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The Erdos-Renyi Model

In the last lecture, we have learned about different structural properties of real
graphs, such as the degree distribution and clustering coefficient. Here, we
will focus on network models that are able to reproduce the properties of real
networks. There are several reasons why such models are useful, for instance:

• They enable the generation of large synthetic datasets;

• They support mathematical reasoning about properties of a family of
graphs;

• They might provide evidence for the link formation process of the data.

The simplest class of network models are random graph models. The most
popular among these models is the Erdos-Renyi (ER) model G(n, p), where n is
the number of vertices and edges are formed with uniform probability p. Using
this simple definition, we can infer the following properties of ER graphs:

Probability of any network G with n vertices and m edges:

P (G) = pm(1− p)(
n
2)−m

Expected number of edges:

E[m] =

(
n

2

)
p

Expected degree:
E[deg(v)] = (n− 1)p

Degree distribution:

P [deg(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k (1)

which is the Binomial distribution.
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Figure 1: Degree distribution for average degree λ = (n− 1)p.

We can use the Poisson approximation of the Binomial distribution to ap-
proximate the degree distribution of large graphs (i.e. n→∞):

P [deg(v) = k] ≈ e−λλk

k!

where λ = (n− 1)p (expected degree).
Clustering coefficient:

C = p

For constant expected node degree (n − 1)p, C = (n − 1)p/(n − 1), which
tends to 0 as n→∞

The diameter of an ER graph is O(log n). Let duv be the shortest path
between nodes u and v. We know that the expected degree in G is (n − 1)p
and thus the expected number of nodes within k hops from v is approximately
(n− 1)kpk (for large enough n). Let ` = ku + kv − 1, then duv > ` if the ku-hop
neighborhood of u is not connected to the kv-hop neighborhood of v, thus:

P (duv > `) = (1− p)(n−1)
`−1p`−1

We are interested in the diameter as n grows and the average degree (n −
1)p = λ remains constant:

P (duv > `) = (1− λ

n− 1
)λ

`−1

We can simplify the above equation taking the log of both sides and using
the first term of the series expansion of log(1− λ/(n− 1)) ≈ −λ/(n− 1):

P (duv > `) ≈ exp(− λ`

n− 1
)

By definition, the diameter of G is the minimum ` such that P (du,v > `) = 0.
For large n, P (duv > `) = 0 when λ` = Ω(n1+ε) and ε > 0. This requires
` = const+ (1 + ε) log(n)/ log(λ) = O(log(n)).
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Figure 2: Degree distribution for a real co-mention network[4] and the predicted
Poisson distribution.

Figure 3: Degree distribution for a real co-mention network and the predicted
power-law distribution.
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Preferential Attachment

Preferential attachment models were motivated by some of the differences be-
tween ER and real networks. For instance, the degrees of the real networks
described in the previous lecture do not fit a Poisson distribution. Figure 2
shows the degree distribution for a co-mention network among US congress-
people and the Poisson distribution with the best fit. Notice that the real
distribution is much more skewed. A better fit for the degree distribution of
our dataset with a power-law distribution is shown in Figure 3. The density
function of the power-law distribution is defined as follows:

P (dv = k) = αk−β

where α and β are parameters.
Preferential attachment models attempt to match the degree distributions

observed in real data. Here, we will introduce the most popular preferential
attachment model, the Barabasi-Albert (BA) network. The BA model shares
many similarities with the Price’s model, originally proposed for citation net-
works. The model starts with an empty network and nodes are added one by
one. Each new node is connected to c existing ones selected with probability
proportional to their current degree.

Degree distribution

Similar to the case of the ER networks, we will analyze the degree distribution
of BA networks. Let the degree of node v be dv = c+ qv, where qv is the added
degree of v—i.e. due to new nodes added to G. We know that the probability
of such an added edge to be incident to v is:

c+ qv∑
u∈V c+ qu

=
c+ qu
2nc

Let pk(n) be the fraction of nodes with degree k when G has n nodes. The
expected number of new edges connecting to nodes with added degree k is:

npk(n)× c× k

2nc
= pk(n)

k

2

We can use the above equation to write down a master equation for the
evolution of the degree distribution as new nodes are added:

(n+ 1)pk(n+ 1) = npk(n) + pk−1(n)× k − 1

2
− pk(n)× k

2

which holds for k > c. For k = c, we have:

(n+ 1)pc(n+ 1) = npc(n) + 1− pc(n)× c

2
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Let pk be the value of pk(n) as n → ∞, then we can re-write the above
equations as follows:

pc =
2

2 + c

pk = pk−1 ×
k − 1

k + 2

Moreover, we can expand pk and cancel several terms:

pk =
2

2 + c
× k − q
k − q + 3

. . .× k − 2

k + 1
× k − 1

k + 2
= 2× c(c+ 1)

k(k + 1)(k + 2)

Thus, for large k, we get:
pk ≈ k−3

which shows that pk follows a power-law with β = 3.

Other properties

The total number of edges in a BA network is m = nc and the average degree
is 2c. It has been shown that the diameter of a BA network is approximately
ln(n)/ ln ln(n) and the clustering coefficient is approximately ln(n)2/n [1].
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