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1 Markov Chains

A Markov chain is a stochastic process describing a series of transitions between states be-
longing to a space Ω where the probability of transitioning to any future state depends only
on the current state, not on any prior states (memoryless property). A Markov chain can be
represented as a sequence of random variables X1, X2 ... Xi... such that the probability of
moving to state Xi+1 depends only on Xi:

P (Si+1 = s | Si = st, St−1 = st−1, . . . , S0 = s0) = P (St+1 = s | St = st)

For each time i, πi is defined as the distribution of random variable Xi

1.0.1 Defining the State Space Ω

The manner in which the state space Ω is defined is crucial. A sequence of stochastic events is
not considered a Markov process if more than just the current state is needed to determine the
next state. For example, consider a process where we model the weather as Ω = sunny, cloudy,
rainy. Suppose that today’s weather depends not only on the current weather but also on the
weather from the previous day. For instance:

• If it was rainy yesterday and today is cloudy, there might be a higher chance of rain
tomorrow.

• However, if it was sunny yesterday and today is cloudy, there might be a higher chance
of sun tomorrow.

In this case, the transition to the next state depends on both the current state and the prior
state. This ”two-step” dependency breaks the memoryless property. To convert this into a
Markov chain, we can expand the state space to include pairs of consecutive days instead of
just the current day’s weather. By doing so, each ”state” would represent two consecutive days
of weather. This redefined state space allows the system to now satisfy the Markov property, as
the probability of transitioning to the next ”state” (pair of weather conditions) depends only
on the current two-day state, making it a valid Markov chain.
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2 Transition Matrix

The transition matrix of a Markov chain, P, is a |Ω|×|Ω| matrix, where each entry Pij represents
the probability of transitioning from a specific current state i to another state j.

Pij = P (Xt+1 = j | Xt = i)

P is inherent to the stochastic process defined by the Markov chain at any point in time.
Given the distribution of Xt, πt, we can imagine taking one step forward in time to get the
distribution at time t+1 by computing:

πt+1 = πt ∗ P

Or, given the distribution at time t = 0, π0, repeated multiplication by P will yield the
distribution at time t:

πt = π0 ∗ Pt

2.0.1 Simulating a Markov Process

We can, naively, simulate a Markov process by beginning with an initial distribution π0 and
repeatedly multiplying by the transition matrix P. However, each matrix multiplication is an
O(n2) process, where n is the size of the state space, making sampling from the distribution πt
expensive. However, if we are given some way to sample from πt, it is possible to sample from
πt+1 without calculating it:

• First, we sample from πt to get some Xi.

• Now, sample state j through a weighted random draw using row Pi of the transition
matrix. This will be Xt+1.

• This j is a sample from πt+1 without having first calculated πt+1

Now simulating the Markov chain transition is only an O(n) process.

3 Eigenvalues and Eigenvectors in Markov Chains

Ideally, repeated multiplications by P will converge to some stable distribution π such that π
does not have to be recomputed at every time step. Understanding the long-term behavior of
Markov chains, such as the convergence and stability, requires a closer look at the properties of
the transition matrix.

• An eigenvalue of a matrix M is a λ such that Mx = λx. That is, multiplying the vector
x by m will scale it by the constant λ.

• An eigenvector of a matrix M is the corresponding vector x that is scaled constantly
through multiplications by M.

• An n*n matrix M has n eigenvalues and eigenvectors, though not necessarily distinct.
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3.1 Transition Matrix and Eigenvalues

To reiterate, for a Markov chain, the transition matrix P represents the probabilities of moving
from one state to another in one step. P is a square matrix where:

• Each entry Pij represents the probability of transitioning from state i to state j.

• Each row sums to 1:
∑

j Pij = 1, meaning P is a stochastic matrix.

An important property of a transition matrix P for a finite, irreducible, and aperiodic
Markov chain is that it has an eigenvalue of λ = 1, which we call the dominant eigenvalue.
This eigenvalue plays a central role in determining the long-term behavior of the chain.

3.2 The Dominant Eigenvalue and Stationary Distribution

The largest eigenvalue of the transition matrix P is λ = 1, and it has a corresponding eigenvector
π that represents the stationary distribution. The stationary distribution satisfies:

πP = π

This means that once the Markov chain reaches the stationary distribution, applying the tran-
sition matrix P leaves the distribution unchanged. Thus, π is the eigenvector associated with
the eigenvalue λ = 1 and represents the steady-state or equilibrium behavior of the chain.

If we normalize π such that its elements sum to 1, each element πi represents the long-term
proportion of time that the Markov chain spends in state i.

3.3 Convergence to the Stationary Distribution

For an irreducible and aperiodic Markov chain, the transition matrix P has additional eigen-
values λ2, λ3, . . . , λn that satisfy:

|λi| < 1 for i = 2, 3, . . . , n

As the Markov chain evolves over time (with matrix powers P t), the terms associated with these
smaller eigenvalues decay exponentially due to |λi| < 1. Only the eigenvalue λ = 1 (associated
with the stationary distribution) persists in the limit as t → ∞, allowing the chain to converge
to the stationary distribution π.

This convergence property can be expressed mathematically as:

lim
t→∞

P t =


π
π
...
π


where each row converges to the stationary distribution π.

3.3.1 Convergence of Matrix Powers

Consider an n × n matrix P with an orthonormal eigenbasis {e1, e2, . . . , en} and eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. We can express the power P t acting on an initial vector

∑n
i=1 aiei as:[

n∑
i=1

aiei

]
P t = λt

1

[
a1e1 +

n∑
i=2

(
λi

λ1

)t

aiei

]
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Since λi
λ1

≤ 1 for i ≥ 2, the terms
(

λi
λ1

)t
decay exponentially as t → ∞. Thus, only the

term involving λ1 remains significant in the limit, leading to convergence toward the stationary
distribution.

3.4 Interpretation of Eigenvalues and Eigenvectors in Terms of System Be-
havior

Each eigenvalue λi and its associated eigenvector vi of the transition matrix P provides insight
into the behavior of the Markov chain:

• The eigenvalue λ = 1 and its eigenvector π (stationary distribution) describe the equilib-
rium state.

• Eigenvalues with |λi| < 1 represent transient behaviors that decay over time. The rate of
decay for each component depends on the magnitude of λi.

• If the Markov chain starts from an initial distribution that is not the stationary distribu-
tion, the contributions from these transient modes (associated with λi < 1) will diminish
as t → ∞.

4 Irreducibility and Aperiodicity of a Markov Chain

If a Markov chain is irreducible and aperiodic, this means that it has a unique stationary
distribution. A unique stationary distribution in a Markov chain is a probability distribution
over the states that remains constant over time once it is reached. This means that if the chain
starts in this distribution, it will stay in the same distribution after each transition. It must
satisfy the following condition: π = π ∗ P (where π is described as the eigenvector of P for
λ = 1 ).

4.1 Irreducible

A Markov chain is said to be irreducible if every state in the chain is reachable from every other
state within a finite number of steps. Through this, it is ensured that the chain has no isolated
states, and the graph visualization would be able to connect all nodes.

∀x, y ∈ Ω ∃t | P t(x, y) > 0

4.2 Aperiodic

A Markov chain is said to be aperiodic if there is no cyclical pattern in its state transitions.
Basically, this prevents the chain from being trapped in a predictable cycle. If the chain was
oscillating between states in a predictable pattern, then it would prevent convergence to that
stationary distribution. Another way to describe aperiodic is to say that the greatest common
divisor of the lengths of all possible return paths to a state should be 1.

∀x, y : GCD
{
t | P t(x, y) = 0

}
= 1

When a Markov chain is both irreducible and aperiodic, it has a unique stationary distri-
bution that the chain will converge to over time. To recap, a stationary distribution for our

1-4



Markov chain basically meant that no matter where you start, as time goes on, the proba-
bility of being in each state settles into a predictable pattern. This helps us understand the
steady-state behavior of the Markov chain.

5 Summary Notes

In this lecture, we explored the fundamental properties and behaviors of Markov chains, with a
focus on the concepts of irreducibility, aperiodicity, and stationary distribution. Here’s a quick
recap:

• Markov Chains: A Markov chain is a stochastic process with the memoryless property,
meaning the probability of transitioning to the next state depends only on the current
state, not on the history.

• Transition Matrix: The transition matrix P describes the probability of moving from
one state to another in a single step. This matrix is central to understanding the chain’s
dynamics.

• Stationary Distribution: A stationary distribution π is a probability distribution over
states that remains constant over time. It represents the long-term probabilities of the
chain being in each state.

• Irreducibility: A Markov chain is irreducible if every state is reachable from every other
state. This property ensures that no state is isolated and that the system can freely move
between all states.

• Aperiodicity: A Markov chain is aperiodic if it does not follow a predictable, cyclic
pattern in its transitions. This property prevents the chain from oscillating between
states in a fixed cycle, allowing it to converge smoothly to the stationary distribution.

• Convergence: When a Markov chain is both irreducible and aperiodic, it is guaran-
teed to converge to a unique stationary distribution. This means that, over time, the
chain’s behavior stabilizes, and the long-term probabilities of being in each state become
predictable and independent of the starting state.

In summary, irreducibility and aperiodicity are critical properties that ensure the Markov
chain has a unique stationary distribution. This steady-state behavior is essential for analyzing
complex systems where long-term patterns and stability are important, such as in modeling
random processes, ranking algorithms, and other various applications.
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