Machine Learning with Graphs:
Representation learning 2/3 - Graph Neural
Networks

Arlei Silva
Spring 2022

Graph Convolution

A convolution is an operation that returns a function g f, given input functions
f and g. In the case of graph convolutions, one of the functions is a graph signal
f € R"—we will write as a vector. A key tool in defining graph convolutions is
the Graph Fourier Transform (GFT) f = UTf, where L =1 —D~Y2AD~1/2 =
UAUT. As we have seen earlier, the eigenvectors of the Laplacian form a basis
for graph signals and the value of the associated eigenvalue provides a notion of
frequency for a basis vector.
The spectral convolution on a graph is defined as follows:

go x £ =Ugs(MU"T

where gg(A) = diag(gg(M1),90(N2), ... g9(An))

Let £ = [f(\1),...f(A,)]. Then, we can write each entry of gy * f as:
g0 * £[v] = > £(Ae)go(\e)ue[v]
=1

We call gy a filtering function. As an example, consider the following opti-
mization problem with the goal of learning a vector f such that it approximates
another vector y while also being smooth over the graph:

fx = argmfin||y —f||2 4+ fTLf

where ¢ is a constant. We can think of y and f as noisy and de-noised labels
based on the graph topology, respectively. We minimize the objective by setting
the derivative to zero:

0
oY — fI3 + e TLE = 2(F —y) + 2cLf = 0

It follows that:

(I+ch)f =y
(UUT + cUNUTE =y
U(I+cANUTf =y
f=UT+cA) Uy

Minimizing our objective is equivalent to applying a filter go(A¢) = 1/(1 +
c\¢) to the noisy signal y. Intuitively, this filter reduces the importance high-
frequency components—in the graph topology—from y. If ¢ = 0, then f = y.
On the other hand, as ¢ — oo, f = 0,, becomes a minima of the objective.

We will apply graph convolutions for learning problems by fitting the pa-
rameters of filtering function gg(A¢) = 6. As an example, consider that our
goal is to approximate a ground truth vector y € R™:

argmin ||y — go * f[[3

Then, by letting y = U”y, we get the optimal filter:

Cv()
go(Ae) = F) =0,

The above example shows that graph filters are quite flexible. However,
notice that gg has n parameters to be learned, which might be infeasible. In-
stead, we can fix the number of parameters to k + 1 by assuming that gg(\s) =
ZkK:o Ox\f—i.e. it is a polynomial of As. As result, we get a different form for
the convolution:

K K
gox £ =T OpA")U'E = O, LFF
k=0 k=0

An interesting property of the above formulation is that powers of the Lapla-
clan matrix are localized in the graph. The value of ij is zero if there is no path
between nodes ¢ and j in the graph. However, a downside is that the Lapla-
cian powers are not orthogonal to each other. Instead, we can apply Chebyshev
polynomials to describe our filtering function:

K K
gox £ =UC_ OxTu(A)U'E = 0 Ti(L)f
k=0 k=0

Chebyshev polynomials (of the first kind) are defined as follows:

Tk(.’L') :2"L‘Tk,1(l‘) — Tk,Q({E)
To(.T) =1
T (z) =x

where we assume x € [—1,1].

We approximate a function f(z) using Chebyshev polynomials as follows:
(oo}
f@) =) enTi(@)
k=0

In practice, we apply a small number of polynomials K to approximate f(x).
Our goal is to apply these polynomials to approximate gg(\¢). First, we have
to scale the entries of A within the range [—1, 1]:

- 2A
A= .y

)\max

Then, we get:
K
go(A) = 0kTi(A)
k=0

Now we can apply the approximation in the graph convolution:

K K
gox £ =U_0:Tu(A)UTE =D 04 Ti(L)f
k=0 k=0

where: o
L= —1

)\maw
The form of the Chebyshev polynomial applied to the Laplacian is as ex-
pected, Ty(L) = I, Ty(L) = L, and Ty(L) = 2LT}_1 (L) — Tp—o(L).
The Graph Convolutional Network (GCN) filter, applies the above formula-
tion with k£ = 1:

go * £~ 0oTy(L)f + 0, Ty (L) ~ Oof + 0, (L — I)f ~ 6of — 6, D~ /2AD~1/2f

where we have assumed A4, = 2 (upper bound) and thus L=L-1.
In fact, the number of parameters is reduced even further by setting 8 =
90 = —911
go £~ 0(I + D~Y2AD/2)f

There is still a minor issue with the above expression. In case we want to
apply this convolution operator, repeatedly—as in multiple layers—the norm of
the resulting vector might become a problem. More specifically, given a vector

x, we know that:

1Bx[| _ Nonas (B)

x - [[x]]

Thus, we can apply a renormalization trick to the matrix to keep the norm of
the resulting vector constant. Let A = A+ I and D be such that D;; = > ; A;j
and bij = 0 for i # j. We can show that)\mam(D_l/Qflf)_l/Q) = 1. So, we

write:

gox £~ 0D V/2AD /¢

We can generalize GCN filters to the case of D-dimensional channels (or sig-
nals) X € R"*P. Let Z € R"*" be an h-dimensional output of the convolution.
Then, we can define the graph convolution as:

Z=D"'Y2AD'?2Xx06

where © € RP*" are parameters to be learned. It might be easier to look at
each row of Z:

Z[i] = > [DTYPADTY?);X (510
v; €N (vi)U{v; }

References

[1] William L Hamilton. Graph representation learning. Morgan & Claypool,
2020.

[2] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiw:1609.02907, 2016.

[3] Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University
Press, 2021.

