
COMP 480/580 — Probabilistic Algorithms and Data Structure Oct 22, 2024

Lecture 14

Lecturer: Anshumali Shrivastava Scribe By: Marko Tanevski (mt102),
Samek Rangarajan (sr118),
Daniel Zhang (dfz1),
Pranav Suryadevara (ps102)

1 Sampling

Consider the scenario in which you have access to a uniform pseudo-Random Number Generator
(pRNG) U [0, 1] that chooses a real number between 0 and 1 with uniform probability. Given
this generator, is it possible to sample a number from a standard Gaussian distribution? In
general, given any distribution D with a PDF f , is it possible to use U [0, 1] to sample an x ∼ D,
assuming we can compute f(x) for any x?

1.1 Inversion Method

Let’s first look at how to generate any distribution with an invertible CDF from U [0, 1]. Our
goal is, at each step k, to generate an xk ∼ D for some distribution D where f(x) is its PDF,
and its CDF is the invertible F (x). In particular, if we were to sample xk 50 times and D was
a standard Gaussian distribution, we would like to be able to generate xk’s something like the
points in the picture below:

Figure 1: Sampling 50 Points from a Normal Distribution

How can we do this? Well, at step k, generate a yk ∼ U [0, 1], and then return xk = F−1(yk).
Why is does this work? Well, in continuous cases

F (a) =

∫ a

−∞
f(x)dx

which is equivalent to
P (x ≤ a) = F (a), x ∼ D.

14-1

If we make the assumption that this F has a nice form (e.g., Gaussian, Laplacian), we should
be able to approximate its inverse, as reasoned above. However, many of the F ’s we like do
not actually have a form, we will see this in the following lectures. Being able to approximate
F−1(x), while doable for simple functions, is almost impossible for more complex ones. This
aside, if we can calculate F−1(x), then below is the proof for the aforementioned described
sampling algorithm:

P (xk < a) = P [F (xk) < F (a)] = P [yk < F (a)] = F (a)

as yk ∼ U [0, 1]. Note, the first equality holds true because the CDF is a monotonic function.
Thus, we have shown that the values of xk follow the definition of the CDF of f , and so we can
say xk are sampled from f . Note that in practice F is not invertible so this method is not very
useful in practice.

1.2 Sampling Goal

The primary goal of sampling in computational contexts is estimation. Sampling allows us to
estimate quantities that are otherwise too complex or computationally expensive to calculate
directly.

For example, consider estimating the energy of a molecular configuration. If we want to ap-
proximate the potential energy of all molecules, we could use the energy function

1

|Molecule|
∑

m∈Molecule

P(m)

where P(m) represents the potential energy function for each molecule. Since this sum can be
large and computationally intensive, we can instead sample from this distribution. By drawing
samples mi such that mi ∝ P(mi), we can approximate the expected energy of a molecule and
estimate the sum above.

Another powerful application of sampling is in estimating the hypervolume of a shape, as
shown in Figure 2, where we are estimating the area of the chaotic figure. Even without an
exact formula for the hypervolume, we can use Monte Carlo methods to estimate it accurately
by leveraging fast checks for whether a point lies inside the shape. By sampling from a well-
chosen distribution, we can gain insight into complex spaces with relative ease. Of course, we
do need to be able to check whether a point lies inside a shape or not, but this is often much
easier to do than computing its hypervolume.

An important prerequisite for estimation is the ability to sample uniformly from the space of
interest, especially when dealing with high-dimensional or complex spaces. Uniform sampling
ensures that the estimates we generate are accurate.

14-2

Figure 2: Monte Carlo Hypervolume Estimation [2]

For example, by sampling n = 1, 000 points above with k points inside, we can estimate the
area of the shape as k

n · V where V = 100cm2 is the hypervolume of the entire space.

The power of this is that the estimation accuracy is independent of n (although this is not the
case for estimation variance or standard error, which is dependent on n).

1.3 Rejection Sampling

Rejection sampling is another sampling method that is useful in multidimensional sampling.
Multidimensional sampling is useful in Markov chains because the state space is multidimen-
sional.

In rejection sampling, the goal is to sample x ∼ f (where f is the target distribution). How-
ever, assume we can’t sample from f , and unlike in the Inversion Method, assume that we don’t
actually have the CDF of f at hand. This is often the case. Rejection sampling now tells us
“don’t worry about it” as long as we sample from x ∼ g from any proposed distribution g we
can sample from. The only condition is that ∃M > 0 such that

f(x) < Mg(x) ∀x

which is identical to saying g can’t be 0 if f is nonzero or that support(f) ⊆ support(g).

Our rejection algorithm is as follows:

1. Choose u ∼ U [0, 1] and xk ∼ f .

2. If u < f(xk)
Mg(xk)

return xk, else return to 1.

Thus we have created rejection / acceptance criteria for whether we reject or we accept a value
of xk ∼ f or not. See Figure 3 below to visualize this.

14-3

Figure 3: Rejection sampling [1]. The intuition here would be is as follows. Let q(z) and p(x) be our
distributions, where p(x) is the one we want to sample from, but cannot. Sample zi from kq(z), where k
is some constant. The black line is where our zi lies. Now, sample uniformly u ∈ [0, 1]. Then, mark u
on the line of zi. If that marked point lies below the red line of p(x), then return zi. Otherwise, repeat.
Essentially, we are generating a point (zi, u), and if that point lies in the area under the curve of p(x),
then we accept that point as something that could have been generated by p(x), and thus accept zi.

We will now prove the correctness of rejection sampling. We want to show that the random
variable outputted by the algorithm is equal the CDF of the distribution we want to sample
from.

Let f be the distribution we want to sample from with CDF of F , and let g be the distribution
we can sample from, with some M ≥ 1 satisfying f(x) < Mg(x) for all x. Furthermore, let
X ∼ f , let Y ∼ g, and let U ∼ [0, 1]. The random variable returned by rejection sampling is

Y | U < f(Y)
Mg(Y) ; that is, it returns Y given that U is smaller than f(Y)

Mg(Y) . We want to show that

P
(
Y ≤ y | U ≤ f(Y)

Mg(Y)

)
= F (y). The steps are below.

P

(
Y ≤ y | U ≤ f(Y)

Mg(Y)

)
=

P
(
Y ≤ y, U ≤ f(Y)

Mg(Y)

)
P
(
U ≤ f(Y)

Mg(Y)

)

=

∫ y
−∞

(∫ f(t)
Mg(t)

0 1 · du
)
g(t)dt∫∞

−∞

(∫ f(t)
Mg(t)

0 1 · du
)
g(t)dt

=

∫ y
−∞

(
f(t)

Mg(t)

)
g(t)dt∫∞

−∞

(
f(t)

Mg(t)

)
g(t)dt

=

∫ y
−∞

f(t)
M dt∫∞

−∞
f(t)
M dt

=

∫ y
−∞ f(t)dt∫∞
−∞ f(t)dt

=

∫ y
−∞ f(t)dt

1

=

∫ y

−∞
f(t)dt = F (t)

14-4

Therefore, the CDF of the output of the rejection sampling algorithm is the same as that of f ,
so it is correct.

Again, note the difference between being able to sample f and being able to calculate it. Here,
we can evaluate f and g, but we are unable to invert F (and as such sample it). This is very
different.

Note this will work for any f if g is the normal distribution. However, as seen in Figure 3, the
probability of accepting is very low, if f and g are very different; imagine if the gray area was
much larger, how much more unlikely it would be to accept the result. Thus, ideally, when
performing rejection sampling we want f and g with similar distributions.

We can calculate how good our choice of g is by whether we are rejecting a lot or not. If we
are rejection very rarely, then we’ve definitely picked a good g.

Note, this is kind of like the chicken and the egg problem: we want to sample from f , but
it is very hard to sample from f without being able to sample from g similar to f , but if we
have such a g we might as well be able to sample from f . Regardless, it is a useful tool that
sometimes can be very beneficial even for exotic distributions f . People do their entire PhDs
in statistical physics on identifying such f ’s and g’s.

2 Monte Carlo Estimation

The goal of Monte Carlo estimation is to estimate the expected value of a function Q(x) over
a probability distribution p(x), where direct computation of the integral is challenging. The
expectation we want to estimate is:

I = E[Q(x)] =

∫
Q(x)p(x)dx

For instance, say we want to compute:

I =

∫ 1

0
xe−x3

dx = E[xe−x3
] for x ∼ U [0, 1].

This integral can be approximated using Monte Carlo estimation by taking random samples
xi ∼ U [0, 1] and averaging the function values Q(xi) = xie

−x3
i .

In general, given a probability distribution p(x), a function whose expected value we wish to
compute Q(x), and n number of samples drawn from p(x), the Monte Carlo estimator for
E[Q(x)] is given by:

În =
1

n

n∑
i=1

Q(xi).

The proof is presented below:

• Unbiasedness: We show that În is an unbiased estimator for E[Q(x)]. The expected
value of În is:

E[În] = E

[
1

n

n∑
i=1

Q(xi)

]
.

Using the linearity of expectation:

E[În] =
1

n

n∑
i=1

E[Q(xi)].

14-5

Since the xi’s are i.i.d., E[Q(xi)] = E[Q(x)], and thus:

E[În] = E[Q(x)].

Therefore, În is an unbiased estimator of E[Q(x)].

• Variance: The variance of În is given by:

Var(În) = Var

(
1

n

n∑
i=1

Q(xi)

)
.

Since the xi’s are i.i.d., we can use the property of the variance of a sum:

Var(În) =
1

n2

n∑
i=1

Var(Q(xi)) =
1

n
Var(Q(x)).

Thus, the variance decreases proportionally to 1/n, meaning that as n increases, the
estimator becomes more accurate.

• Law of Large Numbers: By the law of large numbers, the Monte Carlo estimator În
converges to the true expected value as n → ∞. Specifically:

lim
n→∞

P
(∣∣∣În − E[Q(x)]

∣∣∣ > ε
)
= 0 for any ε > 0.

This guarantees that as more samples are taken, the Monte Carlo estimate will approach
the true expected value.

• Conclusion: Monte Carlo estimation provides a flexible and unbiased method for ap-
proximating integrals, especially when they are difficult to compute analytically. As the
number of samples increases, the estimator becomes more accurate, and the variance of
the estimator decreases. For integrals like

∫ 1
0 xe−x3

dx, Monte Carlo estimation offers a
practical approach to obtaining numerical approximations.

2.1 Importance Sampling

The goal of importance sampling is to estimate the expectation of a function w(x) under a PDF
g(x) that is difficult to sample from directly. Let this expectation be defined as I

I = E[w(x)]x∼g =

∫
h(x)w(x)dx

For example, imagine g(x) is the probability distribution for molecules in a container and w(x)
measures the energy of each molecule. Our goal is to compute the average of w(x) over all
molecular configurations according to g(x). Sampling from the configurations may be infeasible
because of the number of molecules, so we turn to importance sampling to get an accurate
approximation without direct sampling. In a discrete setting, the expectation would look like
this:

n∑
i=1

w(i)× g(i) where g(i) = P (X = i)

Now, consider the continuous setting. We have the following assumptions:

14-6

• g(x) is the target distribution that we can’t sample from.

• w(x) is a function we want to take the expectation of under g(x).

• f(x) is another PDF with the following conditions

1. f(x) > 0 for all x where g(x) > 0

2. f(x) is easier to sample from than g(x)

Instead of sampling from g(x), we sample from f(x) and apply an importance weight to each
sample to adjust for the fact that we’re not sampling from g(x) directly. The importance weight,
g(x)
f(x) , adjusts for the difference between g(x) and f(x) at each point x. Thus our estimator is

1

n

n∑
i=1

w(xi)×
g(xi)

f(xi)
xi ∼ f.

The proof that this works is presented below:

• Start with the expectation under g(x)

I = E[w(x)]x∼g =

∫
w(x)× g(x)dx

• Because f(x) > 0 whenever g(x) > 0, we can multiply and divide by f(x) inside the
integral without changing the value

=

∫
w(x)× g(x)

f(x)
× f(x)dx

• If we observe the integral as an expectation with respect to f(x)

= E
[
w(x)× g(x)

f(x)

]
x∼f

Therefore,

E[w(x)]x∼g = E
[
w(x)× g(x)

f(x)

]
x∼f

This shows that sampling from an easier distribution f(x) and applying the importance weight
can accurately approximate expectations with respect to g(x). This makes estimation more
efficient when g(x) is complex.

14-7

References

[1] Gregory Gunderson. Sampling: Two basic algorithms, 2019. Last accessed 26 October 2024.

[2] Math on Web. Finding areas using the monte carlo method, 2024. Last accessed 29 October
2024.

14-8

