
Machine Learning with Graphs:

Graph Algorithms 2/2 - Hardness, Hard problems

Arlei Silva

Spring 2022

Computational Hardness

Most problems we have discussed in the previous lecture have polynomial-time
algorithms—they can be solved exactly in time O(nO(1)), where n is the size of
the input. Unfortunately, that is rarely the case. Long story short, complexity
theory provides tools to identify which problems likely don’t have a poly-time
algorithm. In such situations, designing an approximation algorithm or heuristic
might be a better use for our time.

The first step in understanding what we mean by a hard problem is the fact
that we don’t know a good way to show that there isn’t a poly-time algorithm
for a problem, or, more broadly, the complexity of its (asymptotically) fastest
algorithm. All we know is that some problems seem to be harder than others.
This is formalized using the notion of complexity class—i.e. two problems are
in the same class if solving them requires a similar amount of resources. A
complexity class also depends on a model of computation, which gives the cost
of the fundamental operations required to produce the output.

During this course, we will only discuss two complexity classes, P and NP.
These classes are defined for decision problems—i.e. the output is YES/NO.
Formally, a problem is in P if it can be solved in poly-time using a deterministic
Turing Machine. Informally, problems in P can be solved efficiently. A problem
is in NP (Non-deterministic poly-time) if it can be verified in poly-time by a
deterministic Turing Machine.1 Notice that, by definition, P is a subset of NP ,
but we don’t know whether P is a proper subset of NP .

A problem is said to be NP-hard if it is as hard as any problem in NP.
More formally, any problem in NP can be reduced to an NP-hard problem in
poly-time. Notice that NP-hard problems are not necessarily in NP and are not
constrained to be decision problems. Problems that are both NP and NP-hard
are called NP-complete.

Most machine learning problems are not decision problems but instead op-
timization problems (e.g., maximizing the likelihood of a model given the data,
minimizing a loss function). An optimization problem can be written as:

1Or it can be solved in poly-time by a non-deterministic Turing Machine

1

max f(x) st. x ∈ X

As we will see along this course, NP-hardness often separates the ideal so-
lution from what is practical in machine learning.

Another notion of hardness that will be mentioned during this course is
defined for counting problems. A counting problem asks how many solutions
exist given an input. The classes #P, #P-complete, and #P-hard, are counting
counterparts for NP, NP-complete, and NP-hard. In particular, a #P-complete
problem is at least as hard as any NP-complete problem. Counting complexity
is useful for analyzing the sampling complexity—i.e. how many samples are
required—of machine learning algorithms.

The First NP-complete Problems

The first problem shown to be NP-complete was the Satisifiability Problem
(SAT). Given a CNF (Conjunctive Normal Form) expression φ = C1∧C2∧Cm,
where Ci = (li1 ∨ li2 ∨ . . . lik) is a clause with lij ∈ {x1, . . . xn, x1, . . . xn},
the problem consists of whether there is an assignment to boolean variables
x1, . . .x n, xi ∈ {0, 1}, such that φ is satisfied (true). In particular, SAT is hard
even if we constrain each clause to have only 3 literals (e.g. Ci = (x1∨x2∨x3)),
which is known as 3-SAT.

After SAT was shown to be NP-complete, several problems followed. The
first comprehensive list of NP-complete problems–including max-cut, set-cover,
and k-clique—was published by Karp in 1972 [2].

Some NP-hard Graph Problems

Many graph problems that we will see along this course are NP-hard. Here, we
discuss a few representative examples.

Vertex cover

A vertex cover for a graph G = (V,E) is a set of vertices V ′ ⊂ V such that for
every (u, v) ∈ E, u ∈ V ′ or v ∈ V ′. In vertex cover problem, we ask whether a
graph G = (V,E) contains a cover of size k.

We will show that vertex cover is NP-complete. First, it is easy to show
that vertex cover is in NP, i.e. there exists a poly-time algorithm to verify if a
solution is correct. Any candidate cover can be checked in time O(|E|). To show
that vertex cover is NP-hard, we will use a reduction from 3-SAT (see previous
section). For each variable xi create vertices vi and vi, each pair connected by
an edge. Moreover, for each clause Ci, create a triangle in G, with a vertex
associated to each literal lij in Ci. Each node corresponding to lij is connected
to vi if lij = xi of vi if lij = xi. We clam φ is satisfiable iff G has a cover with
k = 2n+m vertices.

2

v1

v1

v2

v2

v3

v3

l12 l13

l11

l22 l23

l21

l32 l33

l31

Figure 1: Example of reduction from 3-SAT instance (x1 ∨ x2 ∨ x2)∧ (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) to a vertex cover instance.

Figure 1 shows an example of the reduction for an instance of 3-SAT.

Subgraph isomorphism

Two graphs, G(V,E) and G′(V ′, E′), are isomorphic if there is a bijection f :
V → V ′ such that (u, v) ∈ E iff (f(u), f(v)) ∈ E′. We say that G′ is subgraph
isomorphic to G if G′ is isomorphic to a subgraph of G.

The subgraph isomorphism problem asks whether a graph G′ is subgraph
isomorphic to another graph G (decision). We will show that subgraph isomor-
phism is NP-complete. First, we have to show that the problem is in NP. A
solution here is a mapping from f ′ : V ′′ → V ′, where V ′′ ⊆ V and we want to
check if f ′ is a bijection. This can be easily done using the definition of bijection
for the edges induced by V ′′ in E.

We want to show that subgraph isomorphism is NP-hard. We will use a
reduction from clique problem, which, given a graph H and a constant k, asks
whether H has a complete subgraph with k vertices. Clique is known to be
NP-complete [2]. Let G = H and let G′ be a complete graph with k vertices.
Then, G′ is subgraph isomorphic to G iff H contains a clique of size k.

Sparsest cut

A graph cut (S, S) divides a weighted graph G = (V,E,W) into partitions
S ⊆ V and S = V − S. Let |(S, S)| = |{(u, v) ∈ E|u ∈ S ∧ v ∈ S}| and |S| be
the size of the partition S. The edge expansion of S is defined as follows:

σ(S, S) =
|(S, S))|

min{|S|, |S|}

3

Given a graphG, the sparsest cut problem asks for a cut (S, S) with minimum
value of σ(S, S). Notice that sparsest cut is an optimization problem. We will
show that this problem is NP-hard using a reduction from max-cut, wich is also
NP-hard [2]. Given a graph H = (V ′, E′), max-cut asks for a cut (T, T) of H
with maximum |(T, T)|. We build a graph G = (V,E) such that V = V ′ ∪ U
and |U | = |V ′|. Moreover, E = {(u, v)|u, v ∈ V ∧ u 6= v} − E′.

Let S = T ∪ T ′, where T ⊆ V ′, T ′ ⊆ W , and |S| ≤ |V |/2. Then, |(S, S)| =
|S||V | − |S|2 − |(T, T)|. Moreover, the edge expansion of S is as follows:

σ(S, S) =
|S||V | − |S|2 − |(T, T)|

|S|

Now, we claim that σ(S, S) is minimum for |S| = |V |/2, which gives:

σ(S, S) =
|V |
2
− 2
|(T, T)|
|V |

Finally, because |V | is constant:

minσ(S, S) =
|V |
2
− 2

max |(T, T)|
|V |

References

[1] Volker Kaibel. On the expansion of graphs of 0/1-polytopes. In The Sharpest
Cut: The Impact of Manfred Padberg and His Work, pages 199–216. SIAM,
2004.

[2] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[3] Ingo Wegener. Complexity theory: exploring the limits of efficient algo-
rithms. Springer Science & Business Media, 2005.

4

