
COMP 480/580 — Probabilistic Algorithms and Data Structure Oct 08,2024

Lecture 11: Stream estimation

Lecturer: Anshumali Shrivastava

Scribe By: Alex Bock (ab215), Natalie Kokroko (nk62), Jaywon Koo (jk125)

1 Count sketch

1.1 Motivation

Imagine a scenario in which we have access to a data stream, which reports individual data
points separated by time intervals. Thus, as a timestep t, we receive an observation it and
have observed all i1, . . . , it−1. Using a data stream, how can we keep count of the number of
instances of values of i we observe? For example, in a stream of URLs, how can we know the
number of times we’ve observed a specific URL?

We have already seen count-min sketch, which estimates this using storage space sublinear
in the number of unique values observed (n). Count-min sketch achieves this by selecting d
independent hash functions from a 2-universal family, each of which map to k << n addresses
in memory. For an input i, count-min sketch updates a matrix C at index j, hj(i) for all j ∈ [d].
The algorithm is then able to estimate the number of occurrences of i by choosing the smallest
index j, h(j), incurring some uncertainty due to collisions.

However, count-min sketch is designed specifically for incremental positive counts (+1
with every observation). Let’s generalize the notion of counting by assuming that associated
with each it is some weight ∆t. Instead of adding 1 with each observation, we add its weight.
A key observation here is that weights may be negative. Count-min sketch chooses the smallest
count with which a requested token is associated, since noise introduced by collisions only
accumulates in the positive direction. However, we need to account for noise accumulating in
both the positive and negative directions.

1.2 Algorithm

Count sketch employs a uniformly sampled set of independent, 2-universal hash functions
h1, . . . , hd as well as a separate set of hash functions s1, . . . , sd, the sign functions, where
si maps tokens to {−1,+1} independently of how hi maps tokens to [k]. We define two opera-
tions:

1. Update: Given a token i and a weight ∆i, for all j ∈ [d], we increment Cj,hj(i) by sj(i)·∆i

2. Estimate: Given a token i, find all counts to which i maps, or all Cj,h(j(i) for all j ∈ [d],
and report the median of these counts.

Since the update and estimation procedures rely on hash-based indexing, we are faced
with the possibility of collisions, meaning that there is some uncertainty in any counter’s ability
to measure the actual number of observations of a token i; it includes increments for tokens
that clash with i as well. (This error is formalized below.) However, the fact that our sign
functions s1, . . . , sd map to {−1,+1} uniformly allows us to treat collision-induced noise as
zero, in expectation (employed below). For all d counts associated with some value i, we choose
the median, expecting the median count to be closest to zero and to include minimum noise.

11: Stream estimation-1

1.3 Analysis

The following analyses1 apply to some choice of h ∈ {h1, . . . , hd} and s ∈ {s1, . . . , sd} —
effectively, d = 1. The count matrix C in this section is therefore a single-row matrix.

1.3.1 How good is our estimator?

Let ci be the actual count of some token i. With a hash function h, the best estimate our sketch
can provide is:

ĉi = s(i)Ci

Let 1x=y be an indicator random variable indicating equality of x and y. Our estimate
expands to

ĉi = s(i)
∑

s(j) cj 1h(j)=h(i)

= s(i)2 ci 1h(i)=h(i) +
∑
j ̸=i

s(i) s(j) cj 1h(j)=h(i)

= ci +
∑
j ̸=i

s(i) s(j) cj 1h(j)=h(i)

We achieve the last simplification because:

• As s(i) ∈ {−1,+1}, s(i)2 = 1

• Clearly, 1h(i)=h(i) = 1

This expression of ĉi is essentially the true count of i plus an error term. The error term
here represents noise introduced by tokens j that collide with i, i.e. for which h(i) = h(j). Our
expected estimated count is therefore:

E[ĉi] = ci +E

∑
j ̸=i

s(i) s(j) cj 1h(j)=h(i)


Given that s distributes uniformly and independently over {−1,+1}, E[s(i)] = 0. Hence

we eliminate the expected error term, yielding:

E[ĉi] = ci

We conclude that we have a reasonable estimator.

1Adapted in part from (1). See (3) for an original introduction and further analysis.

11: Stream estimation-2

1.3.2 Finding an error bound

Our next goal is to find a bound on the size of the error term. We can express this bound
relative to the variance of ĉi, which is defined as follows:

Var[ĉi] = E[(ĉi −E[ĉi])
2]

= E[(s(i)Ci − ci)
2]

= E[(ci +
∑
j ̸=i

s(i) s(j) cj 1h(j)=h(i) − ci)
2]

= E[(
∑
j ̸=i

s(i) s(j) cj 1h(j)=h(i))
2]

= E[s(i)2 ·
∑
j ̸=i

∑
k ̸=i

s(j) s(k)1h(j)=h(i) 1h(k)=h(i)]

= E[
∑
j ̸=i

∑
k ̸=i

s(j) s(k) cj ck 1h(j)=h(i) 1h(k)=h(i)]

= E[
∑
l ̸=i

s(l)2 c2l 1h(l)=h(i)] +E[
∑
j ̸=i

∑
k ̸=j

s(j) s(k) cj ck 1h(j)=h(i) 1h(k)=h(i)]

In the right-hand term, we use the same intuition as before and conclude that since
E[s(j)] = 0, we can eliminate the right-hand term. But in the left-hand term, we see that
E[s(l)2] = 1. We are left with:

Var[ĉi] = E[
∑
l ̸=i

c2l 1h(l)=h(i)]

An indicator function like 1 yields only 0 or 1, and so clearly the square of an indicator
function’s output is equal to the output; thus, we can drop the exponent on the indicator as
above.

Given that h is a universal hash function, we can see that E[1h(l)=h(i)] = 1/k for a hash
table of size k; the probability of any two tokens colliding is essentially random chance. Using
this, and observing that the summation over squares of elements of c is by definition the squared
l2 norm of c, we have:

Var[ĉi] =
1

k
E[
∑
l ̸=i

c2l] =
1

k

∑
l ̸=i

c2l =
∥c∥22
k

With a simple expression of variance, we can now bound our error with respect to the
standard deviation σ, by definition the square root of the variance. We use Chebyshev’s in-
equality2:

P[|ĉi −E[ĉi]| > ϵσ] = P[|ĉi −E[ĉi]| > ϵ · ∥c∥2√
k
] <

1

ϵ2

Choosing ϵ =
√
3 gives us P[|ĉi −E[ĉi]| >

√
3
k∥c∥2] <

1
3 .

2ϵ is normally k, but we use ϵ to avoid overloading k, which already stands for hash table size.

11: Stream estimation-3

2 Count distinct

2.1 Idea

The Count Distinct problem is a challenge in streaming algorithms where it estimates the
number of unique elements in a stream using sublinear memory. As data streams continuously
grow, it becomes impractical to store all the observed elements, necessitating approximate
methods to track distinct items efficiently. This problem finds applications in many areas,
including database optimization and web analytics, where systems must estimate the number
of unique elements without requiring vast amounts of memory.

2.2 Problem Definition

Let’s assume there is a data stream S = (i1, i2, ..., it), where each element it is observed at
time t. The goal is to estimate the number of distinct elements, D(S), seen in the stream.
In large scale data scenarios, it is hard to achieve this estimation using significantly less space
than would be required to store all unique elements. This is a non-trivial problem as memory
constraints often prevent storing the complete set of distinct elements. Also, it is often only
possible to process each element once without revisiting earlier data in streaming applications.
Therefore, the algorithm must balance the trade-off between accuracy and memory efficiency,
ensuring the estimate remains reasonably accurate while minimizing space usage.

2.3 Algorithm

The HyperLogLog algorithm (4) is one of the most widely used algorithms to address the
Count Distinct problem. It hashes each element to a uniformly distributed value and tracks the
position of the leftmost 1-bit in the binary representation of the hash, which provides insight
into the rarity of the element. The algorithm uses multiple registers, each corresponding to
a portion of the hash space, to record the maximum number of leading zeros observed for
elements that map to it. After processing the stream, the harmonic mean of the register values
is calculated, and bias correction is applied to estimate the cardinality. The algorithm achieves
sublinear space complexity, requiring only O(m) memory, where m is the number of registers,
making it highly efficient for large-scale data streams.

3 Norm estimation on streams

3.1 Introduction

Norm estimation on data streams is a fundamental problem in streaming algorithms, where
the goal is to estimate various norms of a vector or matrix with limited memory. There are
different types of norms like (e.g., ℓ1, ℓ2, ℓp norms).(2)

This is particularly useful in applications such as network traffic monitoring, frequency
analysis, and anomaly detection.

Consider a vector y = (y1, y2, . . . , yn), where each yi represents the frequency of an item
in a data stream. The goal is to efficiently estimate different norms of y using minimal memory.

The p-norm of y is given by:

∥y∥p =

(
n∑

i=1

|yi|p
)1/p

11: Stream estimation-4

Some streaming norms include:

• ℓ1 norm: ∥y∥1 =
∑n

i=1 |yi|

• ℓ2 norm: ∥y∥2 =
(∑n

i=1 y
2
i

)1/2
• ℓ∞ norm: ∥y∥∞ = maxi |yi|

The main challenge is that y cannot be stored in full due to memory constraints. Instead,
updates are seen as pairs (i, δ), where each update modifies yi by δ. The task is to estimate
these norms accurately while minimizing memory usage and computational overhead.

3.2 Applications of Norm Estimation

Norm estimation in data streams is widely used in:

• Frequency moment estimation: Estimating moments Fp =
∑n

i=1 |yi|p, which is closely
related to the ℓp norm.

• Network traffic monitoring: Estimating heavy hitters and anomaly detection by track-
ing frequency distributions. (5)

References

[1] Paul Beame. More heavy hitters: Count sketch, 2014. URL: https://courses.cs.

washington.edu/courses/cse522/14sp/lectures/lect05.pdf.

[2] Amit Chakrabarti. Data stream algorithms, 2024. Accessed: October 14, 2024. URL:
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf.

[3] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 2004. Original introduction of count sketch. URL:
https://www.sciencedirect.com/science/article/pii/S0304397503004006.

[4] Cheng-Wei Hu. Hyperloglog: A simple but powerful algorithm for data scientists,
2021. Accessed: October 15, 2024. URL: https://towardsdatascience.com/

hyperloglog-a-simple-but-powerful-algorithm-for-data-scientists-aed50fe47869.

[5] S. Muthukrishnan. Data streams: Algorithms an applications, 2024. Accessed: Octo-
ber 15, 2024. URL: https://www.cs.princeton.edu/courses/archive/spr04/cos598B/
bib/Muthu-Survey.pdf.

11: Stream estimation-5

https://courses.cs.washington.edu/courses/cse522/14sp/lectures/lect05.pdf
https://courses.cs.washington.edu/courses/cse522/14sp/lectures/lect05.pdf
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
https://www.sciencedirect.com/science/article/pii/S0304397503004006
https://towardsdatascience.com/hyperloglog-a-simple-but-powerful-algorithm-for-data-scientists-aed50fe47869
https://towardsdatascience.com/hyperloglog-a-simple-but-powerful-algorithm-for-data-scientists-aed50fe47869
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/Muthu-Survey.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/Muthu-Survey.pdf

	Count sketch
	Motivation
	Algorithm
	Analysis
	How good is our estimator?
	Finding an error bound

	Count distinct
	Idea
	Problem Definition
	Algorithm

	Norm estimation on streams
	Introduction
	Applications of Norm Estimation

