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Spectral Graph Theory (SGT) provides elegant connections between graphs
and matrices—especially the so-called graph Laplacian. While most relevant
graph problems are NP-hard, a few of them can be approximated as eigen-
vector/eigenvalue problems, which are solvable in poly-time. Here, we will in-
troduce the Laplacian matrix and show how we can use its spectrum to solve
machine learning problems, such as graph partitioning.

Linear algebra

Spectral graph theory relies on a few fundamental concepts and theorems from
Linear Algebra. If you need a refresher on the subject, Gilbert Strang’s books
[5, 4] are good references.

We say that (λ,x) is an eigenvalue-eigenvector pair for a matrix M if:

Mx = λx

Eigenvalues can also be defined as roots of a matrix polynomial:

det(λI −M)

We will focus on the case where M is symmetric. Thus, we can use the spec-
tral theorem to show that M has real eigenvalues and orthonormal eigenvectors.

Theorem 1 (The spectral theorem) A real symmetric matrix M ∈ Rn×n has
real eigenvalues λ1, . . . λn and orthonormal eigenvectors x1, . . .xn.

The quadratic form of a square matrixM is the scalar xTMx =
∑

ij Mi,jxixj .
We can use the quadratic form to define the Rayleigh–Ritz quotient of M ,
xTMx/xTx. The Courant-Fischer theorem applies the Rayleigh-Ritz quotient
of M to define eigenvalues as the solution of optimization problems.

Theorem 2 (Courant-Fischer theorem) The eigenvalues λ1, . . . λn of a sym-
metric matrix M are such that:

1



λk = max
S⊆Rn

dim(S)=k

min
x∈S
x6=0

xTMx

xTx
= min

T⊆Rn

dim(S)=n−k+1

max
x∈T
x6=0

xTMx

xTx

where S and T are subspaces and dim(S) is the dimension of S.

The following definitions for λ1, λ2, λ3, . . . follow from Courant-Fischer:

λ1 = min
x6=0

xTMx

xTx

λ2 = min
x6=0
x⊥x1

xTMx

xTx

λ3 = min
x6=0

x⊥{x1,x2}

xTMx

xTx

Notice that, for orthonormal eigenvectors, the denominator xTx = 1.

The Laplacian matrix

We will assume that G is undirected and unweighted. However, everything
discussed here can be easily generalized to the case of weighted graphs.

The Laplacian can be defined in terms of the adjacency and degree matrices.
The adjacency matrix A ∈ Rn×n of a graph G = (V,E) is defined as:

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise

And the degree matrix of G is defined as:

Dij =

{
deg(vi) if i = j

0 otherwise

The Laplacian L ∈ Rn×n of G is the difference between the degree and
adjacency matrices:

L = D −A

The first interesting property of the Laplacian is that its quadratic form is
a measure of the “smoothness” of § in G:

xTLx =
∑

(vi,vj)∈E

(xi − xj)2

It follows that L is positive semi-definite (PSD), since xTLx ≥ 0. Moreover,
we can use the Courant-Fischer theorem to show that its first eigenvalue λ1 = 0
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with eigenvector 1n/
√
n (xTLx = 0). Using a similar argument, we can show

that the second eigenvalue λ2 = 0 iff G is disconnected—we can again find a
vector x such that xTLx = 0 and x ⊥ 1n/

√
n.

So far, our understanding of the spectrum of the Laplacian is limited to
(λ1,x1) and, if the graph is disconnected, (λ2,x2). But what can we say about
λ2, . . . λn and x1, . . .xn in general? We can gain some insights by looking at
specific graphs.

A clique (or complete graph) with n vertices has Laplacian L = nI−1n×n =
nI − 1T

n1n, where I is the identity matrix. By definition, nIx = nx for any
x. Moreover, eigenvectors of 1T

n1n are such that 1T
n

∑
i x[i] = λx. We know

that xn = 1n is an eigenvector with eigenvalue λn = n. All other eigenvectors
x1, . . .xn−1 must be orthogonal to 1n (

∑
i x[i] = 0) and thus their associated

eigenvalue must be λ1 = . . . λn−1 = 0. Because these eigenvectors are also
eigenvectors of nI, they are eigenvectors of L with eigenvalues λ′1 = n− n = 0
and λ2 = . . . λn = n− 0 = n.
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