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Graph Partitioning

A graph cut (S, S) divides a weighted graph G = (V,E,W ) into partitions
S ⊆ V and S = V − S. Let |(S, S)| = |{(u, v) ∈ E|u ∈ S ∧ v ∈ S}| and |S| be
the size of the partition S. The edge expansion of S is defined as follows:

σ(S, S) =
|(S, S))|

min{|S|, |S|}

The sparsest cut problem asks for a cut (S, S) with minimum value of σ(S, S).
Notice that sparsest cut is an optimization problem. We can show that this
problem is NP-hard using a reduction from max-cut, which is also NP-hard [3].

We will show an interesting connection between the sparsest cut and the
spectrum of the Laplacian matrix. This will generalize our earlier observation
that λ2 is 0 iffG is disconnected. Let’s assume that |S| ≤ |S| ≤ |V |/2. Moreover,
let 1S ∈ {0, 1}n be the indicator vector of S:

[1S ]v =

{
1 if v ∈ S
0 otherwise

It follows that:

1T
SL1S =

∑
(u,v)∈E

([1S ]u − [1S ]v)2 = |(S, S)|

The quadratic form of 1S seems useful to connect the Laplacian and the
sparsest cut problem, but 1S is clearly not an eigenvector of the Laplacian—it
is not orthogonal to a constant vector. This can be fixed by instead considering
x = 1S − (|S|/|V |)1n. The entries of x are as follows:

xv =

{
1− |S|/|V | if v ∈ S
−|S|/|V | otherwise
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Now, we can show that x is orthogonal to the constant vector,
∑

v xv =∑
v[1S ]v − (|S|/|V |)

∑
v[1n]v = |S| − |S| = 0. Moreover, similar to 1S , x also

captures the size of the cut:

xTLx =
∑

(u,v)∈E

([1S ]u − |S|/|V | − [1S ]v + |S|/|V |)2 = |(S, S)|

Based on the Courant-Fischer theorem, we also need the squared norm of x
to associate it to eigenvectors of L:

xTx =
∑
v∈S

(
1− |S|
|V |

)2

+
∑
v∈S

(
− |S|
|V |

)2

=
|S||S|
|V |

Putting everything together:

λ2 ≤ min
x⊥1n

xTLx

xTx
= min

S
|V | |(S, S)|
|S||S|

≤ 2 min
S
σ(S, S) (1)

Similar to the edge expansion, we define the conductance of S as follows:

φ(S, S) =
|(S, S)|

min{vol(S), vol(S)}

where vol(S) =
∑

v∈S deg(v) is the volume of S.
Notice that the conductance and the edge expansion are quite similar. How-

ever, we need a different denominator to associate the conductance to the spec-
trum of the Laplacian:

yTLy

yTDy
=

xTD−1/2LD−1/2x

xTx
=

xTLx
xTx

where we have used the transformation y = D1/2x and L = D−1/2LD−1/2 is
the normalized Laplacian. The entries of L are as follows:

Luv =


1 if u = v

−1/
√
dudv if(u, v) ∈ E

0 otherwise

We can show that d1/2 = [
√
deg(v1), . . .

√
deg(vn)1/2] is the smallest eigen-

vector of L, with eigenvalue 0:

D−1/2LD−1/2d1/2 = D−1/2L1n = 0

We can use d1/2 to compute the second eigenvector of the generalized eigen-
value problem. Notice, that we cannot apply the Courant-Fischer theorem here
directly because of the denominator.

λ2 = min
x⊥d1/2

xTLx
xTx

= min
y⊥d

yTLy

yTDy
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We could also have applied a generalized version of Courant-Fischer to
achieve the same result. Similar edge expansion, we will apply a correction
to the indicator vector for S, y = 1S − (vol(S)/vol(V ))1n. It follows that
yTd = 0 and yTLy = |(S, S)|. We still have to compute the denominator:

yTDy =
∑
v∈S

deg(v)

(
1− vol(S)

vol(V )

)2

+
∑
v∈S

deg(v)

(
− vol(S)

vol(V )

)2

=
vol(S)vol(S)

vol(V )

Putting everything together:

λ2 ≤ min
x⊥d

xTLx

xTDx
= min

S
vol(V )

|(S, S)|
vol(S)vol(S)

≤ 2 min
S
φ(S, S) (2)

Equations 1 and 2 show that edge expansion and conductance have lower-
bounds related to the second eigenvalue of the Laplacian and normalized Lapla-
cian, respectively. However, they do not guarantee that there are partitions
with expansion and sparsity near λ2. This would require upper-bounds as a
function of λ2. For the case of conductance, such an upper-bound is given by
the Cheeger’s inequality [1, 5].

φ(S, S) ≤
√

2λ2

The proof of the Cheeger’s inequality is constructive, which means that we
can use it to find cuts (S, S) with such a conductance. The algorithm is quite
simple: (1) compute generalized eigenvector of y∗ = arg miny y

TLy/yTDy; (2)
sort vertices in V as v1, v2, . . . vn in increasing order according to y∗; (3) sweep
sorted vertices with 1 ≤ i ≤ n, letting S = {vi|i <= i}, and pick partition with
minimum conductance. This gives us a poly-time approximation algorithm for
minimizing conductance, which is also NP-hard.

Other Applications

For the remainder of this lecture, we will briefly cover two applications of spec-
tral graph theory.

Spectral Clustering

Spectral clustering is a popular clustering algorithm based on the spectrum
of the (standard or normalized) Laplacian matrix [6]. Given a dataset D =
{x1, . . .xn}, our goal is to partitionD into k non-overlapping clusters C1, C2, . . . Ck.
First, we build a complete weighted graph, with n(n− 1)/2 edges, where Wij =
exp(−γ||xi − xj ||) and γ is a parameter. The matrix W captures pairwise
similarities using the so-called Radial Basis Function (RBF) Kernel—there are
other alternatives. We can use W to cluster the data as follows:
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1. Compute (standard or normalized) Laplacian L = D −W ;

2. Compute first r eigenvectors u1, . . .ur of L;

3. Create new feature matrix from eigenvectors, where x′i = [u1[i], . . .ur[i]];

4. Cluster data using new features x′1, . . .x
′
n (e.g. applying k-means).

Notice that we can also apply spectral clustering directly to a weighted or
unweighted graph.

Signal Processing on Graphs

Signal Processing on Graphs (SPG) is a recent effort to generalize traditional
signal processing to graph data [4]. A graph signal f ∈ Rn contains a value
f [v] for node v ∈ V . SPG enables the application of several operations defined
for traditional signals (e.g. compression, sampling, filtering) to graph signals.
For instance, the graph Fourier transform generalizes the traditional Fourier
transform as follows:

f̂(λ`) = 〈f ,u`〉

where u` is an eigenvector of the Laplacian of the graph and f̂(λ`) is a Fourier
coefficient.

We can also define an inverse operation:

f [v] =

n∑
`=1

f̂(λ`)u`[v]

Because the eigenvectors of L form an orthonormal basis for signals f , the
inverse gives a perfect reconstruction of the input signal. Moreover, based on
the intuition have built in the past lectures, smooth signals should project well
on the smallest eigenvectors of L. Thus, we can approximate such signals with
few graph Fourier coefficients.
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