Machine Learning with Graphs: Spectral Graph Theory 1/3-Intro, Laplacian

Arlei Silva

Spring 2022

Spectral Graph Theory (SGT) provides elegant connections between graphs and matrices-especially the so-called graph Laplacian. While most relevant graph problems are NP-hard, a few of them can be approximated as eigenvector/eigenvalue problems, which are solvable in poly-time. Here, we will introduce the Laplacian matrix and show how we can use its spectrum to solve machine learning problems, such as graph partitioning.

Linear algebra

Spectral graph theory relies on a few fundamental concepts and theorems from Linear Algebra. If you need a refresher on the subject, Gilbert Strang's books [5, 4] are good references.

We say that (λ, \mathbf{x}) is an eigenvalue-eigenvector pair for a matrix M if:

$$
M \mathrm{x}=\lambda \mathbf{x}
$$

Eigenvalues can also be defined as roots of a matrix polynomial:

$$
\operatorname{det}(\lambda I-M)
$$

We will focus on the case where M is symmetric. Thus, we can use the spectral theorem to show that M has real eigenvalues and orthonormal eigenvectors.

Theorem 1 (The spectral theorem) A real symmetric matrix $M \in \mathbb{R}^{n \times n}$ has real eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ and orthonormal eigenvectors $\mathbf{x}_{1}, \ldots \mathbf{x}_{n}$.

The quadratic form of a square matrix M is the scalar $\mathbf{x}^{T} M \mathbf{x}=\sum_{i j} M_{i, j} \mathbf{x}_{i} \mathbf{x}_{j}$. We can use the quadratic form to define the Rayleigh-Ritz quotient of M, $\mathbf{x}^{T} M \mathbf{x} / \mathbf{x}^{T} \mathbf{x}$. The Courant-Fischer theorem applies the Rayleigh-Ritz quotient of M to define eigenvalues as the solution of optimization problems.

Theorem 2 (Courant-Fischer theorem) The eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ of a symmetric matrix M are such that:

$$
\lambda_{k}=\max _{\substack{S \subseteq \mathbb{R}^{n} \\ \operatorname{dim}(S)=k}} \min _{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq 0}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\min _{\substack{T \subseteq \mathbb{R}^{n} \\ \operatorname{dim}(S)=n-k+1}} \max _{\substack{\mathbf{x} \in T \\ \mathbf{x} \neq 0}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

where S and T are subspaces and $\operatorname{dim}(S)$ is the dimension of S.
The following definitions for $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ follow from Courant-Fischer:

$$
\begin{aligned}
\lambda_{1} & =\min _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
\lambda_{2} & =\min _{\substack{\mathbf{x} \neq 0 \\
\mathbf{x} \perp \mathbf{x}_{1}}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
\lambda_{3} & =\min _{\substack{\mathbf{x} \neq 0 \\
\mathbf{x} \perp\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
\end{aligned}
$$

Notice that, for orthonormal eigenvectors, the denominator $\mathbf{x}^{T} \mathbf{x}=1$.

The Laplacian matrix

We will assume that G is undirected and unweighted. However, everything discussed here can be easily generalized to the case of weighted graphs.

The Laplacian can be defined in terms of the adjacency and degree matrices. The adjacency matrix $A \in \mathbb{R}^{n \times n}$ of a graph $G=(V, E)$ is defined as:

$$
A_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

And the degree matrix of G is defined as:

$$
D_{i j}= \begin{cases}\operatorname{deg}\left(v_{i}\right) & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The Laplacian $L \in \mathbb{R}^{n \times n}$ of G is the difference between the degree and adjacency matrices:

$$
L=D-A
$$

The first interesting property of the Laplacian is that its quadratic form is a measure of the "smoothness" of \S in G :

$$
\mathbf{x}^{T} L \mathbf{x}=\sum_{\left(v_{i}, v_{j}\right) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

It follows that L is positive semi-definite (PSD), since $\mathbf{x}^{T} L \mathbf{x} \geq 0$. Moreover, we can use the Courant-Fischer theorem to show that its first eigenvalue $\lambda_{1}=0$
with eigenvector $\mathbf{1}_{n} / \sqrt{n}\left(\mathbf{x}^{T} L \mathbf{x}=0\right)$. Using a similar argument, we can show that the second eigenvalue $\lambda_{2}=0$ iff G is disconnected-we can again find a vector \mathbf{x} such that $\mathbf{x}^{T} L \mathbf{x}=0$ and $\mathbf{x} \perp \mathbf{1}_{n} / \sqrt{n}$.

So far, our understanding of the spectrum of the Laplacian is limited to $\left(\lambda_{1}, \mathbf{x}_{1}\right)$ and, if the graph is disconnected, $\left(\lambda_{2}, \mathbf{x}_{2}\right)$. But what can we say about $\lambda_{2}, \ldots \lambda_{n}$ and $\mathbf{x}_{1}, \ldots \mathbf{x}_{n}$ in general? We can gain some insights by looking at specific graphs.

A clique (or complete graph) with n vertices has Laplacian $L=n I-\mathbf{1}_{n \times n}=$ $n I-\mathbf{1}_{n}^{T} \mathbf{1}_{n}$, where I is the identity matrix. By definition, $n I \mathbf{x}=n \mathbf{x}$ for any \mathbf{x}. Moreover, eigenvectors of $\mathbf{1}_{n}^{T} \mathbf{1}_{n}$ are such that $\mathbf{1}_{n}^{T} \sum_{i} \mathbf{x}[i]=\lambda \mathbf{x}$. We know that $\mathbf{x}_{n}=\mathbf{1}_{n}$ is an eigenvector with eigenvalue $\lambda_{n}=n$. All other eigenvectors $\mathbf{x}_{1}, \ldots \mathbf{x}_{n-1}$ must be orthogonal to $\mathbf{1}_{n}\left(\sum_{i} \mathbf{x}[i]=0\right)$ and thus their associated eigenvalue must be $\lambda_{1}=\ldots \lambda_{n-1}=0$. Because these eigenvectors are also eigenvectors of $n I$, they are eigenvectors of L with eigenvalues $\lambda_{1}^{\prime}=n-n=0$ and $\lambda_{2}=\ldots \lambda_{n}=n-0=n$.

References

[1] Fan RK Chung and Fan Chung Graham. Spectral graph theory. American Mathematical Soc., 1997.
[2] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages 85-103. Springer, 1972.
[3] Daniel Spielman. Spectral graph theory. Combinatorial scientific computing, 2012.
[4] Gilbert Strang. Linear algebra and learning from data. Wellesley-Cambridge Press, 2019.
[5] Gilbert Strang. Introduction to linear algebra. 2021.

