Machine Learning with Graphs: Spectral Graph Theory 2/3-Laplacian Eigenvectors and Eigenvalues (cont.)

Arlei Silva

Spring 2022

The Laplacian matrix (cont.)

We will continue developing our understanding of the spectrum of the graph Laplacian using examples.

A ring (or cycle) graph has a Laplacian matrix as following $(n=4)$:

$$
L=\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

Matrices with the structure above - rows have the same elements rotated to the right-are called circulant and are a special case of Toeplitz matrices. An eigenvector \S of L must satisfy the following:

$$
L \mathbf{x}=\left[\begin{array}{l}
2 x_{1}-x_{2}-x_{4} \\
2 x_{2}-x_{1}-x_{3} \\
2 x_{3}-x_{2}-x_{4} \\
2 x_{4}-x_{2}-x_{1}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Assuming that $x_{-1}=x_{n}$ and $x_{n+1}=1$-i.e. indices are modulo n and shifted by $1-$ we can write $2 x_{i}-x_{i-1} i x_{i+1}=\lambda x_{i}$. Thus, we know that if $\mathbf{x}=$ $\left[x_{1}, x_{2}, \ldots x_{n}\right]^{T}$ is an eigenvector of L, the same holds for $\left[x_{2}, x_{3}, \ldots x_{n}, x_{1}\right]$ and any other cyclic permutation of \mathbf{x}. This gives us a hint on the how these eigenvectors should look like. Assuming that n is even, $\mathbf{x}_{0}, \ldots \mathbf{x}_{n / 2}, \mathbf{y}_{0}, \ldots \mathbf{y}_{n / 2-1}$ are eigenvectors of L, as defined below, are eigenvectors of L :

$$
\mathbf{x}_{k}=\left[\cos (0), \cos \left(\frac{2 \pi k}{n}\right), \cos \left(\frac{4 \pi k}{n}\right), \ldots \cos \left(\frac{2(n-1) \pi k}{n}\right)\right]
$$

for $k=0,1, \ldots n / 2$

Figure 1: Projection of a path graph on a ring graph.

$$
\mathbf{y}_{k}=\left[\sin (0), \sin \left(\frac{2 \pi k}{n}\right), \sin \left(\frac{4 \pi k}{n}\right), \ldots \sin \left(\frac{2(n-1) \pi k}{n}\right)\right]
$$

for $k=1,2, \ldots(n / 2)-1$
Using the following identities:

$$
\begin{aligned}
& \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& \cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)
\end{aligned}
$$

We can show that:

$$
2 \cos \left(\frac{2 \pi k j}{n}\right)-\cos \left(\frac{2 \pi k(j-1)}{n}\right)-\cos \left(\frac{2 \pi k(j+1)}{n}\right)=\left(2-2 \cos \left(\frac{2 \pi k}{n}\right)\right) \cos \left(\frac{2 \pi k j}{n}\right)
$$

We can use a similar reasoning to show that $(2-2 \cos ((2 \pi k) / n))$ is also an eigenvalue for \mathbf{y}_{k}.

Let's consider now the case of a path graph, which is a bit more complex than for rings graphs. Still, the spectrum of paths and rings are quite related. We will show that the eigenvectors of a path graph are as follows:

$$
\mathbf{x}_{k}=\left[\cos \left(\frac{\pi k}{n}-\frac{\pi k}{2 n}\right), \cos \left(\frac{2 \pi k}{n}-\frac{\pi k}{2 n}\right), \ldots \cos \left(\frac{n \pi k}{n}-\frac{\pi k}{2 n}\right)\right]
$$

for $k=0,1, \ldots n-1$
Moreover, the associated eigenvalues are in the form $2-2 \cos ((\pi k) / n))$.
To show this, we will use the a projection trick illustrated in Figure 1. A path with n vertices is projected on a ring with $2 n$ vertices. More specifically, a vertex with index i is mapped to vertices with indices i and $n+i$ in the ring. We
will show how the eigenvectors of these two graphs are related. Let L_{P} and L_{R} be the Laplacians of the path and ring, respectively. We can show the following:

$$
\left[I_{n}, I_{n}\right] L_{R}\left[\begin{array}{c}
I_{n} \\
I_{n}
\end{array}\right]=2 L_{P}
$$

where I_{n} is an $n \times n$ identity matrix.
Now, assume that we have an eigenvector $\mathbf{y}=\left[\mathbf{y}^{(1)}, \mathbf{y}^{(2)}\right]$ of L_{R}-i.e. $y_{i}=$ $y_{n+i}, \forall i$. Then, we can show that $\mathbf{x}=\mathbf{y}^{(1)}$ is an eigenvector of L_{P}.

$$
\begin{gathered}
{\left[\begin{array}{c}
I_{n} \\
I_{n}
\end{array}\right] \mathbf{x}=\mathbf{y}} \\
L_{R}\left[\begin{array}{l}
I_{n} \\
I_{n}
\end{array}\right] \mathbf{x}=\lambda \mathbf{y} \\
{\left[I_{n}, I_{n}\right] L_{R}\left[\begin{array}{l}
I_{n} \\
I_{n}
\end{array}\right] \mathbf{x}=2 L_{P} \mathbf{x}=2 \lambda \mathbf{x}}
\end{gathered}
$$

Now we know how to find \mathbf{x} from \mathbf{y}, but how do we find \mathbf{y} ? We can show that this holds for:

$$
\mathbf{y}_{k}=\left[\cos \left(\frac{\pi k}{n}-\frac{\pi k}{2 n}\right), \cos \left(\frac{2 \pi k}{n}-\frac{\pi k}{2 n}\right), \ldots \cos \left(\frac{2 n \pi k}{n}-\frac{\pi k}{2 n}\right)\right]
$$

for $k=0,1, \ldots n-1$
First, we have to show that $\left[\mathbf{y}_{k}\right]_{i}=\left[\mathbf{y}_{k}\right]_{n+1}$:

$$
\cos \left(\frac{\pi k j}{n}-\frac{\pi k}{2 n}\right)=\cos \left(\frac{\pi k(n+j)}{n}-\frac{\pi k}{2 n}\right)=
$$

which can be done again using the same trigonometric identities used earlier.
We can also use the trigonometric identities to show that \dagger_{k} is an eigenvector of L_{R} (ring graph), and thus $2\left[\mathbf{y}_{k}\right]_{j}-\left[\mathbf{y}_{k}\right]_{j-1}-\left[\mathbf{y}_{k}\right]_{j+1}=\lambda_{k}\left[\mathbf{y}_{k}\right]_{j}$. In fact, this holds for $\lambda_{k}=(2-2 \cos ((2 \pi k) / n))$.

References

[1] Fan RK Chung and Fan Chung Graham. Spectral graph theory. American Mathematical Soc., 1997.
[2] Jiaqi Jiang. An introduction to spectral graph theory. http://math. uchicago.edu/~may/REU2012/REUPapers/JiangJ.pdf, 2012.
[3] Daniel Spielman. Spectral graph theory. Combinatorial scientific computing, 2012.

