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Graph Convolution

A convolution is an operation that returns a function g∗f , given input functions
f and g. In the case of graph convolutions, one of the functions is a graph signal
f ∈ Rn—we will write as a vector. A key tool in defining graph convolutions is
the Graph Fourier Transform (GFT) f̂ = UT f , where L = I −D−1/2AD−1/2 =
UΛUT . As we have seen earlier, the eigenvectors of the Laplacian form a basis
for graph signals and the value of the associated eigenvalue provides a notion of
frequency for a basis vector.

The spectral convolution on a graph is defined as follows:

gθ ∗ f = Ugθ(Λ)UT f

where gθ(Λ) = diag(gθ(λ1), gθ(λ2), . . . gθ(λn))

Let f̂ = [f̂(λ1), . . . f̂(λn)]. Then, we can write each entry of gθ ∗ f as:

gθ ∗ f [v] =

n∑
`=1

f̂(λ`)gθ(λ`)u`[v]

We call gθ a filtering function. As an example, consider the following opti-
mization problem with the goal of learning a vector f such that it approximates
another vector y while also being smooth over the graph:

f∗ = arg min
f
||y − f ||22 + cfTLf

where c is a constant. We can think of y and f as noisy and de-noised labels
based on the graph topology, respectively. We minimize the objective by setting
the derivative to zero:

∂

∂f
||y − f ||22 + cfTLf = 2(f − y) + 2cLf = 0
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It follows that:

(I + cL)f = y

(UUT + cUΛUT )f = y

U(I + cΛ)UT f = y

f = U(I + cΛ)−1UTy

Minimizing our objective is equivalent to applying a filter gθ(λ`) = 1/(1 +
cλ`) to the noisy signal y. Intuitively, this filter reduces the importance high-
frequency components—in the graph topology—from y. If c = 0, then f = y.
On the other hand, as c→∞, f = 0n becomes a minima of the objective.

We will apply graph convolutions for learning problems by fitting the pa-
rameters of filtering function gθ(λ`) = θ`. As an example, consider that our
goal is to approximate a ground truth vector y ∈ Rn:

arg min
θ
||y − gθ ∗ f ||22

Then, by letting ŷ = UTy, we get the optimal filter:

gθ(λ`) =
ŷ(λ`)

f̂(λ`)
= θ`

The above example shows that graph filters are quite flexible. However,
notice that gθ has n parameters to be learned, which might be infeasible. In-
stead, we can fix the number of parameters to k+ 1 by assuming that gθ(λ`) =∑K
k=0 θkλ

k
`—i.e. it is a polynomial of λ`. As result, we get a different form for

the convolution:

gθ ∗ f = U(

K∑
k=0

θkΛk)U tf =

K∑
k=0

θkL
kf

An interesting property of the above formulation is that powers of the Lapla-
cian matrix are localized in the graph. The value of Lkij is zero if there is no path
between nodes i and j in the graph. However, a downside is that the Lapla-
cian powers are not orthogonal to each other. Instead, we can apply Chebyshev
polynomials to describe our filtering function:

gθ ∗ f = U(

K∑
k=0

θkTk(Λk))U tf =

K∑
k=0

θkTk(L̃)f

Chebyshev polynomials (of the first kind) are defined as follows:

Tk(x) =2xTk−1(x)− Tk−2(x)

T0(x) =1

T1(x) =x

where we assume x ∈ [−1, 1].
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We approximate a function f(x) using Chebyshev polynomials as follows:

f(x) ≈
∞∑
k=0

ckTk(x)

In practice, we apply a small number of polynomials K to approximate f(x).
Our goal is to apply these polynomials to approximate gθ(λ`). First, we have
to scale the entries of Λ within the range [−1, 1]:

Λ̃ =
2Λ

λmax
− I

Then, we get:

gθ(Λ̃) =

K∑
k=0

θkTk(Λ̃)

Now we can apply the approximation in the graph convolution:

gθ ∗ f = U(

K∑
k=0

θkTk(Λ̃))UT f =

K∑
k=0

θkTk(L̃)f

where:

L̃ =
2L

λmax
− I

The form of the Chebyshev polynomial applied to the Laplacian is as ex-
pected, T0(L̃) = I, T1(L̃) = L̃, and Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃).

The Graph Convolutional Network (GCN) filter, applies the above formula-
tion with k = 1:

gθ ∗ f ≈ θ0T0(L̃)f + θ1T1(L̃)f ≈ θ0f + θ1(L− I)f ≈ θ0f − θ1D−1/2AD−1/2f

where we have assumed λmax = 2 (upper bound) and thus L̃ = L− I.
In fact, the number of parameters is reduced even further by setting θ =

θ0 = −θ1:
gθ ∗ f ≈ θ(I +D−1/2AD−1/2)f

There is still a minor issue with the above expression. In case we want to
apply this convolution operator, repeatedly—as in multiple layers—the norm of
the resulting vector might become a problem. More specifically, given a vector
x, we know that:

max
x

||Bx||
||x||

= λmax(B)

Thus, we can apply a renormalization trick to the matrix to keep the norm of
the resulting vector constant. Let Ã = A+ I and D̃ be such that D̃ii =

∑
j Ãij

and D̃ij = 0 for i 6= j. We can show that λmax(D̃−1/2ÃD̃−1/2) = 1. So, we
write:

gθ ∗ f ≈ θD̃−1/2ÃD̃−1/2f
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We can generalize GCN filters to the case of D-dimensional channels (or sig-
nals) X ∈ Rn×D. Let Z ∈ Rn×h be an h-dimensional output of the convolution.
Then, we can define the graph convolution as:

Z = D̃−1/2ÃD̃−1/2XΘ

where Θ ∈ RD×h are parameters to be learned. It might be easier to look at
each row of Z:

Z[i] =
∑

vj∈N(vi)∪{vi}

[D̃−1/2ÃD̃−1/2]ijX[j]Θ
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