
Machine Learning with Graphs:

Graph Algorithms 1/2 - Definitions, Problems

Arlei Silva

Spring 2022

We will formally define a few types of graphs and introduce graph problems
and algorithms useful for machine learning.

Definitions and Notation

A graph is a tuple G = (V,E), where V is a set of vertices/nodes {v1, v2, . . . vn},
and E is a set of m edges/links/arcs E = {e1, . . . em}, where ei = {u, v} is an
unnordered tuple and u, v ∈ V . If {u, v} ∈ E, we say that u and v are neighbors
(or adjacent). The set of all neighbors of v is given by N(v) = {u|{u, v} ∈ E}.
The degree d(v) = N(v) of a vertex v is its number of neighbors. A graph with
|E| =

(
n
2

)
—i.e. d(v) = n− 1,∀v ∈ V—is called a complete graph.

We call G′ = (V ′, E′) a subgraph of G if V ′ ⊂ V and E′ ⊂ E. A k-clique
of G is a subgraph G′ of G where |V ′| = k and G′ is a complete graph. A
triangle is a 3-clique. Two graphs G = (V,E) and G′ = (V ′, E′) are said
to be isomorphic if there is a bijection φ : V → V ′ such that {u, v} ∈ E iff
{φ(u), φ(v)} ∈ E′. A subraph G′ of G is subgraph isomorphic to G if G′ is
isomorphic to a subgraph of G, i.e. there is a bijection φ : V ′ → V such that if
{u, v} ∈ E′ then {φ(u), φ(v)} ∈ E.

A path is a set of vertices that can be ordered as (v1, v2, . . . vk) such that
{vi, vi+1} ∈ E,∀1 ≤ i < n. The start (v1) and end (vk) vertices in a path are
called source and destination, respectively. A cycle is a path with the additional
edge {v1, vk}.

A path graph is a graph formed by a single path and a cycle graph is a
graph formed by a single cycle. A tree is a graph with no cycles. A chordal
graph is a graph where every cycle with 4 or more vertices has an additional
edge connecting two of its vertices (a chord). In a (square) grid graph, each
vertex vi,j can be assigned to positive integer positions (i, j) of the 2-D plane
and there is an edge {vi,j , vi′,j′} if either (1) i = i′ and |j − j′| = 1 or (2) j = j′

and |i − i′| = 1. A grid graphs are a special case of a lattice or mesh graph,
which is any graph that forms a regular tiling in Rn.

A simple graph is a graph that is undirected, unweighted, and does not
contain loops or multiple edges. If multiple edges are allowed, the graph is

1

called a multigraph.
A directed graph is a generalization of graphs where edges are ordered tu-

ples ei = (u, v). Vertices in directed graphs have in-neighbors Ni(v) = {u ∈
V |(u, v) ∈ E} and out-neighbors No(v) = {u ∈ V |(v, u) ∈ E}, with correspond-
ing definitions for in-degree, out-degree, and paths.

A weighted graph G = (V,E,W) is another generalization of graphs where
W : E → R is an edge weighting function. For convenience, we will use the
notation wu,v = W (u, v). Weights can represent either costs or similarities.
There are intuitive generalizations for most definitions for simple graphs. For
instance, the weighted degree is defined as d(v) =

∑
u∈N(v) wu,v.

Some Graph Problems

Search problems requires traversing the vertices V reachable from a source vertex
v through a path. Search algorithms are building blocks of many other graph
algorithms, such as cycle detection, planarity testing, max-flow, etc. Search
algorithms vary by the visiting order of vertices, which can be exploited in
machine learning on graphs to generate different types of node embeddings [2].

A Minimum Spanning Tree (MST) of a graph G = (V,E) is a tree G′ =
(V,E′) with minimum cost c =

∑
{u,v}∈E′ wu,v. The minimum spanning tree

problem consists of computing an MST from G. As we will see later in the
course, trees play a key role in graphical models.

A shortest path P between vertices u and v is a path (v1, . . . vk) with min-
imum cost c =

∑
u,v∈P wu,v. The shortest path problem consists of computing

a shortest path between a pair of vertices in G. Shortest paths are of interest
in network science as they reveal relevant information not only about specific
pairs of nodes but the graph as a role. For instance, the diameter of a graph is
its longest shortest path.

Complexity Analysis

The usual way to analyze the expected amount of resources (running time,
space, communication, etc.) needed by an algorithm is using asymptotic nota-
tion. It gives how fast the need for resources grows as a function of the input.
For machine learning algorithms, modern hardware, and typical applications,
running time is the most important cost considered. It is not uncommon to
assume that the entire dataset fits into the main memory and, when that is not
the case, sampling or distributed algorithms are popular alternatives.

There are different types of asymptotic notation with different purposes (e.g.,
Θ, Ω, O, ω, o). We will focus on worst-case analysis using Big O-notation. We
say that a function f(n) is O(g(n)) if there exist real constants c, n0 such that
f(n) ≤ cg(n) for all n ≥ n0. Here, n is the “size” of the input (e.g. number of
vertices/edges in the graph) and g(n) will be the time/memory/communication
cost of running the algorithm with the given input.

2

Graph Algorithms

Breadth-first search (BFS) is a classical algorithm for graph search. It receives
the input graph G and a source vertex s. The algorithm visits every vertex
reachable by s in G. The visiting order is such that vertices at k hops from s
are discovered before those at k + 1 hops. We show the pseudocode for BFS in
Algorithm 1. The time complexity of the algorithm is O(n+m). Lines 1-3 runs
in time O(n) and lines 6-14 runs in time O(m).

Algorithm 1 BFS(graph G, source s)

for v ∈ V do
visited[v]← false

end for
Q← empty queue
Q.insert(s)
while Q 6= ∅ do
v ← Q.get()
for u ∈ N(v) do
if visited[u] = false then
visited[u]← true
Q.insert(u)

end if
end for

end while

Depth-first search (DFS) is another algorithm for searching a graph. Sim-
ilar to BFS, it visits the set of vertices reachable by a source vertex s in G.
The pseudocode for the algorithm is shown in Algorithms 2 and 3. The time
complexity of DFS is O(n+m). Lines 1-3 in Algorithm 2 takes O(n) time and
DFS-visit takes O(m) times—each edge is discovered twice.

Algorithm 2 DFS(graph G, source s)

1: for v ∈ N(s) do
2: visited[v]← false
3: end for
4: DFS-visit(s)

The Kruskal’s algorihtm is a greedy algorithm for computing MSTs. Its
pseudocode is shown in Algorithm 4. The idea is to initialize the solution as a
forest where each vertex is its own tree. Edges are added to the solution one by
one. The select edge must be one with lowest cost for which the addition does not
violate the tree propety—i.e not creating a loop in the current forest. Possible
violations can be checked efficiently using a disjoint set data structure (a.k.a
union-find) with operations make-set, find-set and union. In particular, find-set
identifies a representative vertex in a set and union merges two sets, both in

3

Algorithm 3 DFS-visit(graph G, vertex v)

1: for u ∈ N(v) do
2: if visited[u] = false then
3: DFS-visit(G, u)
4: end if
5: end for
6: visited[v]← true

time O(log(n)). The total time complexity of the algorithm is O(m log(n)), as
the loop from lines 4-10 runs m times.

Algorithm 4 Kruskal′s(graph G = (V,E,W))

1: T ← ∅
2: S ← make-set(V)
3: sorted-edges ← edges in E sorted by nondecreasing weights W
4: for e ∈ [1, . . .m] do
5: (u, v)← sorted-edgese
6: if S.find-set(u) 6= S.find-set(v) then
7: T ← T ∪ {(u, v)}
8: S.union(S.find-set(u), S.find-set(v))
9: end if

10: end for
11: return T

Prim’s algorithm is also greedy. It starts with a tree containing a single
arbitrary vertex r. Then, at each step, the cheapest edge connecting the cur-
rent tree and a vertex not in the tree is selected. The main steps of the algo-
rithm are shown in Algorithm 5. The cheapest candidate edge can be identified
efficiently—time O(log(n))—using a min-priority queue Q. Besides the edge
costs (values), the queue also stores the endpoint of the corresponding edge in
the current tree (Q.pred). The loop in lines 7-15 is executed O(m) times and
thus the total time complexity is O(m log(n)).

The last graph algorithm we will cover here is Dijkstra’s, which computes
the shortest paths from a source vertex r to every vertex in the graph. The
algorithm assumes that edge weights/costs are nonnegative. A key property
applied by efficient algorithms for shortest paths is the optimal substructure
property. It says that subpaths of the shortest paths should also be the shortest.
We will first describe the Relax function (Algorithm 6). It tries to improve the
current shortest path d[v] from the source to v by going through a neighbor
u ∈ N(v), if that is the case, the predecessor pred[v] of v in the shortest path
is updated to u. Algorithm 7 describes the full algorithm. The shortest paths
and predecessors are initialized as ∞ and null, respectively. At each step, the
algorithm selects a vertex u with minimum distance d[u] to the source using a
min-priority queue Q. Notice that in the first iteration, Q.get min() will return

4

Algorithm 5 Prim′s(graph G = (V,E,W), root r)

1: Q← empty min-priority queue
2: for v ∈ V do
3: Q.value(v)←∞
4: Q.pred(v)← null
5: end for
6: Q.value(r)← 0
7: while Q 6= ∅ do
8: v ← Q.min-value()
9: for u ∈ N(v) do

10: if u ∈ Q and Q.value(u) > wu,v then
11: Q.value(u)← wu,v

12: Q.pred(u)← v
13: end if
14: end for
15: end while
16: T ← {(v,Q.pred(v))|v ∈ V − {r}
17: return T

the source s itself. Moreover, the algorithm maintains the invariant the SP will
always contain the shortest subpath starting from the source s. In each iteration,
the function Relax is applied to every edge adjacent to u. The running time of
the algorithm is O(m+n log(n)) if the min-priority queue is implemented using
a fibonacci heap—with O(log(n)) amortized time for Q.get min().

Algorithm 6 Relax(u, v,W)

1: if d[v] > d[u] + w(u, v) then
2: d[v] = d[u] + w(u, v)
3: pred[v] = u
4: end if

References

[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 855–864, 2016.

5

Algorithm 7 Dijkstra′s(graph G = (V,E,W), source s)

1: for v ∈ V do
2: d[v]←∞
3: pred[v]← null
4: end for
5: d[s]← 0
6: Q← V
7: SP ← ∅
8: while Q 6= ∅ do
9: u← Q.get min()

10: SP ← SP ∪ u
11: for v ∈ N(u) do
12: Relax(u, v,W)
13: end for
14: end while
15: return SP

6

