
Machine Learning with Graphs:

Representation learning 3/3 - Graph Neural

Networks

Arlei Silva

Spring 2022

GCN for semi-supervised learning

GCNs were originally proposed as a solution to the semi-supervised learning
problem on attributed graphs—predicting the labels of nodes based on a few
labeled ones. Let X ∈ Rn×D be the matrix of node attributes and the set
of labels/classes be 1, . . . C. To simplify the notation, let Â = D̃−1/2ÃD̃−1/2.
Then a 2-layer GCN is defined as follows:

Z = softmax(ÂReLU(ÂW (0))W (1))

where W (0) ∈ RD×h and W (1) ∈ Rh×C are parameters to be learned (similar
to Θ), ReLU(x) = max(0, x), and the softmax function is applied to convert
the output into probabilities over the C possible classes:

softmax(xc) =
exp(xc)∑C
i=1 exp(xi)

To learn the parameters, W (1) and W (1), we minimize the cross-entropy loss
of the model:

L = −
∑
v∈YL

C∑
c=1

[label(v) = c] log(Z[v, c])

where YL is the set of labeled nodes and [exp] returns 1 if exp is TRUE and 0,
otherwise. We minimize L using SGD or your favorite optimization algorithm.

Notice that GCNs are inductive, as the learned weights W (0),W (1) can be
applied to nodes unknown during training as long as node attributes remain the
same. In particular, GCNs can be applied to classify nodes in a different graph
than the one used during training.

1

Message Passing Neural Networks

Many alternative Graph Neural Network models have been proposed after GCNs.
It is convenient to see these models as special cases of Message-Passing Neural
Networks (MPNNs), which have been proposed as a general framework general-
izing multiple GNNs. The idea of MPNNs is to initialize Z—sometimes called
node embeddings or representations—and then update embeddings via multiple
iterations of message-passing. A message from node u to node v at the layer `
is defined as:

m`
uv = fe(z

`
u, z

`
v, eu,v)

where fe is a (generic) function, z`u ∈ Rh` is the embedding of u, and euv are
edge attributes.

A pooling operator is used to update the embedding of node u based on its
own current embedding and the embedding of its neighbors:

z`+1
u = fv(z`u,∪k∈N(u)m

`
kv)

where fv is a (generic) function. Notice that the messages from the neighbors
are given as a set. In general, it is desired for fv to be permutation-invariant to
any arbitrary order (e.g. as columns of an adjacency matrix) over the neighbors.

Note that fe and fe can be either given or learned (neural nets). Embeddings
are usually initialized as z0v = X[v]. For T layers, the output are embeddings
zT1 , . . . z

T
n . We can now see how MPNNs generalize some existing GNNs.

GCN: Messages are m`
uv = z`u and the pooling operator is:

z`+1
u = σ

 1√
|N(u)|+ 1

W t

 z`u√
|N(u)|+ 1

+
∑

k∈N(u)

z`k√
|N(k)|+ 1

GraphSAGE: Messages are m`

uv = z`u and the pooling operator is:

z`+1
u = σ([z`u; AGGREGATE(∪k∈N(u)z

`
k)]W (`))

where σ can be any activation function (e.g. softmax), [·, ·] is concatenation,
and AGGREGATE is a generic operator (e.g., mean, max, LSTM).

GraphSAGE also applies subgraph sampling to train its parameters via mini-
batch gradient descent—the same approach works for other GNNs as well. A
mini-batch contains a set of nodes B ∈ V and the forward operation over a mini-
batch accounts for a fixed number of node samples within the K-hop neighbor-
hood of B. For each layer, `, an embedding z`+1

u is updated based on messages
from the neighbors within ` hops from node u.

2

Graph Attention Network (GAT): Messages are m`
uv = z`u and the pool-

ing operator is:

z`+1
u = σ

 ∑
k∈N(u)∪{up}

αukz`u

where αuk are edge attention weights:

αuv =
exp(LeakyReLU(aT [z`uW, z

`
vW]))∑

k∈N(u) exp(LeakyReLU(aT [z`uW, z
`
kW]))

where a ∈ R2p and W ∈ Rh`×p are parameters to be learned.

Other tasks

We have described how to apply GCNs for semi-supervised learning. Other
GNN architectures can be applied for the same task in a similar fashion. Here,
we will discuss how GNNs can be applied to other tasks, graph classification,
and link prediction.

Graph classification: Here, the goal is to learn how to classify entire graphs
from a subset of labeled graphs. This can be performed using, again, a pooling
operator, which computes graph-level representations zG ∈ Rh from the node
representations z1, . . . zn, where zi ∈ Rh. Examples of such an operator include
the (column-wise) mean, max, and sum. Graph representations zG can then be
given to a classifier (e.g. Multi-layer Perceptron) to produce graph labels.

Link prediction: The task consists of predicting new (or missing) links based
on observed ones. There are many GNN-based approaches for link prediction.
The simples ones is to predict an edge (u, v) based on σ(〈zu, zv〉), where σ is
the sigmoid function:

σ(x) =
1

1 + exp(−x)

Advanced topics

Graph Neural Networks became popular quite recently are still a topic of active
research. We will briefly discuss two advanced topics related to GNNs. For
more, check recent papers at the top conferences in machine learning, data
mining, computer vision, etc.

Oversmoothing

Neural networks (e.g. CNNs) often benefit from depth– i.e. multiple layers– to
learn complex representations for data. One would expect the same for graphs.

3

However, it has been found that GNNs suffer from oversmoothing—i.e. node
feature information is lost for a large number of layers. It is easier to show
oversmoothing for the case of L linear layers. Then, we can write the GNN
output as:

D̃−1/2ÃD̃−1/2(D̃−1/2ÃD̃−1/2(. . . D̃−1/2ÃD̃−1/2XW (0) . . .)W (L−2))W (L−1)

The above expression can be simplified to:

(D̃−1/2ÃD̃−1/2)LXW

where W = W (0) ×W (1) × . . .W (L−1).
We are interested in the GNN representations as L → ∞. First, let us

compute the following limit (without the weights):

lim
L→∞

(D̃−1/2ÃD̃−1/2)LX

Let L = (I − D̃−1/2ÃD̃−1/2) = UΛUT . Then D̃−1/2ÃD̃−1/2 = (I − L) =
U(I − Λ)UT and (D̃−1/2ÃD̃−1/2)L = (I − L) = U(I − Λ)LUT . Remember
that the eigenvalues of D̃−1/2ÃD̃−1/2 are upper bounded by 2. Moreover, the
smallest eigenvalue of the same matrix is 0—with eigenvector D1/21n. It follows
that (I − Λ) = diag(λ1, . . . λn) is such that −1 < λ1 ≤ . . . λn = 1 and, finally:

lim
L→∞

(D̃−1/2ÃD̃−1/2)LX = Udiag(0, . . . , 0, 1)UTX

= u1u
T
1X

= u1.[〈u1, X[:, 1]〉, . . . , 〈u1, X[:, D]〉]

where X[:, i] is a column of the feature matrix X.
Notice that, regardless of weights W , resulting node representations do not

capture the node features. The vector u1 = D1/21n and 〈u1, X[:, i]〉 has the
same value for every vertex.There are approaches to address oversmoothing in
GNNs (mostly regularization) [3].

Expressive power

The expressive power of a neural network is its capacity to approximate functions—
i.e. map inputs to outputs. The so-called universal approximation theorem
states that neural networks with one hidden layer can approximate any contin-
uous function. Similar questions have been asked about the expressive power of
GNNs in terms of distinguishing non-isomorphic graphs.

Two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic if
there is a bijection φ : V → V ′ such that {u, v} ∈ E iff {φ(u), φ(v)} ∈ E′. The
isomorphism problem consists of checking whether two graphs are isomorphic. It
is not known whether there exist poly-time algorithms for graph isomorphism—
there is no NP-hardness proof either.

4

The Weisfeiler-Lehman test (WL) is an efficient algorithm for isomorphism
checking. If the result of the test is false, the input graphs are known to be non-
isomorphic. However, the graphs are not necessarily isomorphic if the result
is true. The idea is to assign a label to each node as a function of the labels
of its neighbors and its own label. This step is repeated until the labels are
not changed anymore. The test returns true if the two graphs have the same
number of nodes with each label at the end and false otherwise. This test is
known as 1-WL and generalizations (k-WL) operate on k-tuples of nodes.

MPNNs are related to the WL test. More specifically, we can think of node
representations as labels and pooling as a function of the labels of neighbors. A
graph-level pooling operator can then be used to compute a graph-level repre-
sentation. The test returns true if the (graph-level) representation of the input
graphs is the same. It has been shown that if the MPNN applies operators that
are injective, then it is as expressive as the 1-WL test [4].

References

[1] William L Hamilton. Graph representation learning. Morgan & Claypool,
2020.

[2] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[3] Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University
Press, 2021.

[4] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How power-
ful are graph neural networks? In International Conference on Learning
Representations, 2018.

5

