
COMP 480/580 — Probabilistic Algorithms and Data Structure Oct 10, 2024

Lecture 13

Lecturer: Anshumali S. Scribe By: Dongwei L.(dl82), Lingxi Z.(lz88), Rex L.(rl105), Thanasis H.(th81)

1 Motivation

1.1 Example Problem: Large-scale Search

What’s Large-scale search problem?
1. First, we have a query image.
2. Second, we want to search a giant database(internet) to find similar images.
3. Third, we want the search is fast and (mostly) accurate.

What makes Large-scale search challenging?
1. Memory constraints: Large datasets, such as billions of images, cannot fit into the main
memory of a single machine. Storing data on disk is too slow for real-time search operations,
and memory limitations make it difficult to load all data at once.
2. Huge database size: Platforms like Facebook handle massive datasets. Managing and
searching through such a vast number of data points is challenging.
3. High-dimensional data: Images and other multimedia content are often represented as
high-dimensional vectors. High-dimensional data is difficult to search efficiently, both due to
its dimensionality (which causes distances between points to become less meaningful) and the
computational cost of performing nearest-neighbor search in high-dimensional spaces.

1.2 Solution: Hash Algorithm

Exact searches can theoretically be executed in constant time O(1) using an ideal hash function.
However, in reality, when searching for images across the internet, the metadata of an image
can vary from site to site, even if the image itself remains identical. This poses a challenge
for hash functions, which are highly sensitive to small changes—any slight modification in the
input can produce a completely different hash value.
Moreover, it’s impossible to design a deterministic hash function that generates the same hash
values for near-duplicates while ensuring distinct values for non-duplicates.
Instead, we can consider probabilistic hash functions, which are more forgiving when dealing
with near-duplicates. These functions generate hash values that are highly likely, though not
guaranteed, to be the same for near-duplicate inputs. For instance, universal hash functions
can be designed to behave probabilistically, increasing the likelihood of similar hash values for
similar inputs.

1.2.1 Near Neighbour Search

Given a (relatively fixed) collection C and a similarity (or distance) metric sim. For any query
q, compute:

x∗ = argmin
{x∈C}

sim(q, x)

13-1

Figure 1: Example of space partition method

Settings:
1. O(nD) per query, where n is size of C and D is dimensions.
2. Querying is a very frequent operations.
3. n and D are large.

1.2.2 Space Partitioning Method

1. What is space partitioning?
Divide a space into non-overlapping regions to manage and query spatial data. Partition the
space and organize database into trees (Figure 1).
2. However, in high dimensions, space partitioning is not at all efficient. Even D > 10, leads
to near exhaustive.

Motivating Problem: Search Engines
Task: Correcting a user typed query in real-time, for example, we mistakenly typed ”eraser-
pen” instead of ”eraser pen”.
One solution: take a database D of statistically significant query strings observed in the past.
(around 50 million). Given a new user typed query q, find the closest string s ∈ D (in some
distance) to q and return associated results.
Latency: 50 million distance computation per query. A cheap distance function takes 400s or
7min on a reasonable CPU. If you used edit distance, it will be hours.
Latency limit is roughly < 20ms.

Can we do better?
1. Exact solution: No.
2. Approximation: Yes, we can do it much faster!

13-2

2 Locality Sensitive Hashing

2.1 Definition

Locality Sensitive Hashing (LSH) is a technique used to efficiently find similar items in large
datasets. The key idea is to hash items in such a way that similar items are more likely to
end up in the same bucket. This allows us to quickly identify similar items without comparing
every pair directly.

Formally, a hash function h is considered locality sensitive if it satisfies the following
property for a given similarity measure:

- For two items x and y: - If x and y are similar, then h(x) = h(y) with high probability. -
If x and y are not similar, then h(x) = h(y) with low probability.

By using such hash functions, we can group similar items together and perform approximate
nearest neighbor searches efficiently.

2.2 Notion of Similarity: Jaccard

Before we can apply LSH, we need a way to measure the similarity between items. One common
measure for sets is the Jaccard Similarity.

The Jaccard Similarity between two sets A and B is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

This measures how similar two sets are by comparing the size of their intersection to the
size of their union.

Example: Let’s consider two strings and convert them into sets of 3-grams (all contiguous
sequences of 3 characters). For instance:

- ”amazon” → {ama,maz, azo, zon} - ”amazing” → {ama,maz, azi, zin, ing}
Now, we compute the Jaccard Similarity between these two sets:

J(amazon, amazing) =
| {ama, maz, azo, zon} ∩ {ama, maz, azi, zin, ing} |
| {ama, maz, azo, zon} ∪ {ama, maz, azi, zin, ing} |

=
| {ama, maz} |

| {ama, maz, azo, zon, azi, zin, ing} |

=
2

7

This calculation shows that ”amazon” and ”amazing” share two 3-grams out of a total of
seven unique 3-grams between them, resulting in a Jaccard Similarity of 2

7 .

2.3 Random Sampling Using Universal Hashing

Universal hashing involves selecting a hash function at random from a family of hash functions
with certain mathematical properties. This randomness helps ensure that the hash function
behaves well for any input data.

In the context of LSH:
- We use universal hashing to randomly sample elements from sets. - By applying the same

hash function to different sets, we ensure consistent sampling. - This random sampling reduces
the amount of data we need to process while preserving the ability to estimate similarity.

13-3

Procedure: 1. Choose a universal hash function h. 2. Define a threshold t. 3. For each set
S, select elements where h(e) ≤ t. 4. Compare the sampled subsets to estimate similarity.

Benefits: - Reduces computational overhead by considering only a subset of elements. -
Maintains a probabilistic guarantee on the estimation accuracy. - Scales well to large datasets.

2.3.1 Example of Random Sampling

Suppose we have two sets:
- S1 = {ama,maz, azo, zon} - S2 = {ama,maz, azi, zin, ing}
We apply a universal hash function h to each element and select those with hash values

below a certain threshold.
- For S1, sampled elements might be {ama}. - For S2, sampled elements might be {ama}.
By comparing the sampled subsets, we can estimate the Jaccard Similarity between S1 and

S2 without processing all elements.

2.3.2 Advantages over Full Comparison

- Efficiency: Reduces the amount of data to process. - Scalability: Suitable for large datasets
where full comparisons are impractical. - Simplicity: Easier to implement and parallelize.

2.3.3 Application in LSH

Using random sampling with universal hashing in LSH allows us to:
- Hash similar items into the same buckets with high probability. - Quickly retrieve candidate

items for similarity comparison. - Perform approximate nearest neighbor searches efficiently.
By combining these techniques, we can build systems that handle large-scale similarity

search tasks effectively.

3 Minwise Hashing

3.1 Definition

The Minhash method, invented by Andrei Broder, is commonly applied to large-scale clustering
problems, such as grouping documents based on the similarity of their word sets. For instance,
given a document with a string ”amazon.” we can split it into a set of substrings,

S = {“ama”, “maz”, “azo”, “zon”, “on.”}

Using a random hash function, introduced in the last section, Ui : Strings → N , which maps
a string to a random number. To be noted, we can generate this function easily with Mur-
murHash3 by setting a unique random seed i. By hashing each substring in the set S, we obtain
a set of numbers

Ui(S) = {Ui(“ama”), Ui(“maz”), Ui(“azo”), Ui(“zon”), Ui(“on.”)}

and assume that the value of the hash function be

Ui(S) = {153, 283, 505, 128, 292}

The Minhash value for document S is the minimum value from the set Ui(S), which, in this
example, would be 128. Importantly, we can generate a new Minhash function by simply
choosing a different seed for the random hash function.

13-4

3.2 Properties

Minhash can be applied to any set, as it maps a set to a value within the range [0, R], where
R can be large enough. For any two sets S1 and S2, we have

Pr(Minhash(S1) = Minhash(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

,

which indicates that the probability of a hash collision between two sets is exactly equal to
their Jaccard similarity. In other words, if two sets are very similar and have a high collision
rate, corresponding to a high Jaccard similarity, the probability of their Minhash values being
the same is also high.
Proof. Under randomness of hash function U , for any set, the min() process acts as a random
permutation, meaning each substring has an equal probability of having the minimum hash
value. Now, consider that e has the minimum hash value in the set {S1 ∪S2}. We assume that
e ∈ S1 (the proof will be similar if e ∈ S2), then the Minhash values for S1 and S2 will be the
same if and only if e ∈ S2, that is e ∈ {S1 ∩ S2}. Therefore, we have

Pr(Minhash(S1) = Minhash(S2)) = Pr(e ∈ {S1 ∩ S2})

Since the permutation is random, we have

Pr(e ∈ {S1 ∩ S2}) =
|S1 ∩ S2|
|S1 ∪ S2|

The property is proven,

Pr(Minhash (S1) = Minhash (S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

3.3 Estimate Similarity Efficiently

3.3.1 Estimating Jaccard Similarity with Minhash

Given 50 minhash functions of sets S1 and S2, we can estimate the Jaccard similarity J as
follows:

Ĵ =
#{i : hi(S1) = hi(S2)}

50

where hi represents the i-th minhash function. The fraction of minhash functions for which the
hashes are equal gives an estimate of the Jaccard similarity between the two sets.

3.3.2 Variance of the Estimate

The variance of the estimate is given by:

Var(Ĵ) =
J(1− J)

50

For example, when J = 0.8, the variance is approximately:

Var =
0.8× (1− 0.8)

50
= 0.05

Thus, the variance is quite small, indicating a reliable estimate.

13-5

3.4 Parity of MinHash

3.4.1 Using Parity of Minhash for Estimation

We can also use the parity of minhash values to estimate the similarity between two sets.
Specifically, the probability that the parities of the minhashes are equal is:

P (parity(h(S1)) = parity(h(S2))) = J + (1− J)× 0.5

This method gives an alternative way to estimate the similarity, though with different proba-
bilistic behavior compared to direct minhash comparison.

13-6

