
COMP 480/580 — Probabilistic Algorithms and Data Structure Oct 24, 2024

Lecture 16

Lecturer: Anshumali Shrivastava Scribe By: Vaibav Malpeddi (vm56), Prashithaa Balaji (pb55)

1 What is Sampling?

Sampling is a statistical technique where a subset of data is selected from a larger population or dataset.
Sampling enables the estimation of population characteristics or parameters when it’s impractical to measure
or analyze the entire population. By studying a sample, we can draw inferences about the larger group,
reducing the cost, time, and effort required for data analysis.

There are two methods which are:

• Transformation-Based Sampling

• Rejection Sampling

1.1 Transformation-Based Sampling

This method uses mathematical transformations to convert samples from a simpler distribution (e.g., uni-
form) into samples from a target distribution. This approach includes techniques like the inverse transform
method, which generates samples by applying the inverse of a cumulative distribution function (CDF) to
uniform samples.

1.2 Rejection Sampling

This technique is used when we have a target distribution that is hard to sample from directly. It relies on a
proposal distribution that ”envelopes” the target distribution, using random samples from the proposal and
accepting or rejecting them based on a condition. This method is especially useful in Monte Carlo methods
and situations requiring approximate sampling.

2 Anomaly Detection

Anomaly detection is the process of examining specific data points and detecting rare occurrences that seem
suspicious because they’re different from the established pattern of behaviors. Anomaly detection identifies
rare events or outliers by measuring deviation from typical patterns. Kernel Density Estimation (KDE)
often aids in computing anomaly scores.

2.1 Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE) is used to estimate the probability density function of a random variable.
KDE helps identify anomalies by modeling the underlying distribution of data and determining how likely a
new observation is, given this estimated distribution.

2.2 Example: Two-Dimensional Phases

Let’s consider an example in a two-dimensional space in a game format, where data is continuously visualized.
Imagine this space represents, for instance, the price of a house and the number of rooms it has. Typically,
values fall within a certain range in this area, but then you notice an outlier—a point with a high number
of rooms that doesn’t align with the typical price patterns.

1



2 4 6 8 10

2

4

6

8

10

Rate

Price

Red - represents the anomaly

In anomaly detection, we are observing something surprising enough—something abnormal that may indicate
an attack.

Idea We have data in an x-y plane with two features, f1 and f2, in a two-dimensional space. For example,
this could represent the relationship between the price of a house and the number of rooms. If we observe
a point outside the typical range on this plane, we need to double-check it. Can we detect this point? In
many cases, we don’t get to see the geometric picture directly but still aim to detect whether there is an
anomaly or not.

Anomaly(q) =
n

∑

i=1

Sim(xi, q) (1)

Similarity of query q with every element

If q is less than discriminator, then flag is raised.

2.3 Anomaly Detection for Networks

Anomaly detection is essential for identifying unusual patterns, such as Distributed Denial of Service (DDoS)
attacks, which can disrupt network services. This method aims to improve the efficiency of detecting network
anomalies through random sampling, with the condition that as long as links remain within a threshold, the
method should be effective.

To increase efficiency, we use a random sampling method. As long as it reaches the threshold, the detection is
considered efficient or effective. Locality Sensitive Hashing (LSH) can also be viewed as an efficient approach.

Address Buckets

xiLocality
Sensitive

Hash
110

Count

+1

Unbiased
Estimators

Figure 1: Diagram representing Locality Sensitive Hashing and unbiased estimators.

2



2.3.1 Locality Sensitive Hashing (LSH) in Anomaly Detection

LSH can be applied by ensuring that the probability of similar items hashing to the same bucket is propor-
tional to their similarity. Specifically, using Jaccard similarity:

Pr(h(x) = h(y)) ≈ sim(x, y)

where sim(x, y) represents the Jaccard similarity between x and y.

This indicates a similarity function, possibly using cosine or sine similarity to measure the resemblance
between two data points.

Pr(Cxi is retrieved∣q) = (1 −C (1 − sim(xi, q))
k
)

2

2.4 Monatomic Query and Likelihood of Retrieval in Anomaly Detection

This approach involves a monatomic query where K is the parameter in the hash table. The likelihood of
retrieval is computed by evaluating the similarity to every other algorithm, then taking a 50% probability
based on an address in a hash table. This process incorporates parameters like similarity and the number of
elements.

Let wi = sim(xi, q) represent the similarity between xi and the query q.

The sample weights wi are defined using a similarity measure, which may help in determining the likelihood
of an item being an anomaly.

2.5 Weighted Sampling and Proportion Calculation

Let Xi = {x1, x2, . . . , x10} represent a set of data points, and let ω10 = {ω
2
1 , ω

2
2 , . . . , ω

2
10} denote the query

weights for these points, where ∑ωi = 1.

The weight we sampled∝ (1 − (1 − sim(xi, q))
k
)

2

Here, ∝ represents the proportional relationship in sampling weights.

The below represents the cumulative sum of weights up to 1:

0 ω2
1 ω2

1 + ω
2
2 ω2

1 + ω
2
2 + ω

2
3 . . . 1

2.6 Locality Sensitive Hashing (LSH) as an Unbiased Estimator

Locality Sensitive Hashing (LSH) is claimed to be an unbiased estimator for detecting anomalies. By storing
elements in a hash table, LSH helps to quickly identify high-risk items based on similarity and frequent
patterns.

2.7 LSH as a Sampling Algorithm

The LSH sampling algorithm involves incrementing values in a data structure upon certain conditions, such
as collisions, which might help in tracking anomalies when specific network patterns repeat. This approach
includes a formula for calculating the expectation.

E[retrieval count] = f(similarity,K, collisions)

This formula represents the expectation of the retrieval count, factoring in similarity, the hash table param-
eter K, and observed collisions in the data structure.

3



E (A [h(q)]) =
n

∑

i=1

sim(xi, q)

A [h(q)] =
n

∑

i=1

1{h(q)=h(xi)}

1 - indicator variable

2.8 Similarity and Anomaly Detection in High-Dimensional Data

This analysis relates to the similarity between vectors or points, such as Sim(xi, q), which indicates the
expected similarity score when collisions occur. This approach is based on a 2018 research paper, suggesting
a well-established method for detecting similarities and anomalies.

The lecture emphasized random sampling, where the algorithm does not differentiate between certain
indices. This suggests that each data point has an equal probability of being sampled, regardless of its
characteristics.

2.9 Anomaly Detection Through Similarity Summation

Anomaly detection is represented by a summation formula involving a function f(xi, q), where specific
conditions help determine the presence of an anomaly. This method may consider the degree of similarity
or divergence as an indicator, evaluating whether certain data points deviate significantly from others.

To achieve optimal error, sampling weights might be adjusted to prioritize more relevant or anomalous data
points. Locality-Sensitive Hashing (LSH) aids in sampling values with higher weights, which optimizes
the focus on significant anomalies.

2.10 Random Sampling and Clumping Detection Subroutine

A subroutine dedicated to handling random sampling and clumping detection can be implemented, poten-
tially to manage clustered anomalies in the data. This subroutine would focus on detecting and managing
clusters of anomalous data points, thereby improving the detection of significant patterns in the dataset.

3 Markov Chain Sampling

Markov Chain Sampling, specifically Markov Chain Monte Carlo (MCMC) methods, is a powerful technique
used to sample from complex probability distributions when direct sampling is challenging. MCMC builds
a sequence (or chain) of samples in a way that eventually follows the target distribution, allowing us to
approximate integrals and expectations for large-scale or high-dimensional problems.

3.1 What is a Markov Chain?

A Markov Chain is a sequence of random states where each state depends only on the previous one (this is
the Markov property). Mathematically, for a sequence of random variables X1,X2, . . . ,Xn, the probability
of Xn+1 depends only on Xn and not on prior values:

P (Xn+1 = x∣Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1) = P (Xn+1 = x∣Xn = xn)

3.2 MCMC for Sampling

Markov Chain Monte Carlo (MCMC) methods use Markov chains to generate samples from a desired proba-
bility distribution by creating a sequence of states that eventually converge to the target distribution. Over
time, the sequence of samples approximates the distribution closely, allowing us to estimate probabilities
and expected values.

4



3.3 Key MCMC Algorithms for Sampling

Metropolis-Hastings Algorithm: One of the most common MCMC methods, where we:

1. Propose a new state Y based on the current state X.

2. Calculate the acceptance ratio r, which is the probability of accepting the proposed state:

r =
π(Y ) ⋅ q(X ∣Y )

π(X) ⋅ q(Y ∣X)

where π is the target distribution and q is the proposal distribution.

3. Accept Y with probability min(1, r); otherwise, stay at X.

The algorithm generates a chain of states, with more time spent in areas of higher probability density.

Gibbs Sampling: A special case of MCMC, useful when sampling from high-dimensional distributions by
breaking down the sampling into conditional steps:

• For each variable Xi in a multidimensional space, sample Xi conditioned on the other variables, X−i.

• Iterate through all variables in turn to generate a sample for each one, conditioned on the latest values
of the others.

Formula for Gibbs Sampling:

X
(t+1)
i ∼ P (Xi∣X

(t+1)
1 , . . . ,X

(t+1)
i−1 ,X

(t)
i+1, . . . ,X

(t)
n )

This approach is efficient for models with known conditional distributions.

3.4 Steps in MCMC Sampling

1. Initialize at an arbitrary starting point in the target distribution.

2. Generate Proposals using a transition rule (like the proposal distribution in Metropolis-Hastings).

3. Acceptance Step: Accept or reject the proposed state based on the acceptance ratio.

4. Repeat to create a chain of samples, and discard the initial ”burn-in” period to ensure convergence.

3.5 Convergence and Burn-In Period

MCMC methods rely on the idea that, after a certain number of iterations, the Markov chain will converge
to the target distribution. Early samples may not accurately represent this distribution, so a burn-in period
discards these initial samples. Monitoring convergence can involve:

• Trace plots: Checking the stability of generated samples.

• Autocorrelation: Ensuring successive samples are not highly correlated.

Markov Chain sampling is essential for applications requiring complex distribution modeling, especially when
traditional methods are impractical due to high dimensionality or computational cost.

4 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) is a technique used to approximate nearest neighbor searches in high-
dimensional data. It works by hashing input data points so that similar items (according to a chosen
distance metric) are more likely to be hashed to the same ”bucket” or hash value. This approach is highly
efficient for applications involving large datasets, where exact nearest neighbor searches are computationally
expensive.

5



4.1 How Locality Sensitive Hashing Works

LSH uses hash functions specifically designed to maximize the likelihood that similar items map to the
same hash value while keeping different items in separate buckets. Unlike traditional hash functions that
distribute values uniformly, LSH functions cluster similar items based on a predefined similarity measure,
such as cosine similarity or Euclidean distance.

4.2 Key Concepts in LSH

Similarity Measure: The choice of distance metric (e.g., cosine similarity, Euclidean distance) determines
the hash function type. Different LSH families are used based on the desired measure:

• Cosine Similarity: Uses random hyperplanes for hashing.

• Euclidean Distance: Uses hash functions based on random projections.

Hash Function Families: For LSH, a family of hash functions H = {h1, h2, . . . , hk} is chosen so that:

• Similar Items: The probability P (h(x) = h(y)) is high for similar points x and y.

• Dissimilar Items: The probability P (h(x) = h(y)) is low for dissimilar points.

Multiple Hash Tables: To improve accuracy, multiple hash tables are often used, each with a different
hash function. This approach reduces the chance of false negatives by increasing the likelihood that similar
items end up in at least one common bucket.

4.3 LSH Algorithm Steps

Hashing Data Points:

• Each data point is hashed using a set of hash functions. Similar points are more likely to hash to the
same bucket.

• For example, if using cosine similarity, the hash function may map points based on their orientation
relative to random hyperplanes.

Querying for Nearest Neighbors:

• Given a query point, LSH retrieves all points that fall into the same bucket across all hash tables.

• The retrieved candidates are then checked to find the actual nearest neighbors, reducing the compu-
tation needed compared to searching through all data points.

Adjusting Accuracy and Efficiency:

• Parameters like the number of hash functions per table (k) and the number of hash tables (L) balance
between computation time and retrieval accuracy.

4.4 Example of LSH with Cosine Similarity

For cosine similarity, LSH hashes points based on random hyperplanes:

• A random hyperplane is chosen by sampling a vector r from a standard Gaussian distribution.

• For a point x, the hash is determined by the sign of the dot product r ⋅ x:

h(x) = sign(r ⋅ x)

• Multiple random vectors create a series of hash bits, creating a unique binary hash for each point based
on its location relative to each hyperplane.

Locality Sensitive Hashing simplifies similarity search in high-dimensional spaces, making it invaluable in
data-intensive fields like information retrieval, computer vision, and data mining. Its ability to approximate
similarity-based grouping while minimizing computational load is ideal for handling large-scale datasets.

6



5 Adaptive Sampling Techniques

Adaptive Sampling Techniques are methods that adjust sampling strategies dynamically based on the im-
portance or characteristics of data points, aiming to improve sampling efficiency by focusing more resources
on areas of interest. Unlike traditional fixed sampling methods, adaptive sampling identifies regions or data
points that are likely to yield the most useful information for the analysis, allowing better estimates with
fewer samples.

5.1 Why Use Adaptive Sampling?

Adaptive sampling is particularly valuable in situations where:

• Data is imbalanced or concentrated in certain regions (e.g., rare events or anomalies).

• Computational resources are limited, requiring selective sampling to minimize cost.

• Certain areas of the data space are more informative, such as areas with higher variability or areas
relevant to a specific hypothesis.

5.2 Key Adaptive Sampling Techniques

Importance Sampling

• Concept: Samples are drawn from a distribution that emphasizes areas where the target function is
larger or more variable.

• Method: Weight each sample according to the ratio of the target and proposal distributions:

Ef [h(X)] ≈
1

N

N

∑

i=1

h(Xi)w(Xi), where w(Xi) =
f(Xi)

g(Xi)

Here, f(X) is the target distribution, and g(X) is the proposal distribution. The weights w(Xi) adjust
for the discrepancy between distributions.

• Applications: Common in scenarios with rare events or tail estimations (e.g., financial risk modeling,
reliability engineering).

Adaptive sampling techniques are crucial for applications that demand efficient and accurate data analysis,
especially in high-dimensional spaces, real-time systems, and resource-limited environments. They provide
significant computational savings and improved estimation accuracy by selectively focusing on the most
informative areas of the data space.

6 Estimating Similarity Scores in High-Dimensional Data

Estimating similarity scores in high-dimensional data involves calculating a measure of how similar or close
data points are in complex, high-dimensional spaces. High-dimensional data is common in fields like im-
age recognition, natural language processing, and genomics, where each data point can have hundreds or
thousands of attributes or features.

6.1 Challenges in High-Dimensional Similarity Estimation

• Curse of Dimensionality: In high-dimensional spaces, distances between points become less mean-
ingful, as all points tend to appear equally distant from one another.

• Computational Complexity: Calculating pairwise similarity for large datasets with high-dimensional
vectors is computationally expensive.

• Data Sparsity: High-dimensional data often contains many zeroes or irrelevant features, making it
harder to find meaningful similarities.

7



6.2 Common Similarity Measures

Cosine Similarity

• Description: Measures the angle between two vectors, ignoring their magnitude. It is widely used in
text and image data.

• Formula:

Cosine Similarity(A,B) =
A ⋅B

∥A∥∥B∥

where A ⋅B is the dot product, and ∥A∥∥B∥ are the magnitudes of A and B.

• Range: [−1,1], where 1 indicates identical orientation, 0 is orthogonal, and -1 is completely opposite.

Euclidean Distance

• Description: Measures the straight-line (or Euclidean) distance between points.

• Formula:

Euclidean Distance(A,B) =

¿

Á
ÁÀ

n

∑

i=1

(Ai −Bi)
2

• Applications: Used in clustering and nearest neighbor searches; however, it can become less effective
in high-dimensional spaces.

Jaccard Similarity

• Description: Measures similarity between sets by comparing their intersection and union.

• Formula:

Jaccard Similarity(A,B) =
∣A ∩B∣

∣A ∪B∣

• Applications: Useful for sparse, binary data like word occurrences in text documents.

6.3 Techniques for Efficient Similarity Estimation in High Dimensions

Locality Sensitive Hashing (LSH)

• Overview: A hashing technique that groups similar items into the same ”bucket” by mapping high-
dimensional vectors to a lower-dimensional space. LSH uses hash functions tailored to the similarity
metric (e.g., cosine or Euclidean) to ensure similar items are more likely to share a bucket.

• Applications: Useful in approximate nearest neighbor search, reducing the need to compute exact
distances for all pairs.

Dimensionality Reduction

• Techniques like Principal Component Analysis (PCA) and t-SNE reduce the number of dimensions
while retaining most of the data’s variance or structure, making similarity computations more man-
ageable.

• Applications: Often used as a preprocessing step in clustering, classification, or nearest neighbor
tasks.

Random Projection

• Overview: Projects high-dimensional data into a lower-dimensional subspace using a random matrix.
This method preserves distances approximately according to the Johnson-Lindenstrauss Lemma, which
states that the distances between points in high dimensions can be preserved within a small error
margin.

8



• Formula: Given a random matrix R, data vector X in high-dimensional space is projected to X ′ in
a lower-dimensional space as:

X ′ =X ⋅R

Sparse Vector Techniques

• High-dimensional data can often be sparse (i.e., many features have zero or negligible values). By
focusing on non-zero features or reducing dimensions to sparse components, similarity calculations
become more efficient.

• Techniques like Sparse PCA and Truncated SVD help reduce computation without significant infor-
mation loss.

Estimating similarity scores in high-dimensional data is critical for understanding relationships in complex
datasets, enabling efficient clustering, recommendation, and anomaly detection across many fields.

9


