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Representation learning on graphs

Representation learning consists of learning features (or embeddings) from data.
This is an alternative to feature engineering, where feature generation relies on
domain knowledge. Learned representations are represented as d-dimensional
vectors. Representation learning can be either supervised or unsupervised, de-
pending on whether labels are applied in the process. These representations
can then be applied in so-called downstream tasks (e.g. classification, cluster-
ing, etc.). As examples, representations for words and images can be generated
using models such as Word2Vec and Convolutional Neural Networks (CNNs).

For the case of graph data, representation learning can be applied to learn
node, edge, and (entire) graph representations. The most popular approach for
supervised representation learning on graphs is Graph Neural Networks (GNNs),
which will be the focus of the next lecture. Here, we will focus on unsupervised
embedding methods based on random walks.

Skipgram

The embedding methods we will discuss here were inspired by the Skipgram
model for word embedding. The goal of word embedding is to learn dense (or
distributed) representations for words such that semantic relationships between
the words can be captured by distances/similarities between vectors. More
specifically, skipgram is based on the following principle proposed by the linguist
John Rupert Firth:

“You should know a word by the company it keeps”
Here, the “company” of a word is its context. The context of a word w is

the set of words within a fixed distance/radius from a given occurrence w. We
call the set of word occurrences and their contexts a corpus. We will associate
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Figure 1: Skipgram as a neural network.

a corpus and word representations using the following likelihood :

J(Θ) =

T∏
t=1

∏
−m≤j≤m

p(wt+j |wt,Θ)

where Θ—the set of parameters—contains representations for every word in the
vocabulary.

We will learn the word representations via maximum likelihood estimation.
Maximizing the above equation is the same as minimizing the following:

J ′(Θ) = −
T∑

t=1

∑
−m≤j≤m

p(wt+j |wt,Θ)

Skipgram applies the softmax function as p(wt+1|wt,Θ):

p(wo|wc,Θ) =
exp(uT

o vc)∑
w∈W exp(uT

wvc)
(1)

where uo is the output vector representation for word wo, vc is the input vector
representation for word wc and W is the vocabulary. Thus Θ = u1, . . .u|W |,
v1, . . .v|W |.

We can implement the skipgram model as a neural network, as shown in
Figure 1. Let hc and ho be one-hot encodings for wc and wo, respectively.
Moreover, let U, V ∈ R|W |×D be embedding matrices, where each row contains
the D-dimensional embedding for a word in the vocabulary. Then, we can
compute vc = V Thc and can predict σ(U(V Tvc)) ≈ uo, where σ is the softmax
activation function. Matrices U and V , which are weights in the network, can
be learned by minimizing the cross-entropy loss for pairs (wc, wo) in the corpus
using gradient descent.

One issue with the skipgram model from Figure 1 is the need for normaliza-
tion in the softmax activation (see Equation 1—the denominator depends on the
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entire vocabulary. We will describe a more efficient alternative using negative
sampling.

For an arbitrary pair of words wc, wo let’s define a label z such that z is 1
if the pair occurs within a window in the corpus or 0, otherwise. Let D and D′

be the multiset of pairs that occur and do not occur in the corpus, respectively.
We will define label probabilities using a sigmoid function, as follows:

p(z = 1|wc, wo) = σ(uT
o vc) =

1

1 + exp(−uT
o vc)

p(z = 0|wc, wo) = σ(−uT
o vc) =

1

1 + exp(uT
o vc)

Putting them together:

p(z|wc, wo) =

(
1

1 + exp(−uT
o vc)

)z (
1

1 + exp(uT
o vc)

)1−z

The likelihood function for this model can be computed as:

J(Θ) =
∏

wc,wo∈D∪D′

(
1

1 + exp(−uT
o vc)

)z (
1

1 + exp(uT
o vc)

)1−z

And the negative log-likelihood, to be minimized, is:

J ′(Θ) = −
∑

wc,wo∈D
log

(
1

1 + exp(−uT
o vc)

)
−

∑
wc,wo∈D′

log

(
1

1 + exp(uT
o vc)

)

The negative log-likelihood for each pair of words in D ∪D′ is as follows:

J ′
t(Θ) = −z log σ(uT

o vc)− (1− z) log σ(−uT
o vc)

However, notice that while sampling pairs in D is easy, the set D′ is much
larger. Word2vec proposes the use of negative sampling to efficiently sample
pairs that are likely to be in D′. More specifically, k random words are used as
negative samples for each unique pair:

J ′
wc,wo

(Θ) = −#(wc, wo)(log σ(u
T
o vc)− kEw∼P (w) log σ(u

T
wvc)) (2)

where #(wc, wo) is the number of times the pair occurs in the corpus P (w) is
the word probability in the corpus.

Computing representations that minimize the negative log-likelihood for the
entire corpus is also straightforward. Word2vec applies stochastic gradient de-
scent [6] to learn representations in an online fashion (one pair of words at a
time). For more details on word2vec see [4].
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Random-walk based graph embedding

Deepwalk, node2vec, and other similar graph embedding methods are inspired
by word2vec [3]. The idea is to apply a random walk process to extract patterns
similar to sentences in the text case. A random walk on a graph is a Markov
Chain X1, X2, . . . XT that starts at a given vertex and transitions through the
edges with probability given by:

p(Xt = v|Xt−1 = u) =
1

|N(u)|
(3)

where we have assumed that the graph is unweighted—this can be easily ex-
tended to weighted graphs.

Random-walk based graph embedding methods sample random walks start-
ing from each vertex in the graph. By treating each walk as a sentence, we can
apply the same algorithm described in the last section. Other variants skipgram
models—e.g. using hierarchical softmax—can also be applied.

Embedding via matrix factorization

Both the skipgram model and RW-based graph embedding can be formulated as
matrix factorization. In particular, skipgram with negative sampling is related
to the Pointwise Mutual Information Similarity (PMI) between words wo, wc in
the vocabulary:

PMI(wo, wc) = log
p(wo, wc)

p(wo)p(wc)
= log

#(wo, wc)

#(wo)#(wc)

where #(wo, wc) and #(wo) are counts of pairs and words, respectively.
By setting the derivative of Equation 2 with respect to uT

o vc to zero, we get:

uT
o vc = PMI(wo, wc)− log k

For the case of graph embedding, we can sample the initial vertex according
to the stationary distribution p(vc) = π ∈ [0, 1] of the random walk, where n
is the number of vertices in the graph and

∑
v∈V πv = 1. The value of πv is

the probability that the walker is at vertex v for an infinitely long walk. Then
p(vc, vo) = p(vc))p(vo|vc). Let us define the transition matrix M ∈ [0, 1]n×n,
where Muv = p(v|u). Then, we can write the PMI matrix of the random walk
as:

PMI = logΠMτ − log πTπ

where Π = diag(π) and τ is the length of the walk.
We can compute embedding matrices U and V using the Singular Value

Decomposion PMI = UV T = U ′ΛV ′T by setting U = U ′
√
Λ and V T =

√
ΛV ′T .
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