
COMP480, Fall 2024

https://www.cs.rice.edu/~as143/COMP480_580_Fall24/.

Instructors: Anshumali Shrivastava, Rice University.

Lecture 1, 2024-09-12. Scribed by David Su (js202), Yimo Wang (yw104), Mary Nam

(mn80).

1 Materials from the last class

1.1 k-universal hashing family

We hash m objects into an array of size n. Upon collision, we list the objects together, forming a

chain. The E[chainlength] ≤ 1 + m−1
n . Following convention, we can define α = m

n .

Then, the worst-case insertion and search time for hashing with chaining is O(m), and occurs in

the case where all m elements collide. In the average-case, the expected insertion and search time

for hashing with chaining is O(1 + α); O(1) time to compute the hash, and O(α) time to navigate

the length of the chain.

This is generally an acceptable runtime. However, is it possible to achieve better runtime, such as

O(ln(n))? To achieve this runtime, we need to consider the probability that there exist a chain of

size ≥ log(n).

Theorem: For the special case where m = n, with probability at least 1-1/n, the longest list

is O(ln n / ln ln n).

Proof: Let Xi,k be the indicator that key i hashes to slot k, with Pr(Xi,k = 1) = 1
n . The probabil-

ity that a particular slot k receives more than κ keys, where m = n, can be determined by assuming

a high level of independence. If we choose κ = 3 lnn
ln lnn , then it follows that κ! > n2 and 1

κ! <
1
n2 .

Consequently, the probability that any of the n slots receives more than κ keys is less than 1
n .

1.2 Power of k choices

We want to further reduce the length of the chain. How can we do better?

Intuition: Use k hash functions h1(x), h2(x), ..., hk(x), and insert the element into the location

with the smallest chain. The resulting chains are exponentially shorter (and thus, exponentially

better!). Because in order for a chain i to grow, we must satisfy the condition that all chains j,

j ̸= i, has already grown to equal or greater length.

For example, let k = 2. Examining this, we see that P(chain length ≥ ln(ln(n))) < 1
n . Recall

that with k = 1, if m = n, P(chain length ≥ ln(n)) < 1
n . With 2 chains, we are already at an

exponential improvement from 1 chain.

1

https://www.cs.rice.edu/~as143/COMP480_580_Fall24/

2 Linear probing

Consider a hash function h(x) = x mod A, where A is the size of the array. When we perform

linear probing, we follow a probe sequence until we find an open spot in the array. Define a

simple probe sequence as follows:

0th probe: h(k) mod A

1st probe: (h(k) + 1) mod A

2nd probe: (h(k) + 2) mod A

...

ith probe: (h(k) + i) mod A

Let’s now perform a simple example of insertion. Using the hash function above on an array of size

10, we attempt to insert 38, 19, 8 in that order.

1. Insert 38: 38 mod 10 = 10, so we insert 38 at index 8.

[, , , , , , , , 38,]

2. Insert 19: 19 mod 10 = 9, so we insert 19 at index 9.

[, , , , , , , , 38, 19]

3. Insert 8: 8 mod 10 = 8, but index 8 is already occupied, so we check (8 + 1) mod 10 = 9.

Index 9 is also already occupied, so we check (8 + 2) mod 10 = 0. Index 0 is empty, so we

insert 8 at index 0.

[8, , , , , , , , 38, 19]

In practice, linear probing is one of the fastest hashing strategies. What makes it good?

Memory: Only requires an array and a hash function to be stored.

Locality: Due to the nature of how probing is done, in the unfortunate event of collisions, we only

need to search in adjacent locations, making it easy to traverse.

Combined: Combining the low memory overhead and excellent locality, we get a great cache

performance from linear probing.

2.1 Expected cost of linear probing

For simplicity, let’s assume a load factor of α = m
n = 1

3 .

Let’s denote a ”region” of size m to be a consecutive set of m locations in the hash table. Then, an

element q hashes to region R if h(q) ∈. Note that due to probing, q may not ultimately be placed

in R. Given this load factor, a region of size 2S would be expected to have at most 1
32

S elements

in it. It would be very unlucky if a region had twice as many elements in it as expected. A region

of size 2s is overloaded if at least 2
32

s elements hash to it.

We want to show that the probability of this unlucky event is very low.

2

Theorem: The probability that the query element q ends up between 2s and 2s+1 steps from

its home location is upper-bounded by c· P(the region of size 2s centered on h(q) is overloaded)

for some fixed constant c independent of S.

The proof for this theorem is outside the scope of this class. For interested individuals, see

https://arxiv.org/abs/1509.04549.

Overall, we can write the expectation as :

E(lookup time) ≤ O(1)

log(n)∑
1

2s+1 · P(q is between 2s and 2s+1 slots away from h(q))

= O(1)

log(n)∑
1

2s · P(the region of size 2s centered on h(q) is overloaded)

For query q, let Bs be the number of keys that hash into the block of size 2s centered on h(q).

P(Bs ≥ 2
3 · 2s) = ? That is, what is the probability that Bs is overloaded? Assuming h is at least

2-independent, E(Bs) =
1
3 · 2s.

P(Bs ≥
2

3
· 2s) = P(Bs ≥ 2 · E(Bs)).

Thus,

E(lookup time) ≤
ln(n)∑
1

2s · P(Bs ≥ 2 · E(Bs)

Variance: Assuming 3-independence and using Chebyshev inequality, we can see that E(lookup

time) ≤ O(log(n)).

3 Mark and recapture

Goal: understand how randomized estimation process works

Problem setting: Count Turtles in a Pond.

Option: take a random sample of the pond.Mark the captured turtles with a tag. Then release

them. When you capture them again, if every turtle that comes up already has a tag, you can be

reasonably certain that all turtles have been tagged.

Let’s say I capture K1 of n total turtles, mark all K1 of them, and put them back in the

pond. Now, after 10 days (why 10 days? This allows use to assume a uniformity – that the tagged

turtles sufficiently mix with the untagged ones, guaranteeing the next sample will be randomized.)

I capture another K2 turtles, and find that M of them are marked. So M
K2

≈ K1
n . That is M

K2
should

represent the fraction of marked turtles in the pond. Then, n ≈ K1K2
M .

In this problem, we are making an assumption: the 10 days of mixing creates a uniform distribution

of the tagged and untagged turtles.

3.1 In terms of Indicator variables

Create a random variable for each turtle:

3

For the n turtles, we have X1, ...Xn.

Xi = 1 if turtle i is marked, else 0.

After the first capture, we have
∑n

i=1Xi = K1.

After the recapture of K2 turtles, we have M =
∑K2

i=1Xi are marked.

P (X1 = 1) = K1
n = probability of any given turtle being marked.

E[X1] = E[X2] = ... = E[Xi] =
K1
n .

Note that for all i, j ∈ 1, ..., n, Xi and Xj are correlated. That is, if you know that Xi is marked,

your belief of whether Xj is marked changes.

E(M) =

K2∑
i=1

K1

n

E(M) =
K1K2

n

Let us now revisit the expression we previously derived: n ≈ K1K2
M .

The more accurate correct expression is n = K1K2
E(M) .

4

	1 Materials from the last class
	1.1 k-universal hashing family
	1.2 Power of k choices

	2 Linear probing
	2.1 Expected cost of linear probing

	3 Mark and recapture
	3.1 In terms of Indicator variables

