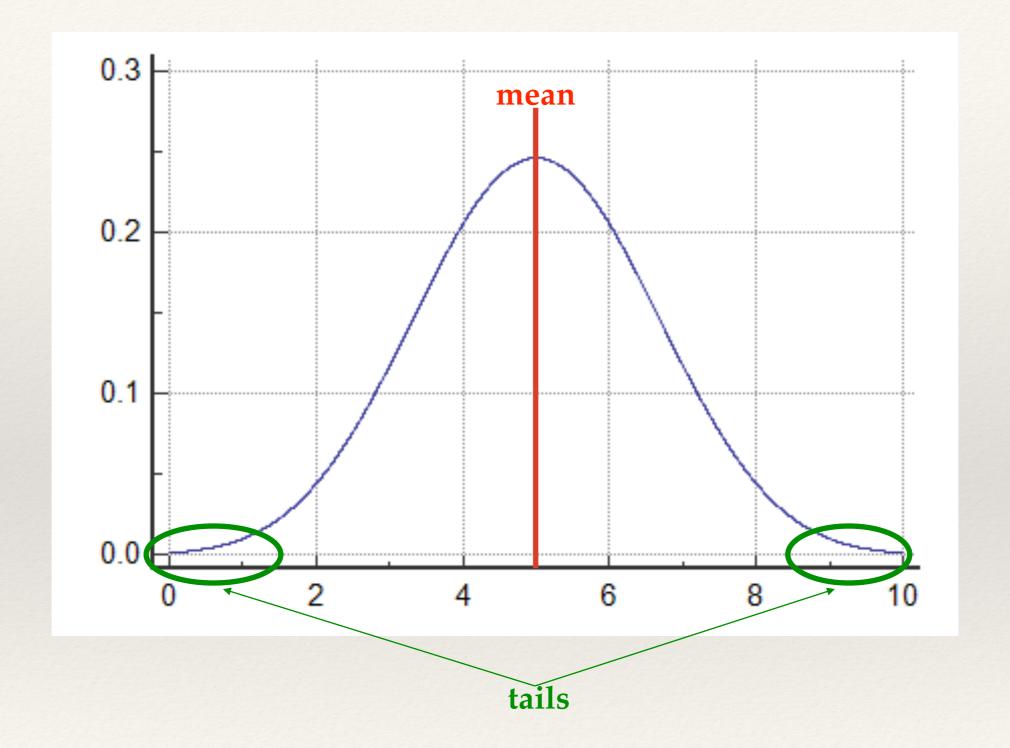
Luay Nakhleh Computer Science Rice University

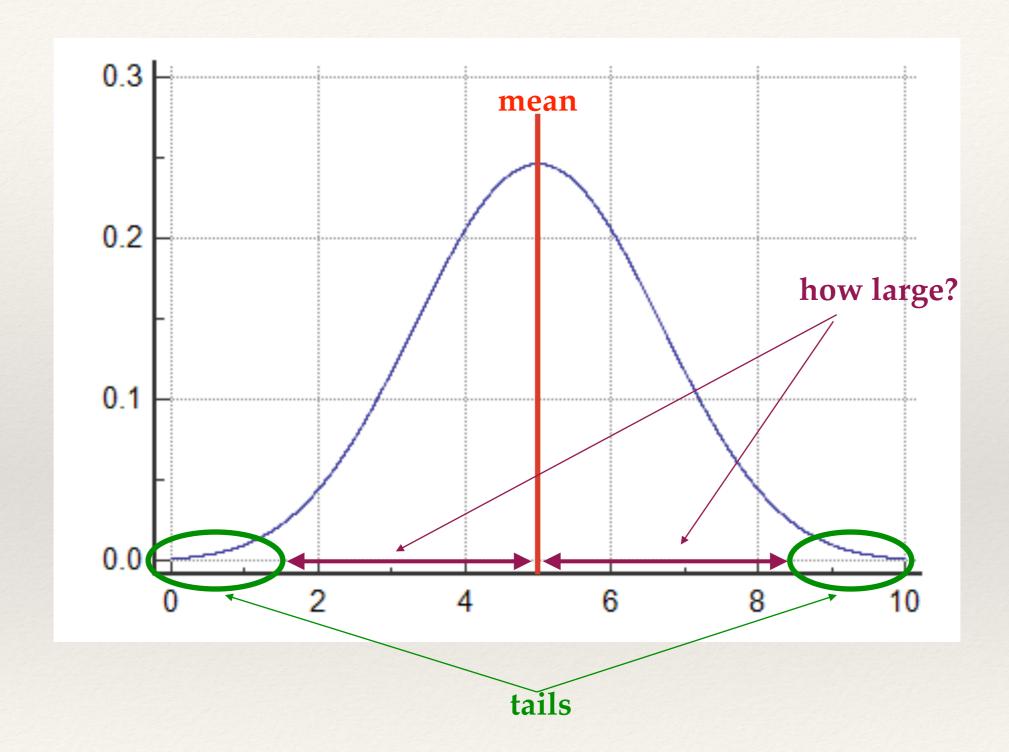
What Is This About?

- *How large can a random variable get?
- * In other words, how far can a value that the random variable takes be from its mean?









Why Do We Care?

- * Example:
 - * X is the number of steps an algorithm takes.
 - * $\mathbb{E}(X)$ is the average-case running-time of the algorithm.
 - * Can the algorithm, on average, take 2*n* steps, but on some inputs take, say, 500*n*² steps?

Recall

- * A <u>random variable</u> is a function from the sample space of an experiment/process to the set of real numbers.
- * A coin is tossed twice. Let X(t) be the random variable that equals the number of heads that appear when t is the outcome. Then X(t) takes on the following values:
 - * X(HH)=2
 - *X(HT)=X(TH)=1
 - X(TT)=0

Expected Value

* The <u>expected value</u> (also called the expectation or mean) of a (discrete) random variable *X* on the sample space *S* is

$$\mathbb{E}(X) = \sum_{s \in S} P(s) \cdot X(s)$$

(the same as
$$\mathbb{E}(X) = \sum_{x} x \cdot P(X = x)$$
)

Linearity of Expectations

* If X_i , i=1,2,...,n, are random variables on S, and if a and b are real numbers, then

$$\mathbb{E}(X_1 + X_2 + \dots + X_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n)$$
$$\mathbb{E}(aX_i + b) = a\mathbb{E}(X_i) + b$$

Variance

* Let X be a random variable on a sample space S. The variance of X, denoted by V(X), is

$$V(X) = \mathbb{E}((X - E(X))^2)$$

(and equals
$$V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$
)

Bienayme's Formula

* If X_i , i=1,2,...,n, are pairwise independent random variables on S, then

$$V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i)$$

Markov's Inequality

* Let X be a random variable that takes only nonnegative values. Then, for every real number a>0 we have

$$P(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Markov's Inequality

* Let *X* be a random variable that takes only nonnegative values. Then, for every real number *a*>0 we have

$$P(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

How large a value can X take?

Markov's Inequality: Proof

Markov's Inequality: An Example

* Assume the expected time it takes Algorithm A to traverse a graph with *n* nodes is 2*n*. What is the probability that the algorithm takes more than 10 times that? * For distributions encountered in practice, Markov's inequality gives a very loose bound.

*Why?

Chebyshev's Inequality

* Let X be a random variable. For every real number r>0,

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

Chebyshev's Inequality

* Let X be a random variable. For every real number r>0,

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

How likely is it that RV X takes a value that's at least distance a from its expected value?

Chebyshev's Inequality: Proof

Markov vs Chebyshev

$$P(X \ge k\mu) \le \frac{1}{k}$$

VS

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

* Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower bound on the percentage of values that fall between 60 and 100 (exclusively) in this distribution?

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

* Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower bound on the percentage of values that fall between 60 and 100 (exclusively) in this distribution?

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

$$\mathbb{E}(X) = 80 \qquad \qquad V = 100 \qquad \qquad r = 20$$

* Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower bound on the percentage of values that fall between 60 and 100 (exclusively) in this distribution?

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

$$\mathbb{E}(X) = 80 \qquad V = 100 \qquad r = 20$$

$$p(|X(s) - 80| \ge 20) \le \frac{1}{4}$$

* Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower bound on the percentage of values that fall between 60 and 100 (exclusively) in this distribution?

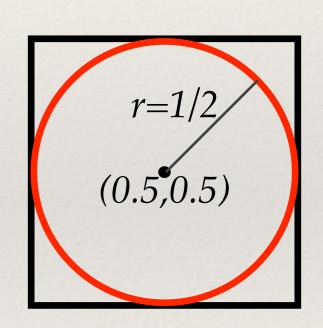
$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{V(X)}{a^2}$$

$$\mathbb{E}(X) = 80 \qquad V = 100 \qquad r = 20$$

$$p(|X(s) - 80| \ge 20) \le \frac{1}{4}$$

 \Rightarrow lower bound is 75%

- * Here's a simple algorithm for estimating π :
 - * Throw darts at a square whose area is 1, inside which there's a circle whose radius is 1/2.
 - * The probability that it lands inside the circle equals the ratio of the circle area to the square area ($\pi/4$). Therefore, calculate the proportion of times that the dart landed inside the circle and multiply it by 4.



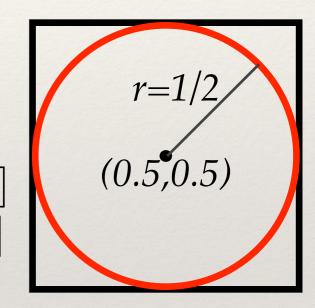
Algorithm 1: Monte Carlo π Estimation.

Input: $n \in \mathbb{N}$.

Output: Estimate $\hat{\pi}$ of π .

for i = 1 to n do

 $a \leftarrow random(0,1); // \text{ random number in } [0,1]$ $b \leftarrow random(0,1); // \text{ random number in } [0,1]$ $X_i \leftarrow 0;$



if
$$\sqrt{(a-0.5)^2+(b-0.5)^2} \leq 0.5$$
 then $X_i \leftarrow 1;$ // the dart landed inside/on the circle

$$\hat{\pi} \leftarrow 4 \cdot (\sum_{i=1}^{n} X_i)/n;$$

return $\hat{\pi}$;

* Let *X_i* be the random variable that denotes whether the *i*-th dart landed inside the circle (1 if it did, and 0 otherwise).

* Then,
$$\hat{\pi}(n) = 4 \frac{\sum_{i=1}^{n} X_i}{n}$$

* Let *X_i* be the random variable that denotes whether the *i*-th dart landed inside the circle (1 if it did, and 0 otherwise).

* Then,
$$\hat{\pi}(n) = 4 \frac{\sum_{i=1}^{n} X_i}{n}$$
 $\mathbb{E}(X_i) = \frac{\pi}{4} 1 + (1 - \frac{\pi}{4})0 = \frac{\pi}{4}$ $V(X_i) = \frac{\pi}{4} (1 - \frac{\pi}{4})$

- * Let *X_i* be the random variable that denotes whether the *i*-th dart landed inside the circle (1 if it did, and 0 otherwise).
- * Then, $\hat{\pi}(n) = 4 \frac{\sum_{i=1}^{n} X_i}{n}$ $\mathbb{E}(X_i) = \frac{\pi}{4} 1 + (1 \frac{\pi}{4})0 = \frac{\pi}{4}$ $V(X_i) = \frac{\pi}{4} (1 \frac{\pi}{4})$ $\mathbb{E}(\hat{\pi}) = \mathbb{E}\left(\frac{4}{n} \sum_{i=1}^{n} X_i\right) = \frac{4}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \pi$

* Let *X_i* be the random variable that denotes whether the *i*-th dart landed inside the circle (1 if it did, and 0 otherwise).

* Then,
$$\hat{\pi}(n) = 4 \frac{\sum_{i=1}^{n} X_i}{n}$$
 $\mathbb{E}(X_i) = \frac{\pi}{4} 1 + (1 - \frac{\pi}{4})0 = \frac{\pi}{4}$ $V(X_i) = \frac{\pi}{4} (1 - \frac{\pi}{4})$ $\mathbb{E}(\hat{\pi}) = \mathbb{E}\left(\frac{4}{n} \sum_{i=1}^{n} X_i\right) = \frac{4}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \pi$

$$V(\hat{\pi}) = V(\frac{4}{n} \sum_{i=1}^{n} X_i) = \frac{16}{n^2} \sum_{i=1}^{n} V(X_i) = \frac{\pi(4-\pi)}{n}$$

* The question of interest is: How big should *n* be for us to get a good estimate?

- * In a probabilistic setting, the question can be asked as:
 - * What should the value of n be so that the estimation error of π is within δ with probability at least ϵ ?
 - * (of course, we want δ to be very small and ϵ to be as close to 1 as possible. For example, δ =0.001 and ϵ =0.95)

* In other words, we are interested in the value of *n* that yields

$$p(|\hat{\pi}(n) - \pi| < \delta) > \varepsilon$$

(equivalently,
$$p(|\hat{\pi}(n) - \pi| \ge \delta) \le 1 - \varepsilon$$
)

* For δ =0.001 and ϵ =0.95, we seek n such that

$$p(|\hat{\pi}(n) - \pi| \ge 0.001) \le 0.05$$

* For δ =0.001 and ϵ =0.95, we seek n such that

$$p(|\hat{\pi}(n) - \pi| \ge 0.001) \le 0.05$$
 Chebyshev's inequality: $\hat{\pi}(n) \ \mathbb{E}(\hat{\pi})$ a V/a^2

* For δ =0.001 and ϵ =0.95, we seek n such that

$$p(|\hat{\pi}(n) - \pi| \ge 0.001) \le 0.05$$

Chebyshev's inequality: $\hat{\pi}(n) \mathbb{E}(\hat{\pi})$ a

$$V(\hat{\pi}(n)) = \frac{\pi(4-\pi)}{n}$$

* For δ =0.001 and ϵ =0.95, we seek *n* such that

$$p(|\hat{\pi}(n) - \pi| \ge 0.001) \le 0.05$$

Chebyshev's inequality: $\hat{\pi}(n) \mathbb{E}(\hat{\pi})$ a

$$\hat{\pi}(n) \mathbb{E}(\hat{\pi})$$

$$V(\hat{\pi}(n)) = \frac{\pi(4-\pi)}{n}$$

So, we would like *n* such that

$$\frac{\pi(4-\pi)}{n(0.001)^2} \le 0.05$$

$$\frac{\pi(4-\pi)}{n(0.001)^2} \le 0.05$$

$$\frac{\pi(4-\pi)}{n(0.001)^2} \le 0.05$$

$$\pi(4-\pi) \le 4$$

$$\frac{\pi(4-\pi)}{n(0.001)^2} \le 0.05$$

$$\pi(4-\pi) \le 4$$

$$\Rightarrow \frac{\pi(4-\pi)}{n(0.001)^2} \le \frac{4}{n(0.001)^2} \le 0.05$$

$$\frac{\pi(4-\pi)}{n(0.001)^2} \le 0.05$$

$$\pi(4-\pi) \le 4$$

$$\Rightarrow \frac{\pi(4-\pi)}{n(0.001)^2} \le \frac{4}{n(0.001)^2} \le 0.05$$

$$\Rightarrow n \ge 80,000,000$$

A Corollary of Chebyshev's Inequality

* Let $X_1, X_2, ..., X_n$ be <u>independent</u> random variables with

$$\mathbb{E}(X_i) = \mu_i$$

and

$$V(X_i) = \sigma_i^2$$

Then, for any a>0:

$$P\left(\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}\right| \ge a\right) \le \frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{a^{2}}$$

The Weak Law of Large Numbers

* Let $X_1, X_2, ..., X_n$ be <u>independently and</u> <u>identically distributed (i.i.d.)</u> random variables, where the (unknown) expected value μ is the same for all variables (that is, $\mathbb{E}(X_i) = \mu$) and their variance is finite. Then, for any $\varepsilon > 0$, we have

$$P\left(\left|\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right|\geq\varepsilon\right)\xrightarrow{n\to\infty}0$$

Chernoff Bounds

- * The question is: Can we do better (give tighter bounds) than Markov's and Chebyshev's inequalities if we know something about the distribution of the random variables?
- * The answer is YES, and there are many forms of Chernoff bounds depending on the assumptions.

Chernoff Bound

- * Let $X=X_1+X_2+...+X_n$, where all the X_i 's are independent and X_i -Bernoulli(p_i).
- * Let $\mu = \mathbb{E}(X) = \sum_{i=1}^{n} p_i$. * Then, for $\delta > 0$,

$$P(|X - \mu| \ge \delta\mu) \le 2e^{-\frac{\delta^2\mu}{2+\delta}}$$

Chernoff Bound

* The bound can also be written as

$$P(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2\mu}{2+\delta}}$$
 for $\delta > 0$

$$P(X \le (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu}{2}}$$
 for $1 > \delta > 0$

Proof of $P(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2 \mu}{2+\delta}}$

Lemma 1 Given random variable $Y \sim Bernoulli(p)$, we have for all $s \in \mathbb{R}$

$$\mathbb{E}(e^{sY}) \le e^{p(e^s - 1)}.$$

Lemma 2 Let X_1, \ldots, X_n be independent random variables, and $X = \sum_{i=1}^n X_i$. Then, for $s \in \mathbb{R}$

$$\mathbb{E}(e^{sX}) = \prod_{i=1}^{n} \mathbb{E}(e^{sX_i}).$$

Lemma 3 Let X_1, \ldots, X_n be independent random variables (Bernoulli distributed), and $X = \sum_{i=1}^n X_i$ and $\mathbb{E}(X) = \sum_{i=1}^n p_i = \mu$. Then, for $s \in \mathbb{R}$

$$\mathbb{E}(e^{sX}) \le e^{(e^s - 1)\mu}.$$

To establish the result, use Markov's inequality on the rhs of $P(X \ge a) = P(e^{sX} \ge e^{sa})$, the inequality $\ln(1+x) \ge 2x/(2+x)$ for x > 0 and $\det a = (1+\delta)\mu$ and $\det a = \ln(1+\delta)$ (why?)

Tossing a Fair Coin

- * A fair coin is tossed 200 times. How likely is it to observe at least 150 heads?
 - * Markov: ≤ 0.6666
 - * Chebyshev: ≤ 0.02
 - * Chernoff: ≤ 0.017

Another Chernoff Bound

- * Let $X=X_1+X_2+...+X_n$, where all the X_i 's are independent and $a \le X_i \le b$ for all i.
- * Let $\mu = \mathbb{E}(X)$.
- * Then, for $\delta > 0$,

$$P(X \ge (1+\delta)\mu) \le e^{-\frac{2\delta^2\mu^2}{n(b-a)^2}}$$

$$P(X \le (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu^2}{n(b-a)^2}}$$

Questions?