Graph Wavelets via Sparse Cuts

 @SIGKDD'16, San Francisco, CAArlei Silva ${ }^{1}$, Xuan-Hong Dang ${ }^{1}$, Prithwish Basu², Ambuj K. Singh ${ }^{1}$. Ananthram Swami ${ }^{3}$
${ }^{1}$ Computer Science Department - University of California, Santa Barbara, CA
${ }^{2}$ Raytheon BBN Technologies, Cambridge, MA
${ }^{3}$ Army Research Laboratory, Adelphi, MD

Graphs as a space

Graphs as a space

We know a lot about structure but not much about how to represent information on top of graphs

Graphs as a space

Node values as a function $W: V \rightarrow \mathbb{R}$

How to compress, de-noise, and sample W ?

Smoothness

$$
(u, v) \in E \rightarrow W(u) \approx W(v)
$$

Smoothness

$$
(u, v) \in E \rightarrow W(u) \approx W(v)
$$

Sparse representation of W in some space

What framework can exploit the smoothness in the data? Signal processing

Euclidean space

Graph space

How to generalize signal processing to graphs?

Signal Processing on Graphs

Popular approach: Graph Fourier [SNF ${ }^{+}$13]

- Eigenvectors $\left(u_{1}, \ldots u_{n}\right)$ of the Laplacian
- Transform: $\lambda_{i}(W)=\left\langle W, u_{i}\right\rangle$
- Inverse: $W(v)=\sum_{i} \lambda_{i}(W) \cdot u_{i v}$
- Problems handling localized signals

Alternative: Wavelets on Graphs

- Spectral theory [HVG11]
- Diffusion [MBCS05]
- Partitioning [GNC10]

Wavelets on Graphs by Partitioning [GNC10] ${ }^{1}$

Partitioning leads to a binary tree $\mathcal{X}(G)$

- $X_{1}^{1}=V$
- $X_{k}^{\ell} \subseteq V$ has children $X_{i}^{\ell+1}, X_{j}^{\ell+1}$

Spaces of functions $\mathcal{V}_{\ell}, \mathcal{W}_{\ell}$

- \mathcal{V}_{ℓ} are functions constant over $X_{k}^{\ell}:\left\{\mathbf{1}_{X_{k}^{\ell}}\right\}$
- $\mathcal{W}_{\ell} \perp \mathcal{V}_{\ell}$ are wavelet functions: $\left\{\psi_{k, \ell}\right\}$
- $\psi_{k, \ell}$ is piecewise constant on $X_{i}^{\ell+1}, X_{j}^{\ell+1}$
- $\psi_{k, \ell} \perp \mathbf{1}_{X_{k}^{\ell}}$

${ }^{1}$ [GNC10] Gavish, Nadler and Coiffman. Multiscale wavelets on trees, graphs and high dimensional data. ICML'10.

Wavelets on Graphs by Partitioning [GNC10]

Wavelet transform:

$$
a_{k, \ell}=\frac{\left|X_{j}^{\ell+1}\right|}{\left|X_{k}^{\ell}\right|} \sum_{v \in X_{i}^{\ell+1}} W(v)-\frac{\left|X_{i}^{\ell+1}\right|}{\left|X_{k}^{\ell}\right|} \sum_{v \in X_{j}^{\ell+1}} W(v)
$$

Energy of wavelet coefficient:

$$
\left\|a_{k, \ell}\right\|_{2}=\frac{a_{k, \ell}^{2}}{\left|X_{i}^{\ell+1}\right|}+\frac{a_{k, \ell}^{2}}{\left|X_{j}^{\ell+1}\right|}
$$

Wavelet inverse:

$$
\begin{aligned}
\varphi^{-1} W(v) & =a_{0,0}+\sum_{k} \sum_{\ell} \nu_{k, \ell}(v) a_{k, \ell} \\
\nu_{k, \ell}(v) & = \begin{cases}1 /\left|X_{i}^{\ell+1}\right|, & \text { if } v \in X_{i}^{\ell+1} \\
-1 /\left|X_{j}^{\ell+1}\right|, & \text { if } v \in X_{j}^{\ell+1} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Partitioning

Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Advantages:

- Basis is orthogonal
- Smoothness of values is captured
- Graph partitioning is a familiar problem

Challenges:

- Sparsity of the transform depends on the basis/partitioning
- Good basis should capture the geometry of the data

Our Paper

Computing graph wavelet basis via sparse cuts

- Sparse cut leads to low-dimensional encoding

Connections with existing hard graph partitioning problems

- Graph bisection, multiway cuts
- NP-hard

Formulation as a relaxation of a vector optimization

- Spectral algorithm

More efficient approximate solution

- Power method
- Chebyshev polynomials

Wavelet Basis via Sparse Cuts

 $|\mathcal{X}(G)|_{E}$ is the size of the cut of a tree $\mathcal{X}(G)$- Cut is a set of edges $E^{\prime} \subseteq E$
- There is not path connecting leaves X_{i}^{a}, X_{j}^{a} in $G\left(V, E-E^{\prime}\right)$

Problem: Given a graph $G(V, E)$, signal W and a constant q compute a wavelet tree $\mathcal{X}(G)$ with cut $|\mathcal{X}(G)|_{E}$ of size q that minimizes the reconstruction error $\left\|W-\varphi^{-1} \varphi W\right\|_{2}$

Wavelet Basis via Sparse Cuts: Hardness

Problem is NP-hard to approximate by a constant

- Reduction from 3-Multiway Cut [DJP+92]

Performing each of the cuts is NP-hard

- Reduction Graph Bisection [BCLS87]

Multiway cut

Graph bisection

A Spectral Algorithm: Overview

 Spectral Graph Theory [Chu97]

Our approach:

- Build matrices that capture graph structure and signal values
- Formulate our problem as a vector optimization problem
- Relax constraints and solve it as eigenvalue problem
- Round solution to discover sparse cut

A Spectral Algorithm: Formulation

Three matrices (L, C, S):

- Laplacian matrix of $G: L=D-A$
- Laplacian of a complete graph: $C=n \mathbf{I}-\mathbf{1}_{n \times n}$
- Signal matrix: $S_{u, v}=(W(u)-W(v))^{2}$

Indicator vector x :

$$
\mathbf{x}_{v}= \begin{cases}1, & \text { if } v \in X_{i}^{\ell+1} \\ -1, & \text { if } v \in X_{j}^{\ell+1} \\ 0, & \text { otherwise }\end{cases}
$$

Finding a sparse graph wavelet cut is equivalent to:

$$
\mathbf{x} *=\max _{\mathbf{x} \in\{-1,1\}^{n}}\left\|a_{k, \ell}\right\|_{2}=\min _{\mathbf{x} \in\{-1,1\}^{n}} \frac{\mathbf{x}^{\top} C S C \mathbf{x}}{\mathbf{x}^{\top} C \mathbf{x}} \quad \text { st. } \quad \mathbf{x}^{\top} L \mathbf{x} \leq 4 q
$$

where q is the cut size

A Spectral Algorithm: Relaxation

Regularized eigenvalue problem:

$$
\mathbf{x} *=\min _{\mathbf{x} \in[-1,1]^{n}} \frac{\mathbf{x}^{\top} \operatorname{CSC} \mathbf{x}}{\mathbf{x}^{\top} C \mathbf{x}+\beta \mathbf{x}^{\top} L \mathbf{x}}
$$

where β can be searched over a line.
Using substitution $\mathbf{x}=\left((C+\beta L)^{+}\right)^{\frac{1}{2}} \mathbf{y}: \mathbf{y} *=\min _{\mathbf{y}} \frac{\mathbf{y}^{\top} M \mathbf{y}}{\mathbf{y}^{\top \top} \mathbf{y}}$
Assuming W has 0-mean:
$M_{i j}=2 n^{2} \sum_{v=1}^{n} \sum_{u=1}^{n}\left(\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, i} e_{r, u}\right) W(u) . W(v)\right)\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, v} e_{r, j}\right)$
where $\left(\lambda_{r}, e_{r}\right)$ is an eigenvalue-eigenvector pair of $(C+\beta L)$

A Spectral Algorithm: Relaxation

Regularized eigenvalue problem:

$\mathbf{x} *=$	\min
Relaxed constraint	$\mathbf{x}^{\top} C S C \mathbf{x}$
$\boxed{x} \in[-1,1]^{n}$	$\mathbf{x}^{\top} C \mathbf{x}+\beta \mathbf{x}^{\top} L \mathbf{x}$

Regularization
where β can be searched over a line.
Using substitution $\mathbf{x}=\left((C+\beta L)^{+}\right)^{\frac{1}{2}} \mathbf{y}: \mathbf{y} *=\min _{\mathbf{y}} \frac{\mathbf{y}^{\top} M \mathbf{y}}{\mathbf{y}^{\top \top} \mathbf{y}}$
Assuming W has 0-mean:
$M_{i j}=2 n^{2} \sum_{v=1}^{n} \sum_{u=1}^{n}\left(\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, i} e_{r, u}\right) W(u) . W(v)\right)\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, v} e_{r, j}\right)$
where $\left(\lambda_{r}, e_{r}\right)$ is an eigenvalue-eigenvector pair of $(C+\beta L)$

A Spectral Algorithm: Relaxation

Regularized eigenvalue problem:

$$
\mathbf{x} *=\min _{\mathbf{x} \in[-1,1]^{n}} \frac{\mathbf{x}^{\top} \operatorname{CSC} \mathbf{x}}{\mathbf{x}^{\top} C \mathbf{x}+\beta \mathbf{x}^{\top} L \mathbf{x}}
$$

where β can be searched over a line.
Using substitution $\mathbf{x}=\left((C+\beta L)^{+}\right)^{\frac{1}{2}} \mathbf{y}: \mathbf{y} *=\min _{\mathbf{y}} \frac{\mathbf{y}^{\top} M \mathbf{y}}{\mathbf{y}^{\top \top} \mathbf{y}}$
Assuming W has 0-mean:
$M_{i j}=2 n^{2} \sum_{v=1}^{n} \sum_{u=1}^{n}\left(\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, i} e_{r, u}\right) W(u) . W(v)\right)\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, v} e_{r, j}\right)$
where $\left(\lambda_{r}, e_{r}\right)$ is an eigenvalue-eigenvector pair of $(C+\beta L)$

A Spectral Algorithm: Relaxation

Regularized eigenvalue problem:

$$
\mathbf{x} *=\min _{\mathbf{x} \in[-1,1]^{n}} \frac{\mathbf{x}^{\top} \operatorname{CSC} \mathbf{x}}{\mathbf{x}^{\top} C \mathbf{x}+\beta \mathbf{x}^{\top} L \mathbf{x}}
$$

where β can be searched over a line.
Using substitution $\mathbf{x}=\left((C+\beta L)^{+}\right)^{\frac{1}{2}} \mathbf{y}: \mathbf{y} *=\min _{\mathbf{y}} \frac{\mathbf{y}^{\top} M \mathbf{y}}{\mathbf{y}^{\top \top} \mathbf{y}}$
Assuming W has 0-mean:
$\sum_{r}^{n} g\left(\lambda_{r}\right) e_{i} e_{i}^{\top} \quad$ Signal
$M_{i j}=2 n^{2} \sum_{v=1}^{n} \sum_{u=1}^{n}((\sqrt[{\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, i} e_{r, u}}]{)}) W(u) . W(v))\left(\sum_{r=2}^{n} \frac{1}{\sqrt{\lambda_{r}}} e_{r, v} e_{r, j}\right)$
where $\left(\lambda_{r}, e_{r}\right)$ is an eigenvalue-eigenvector pair of $(C+\beta L)$

A Spectral Algorithm

Require: Graph G, values W, set X_{k}^{ℓ},
regularization constant β, cut size q
Ensure: Partitions $X_{i}^{\ell+1}$ and $X_{j}^{\ell+1}$
1: Create matrices C, L, S
2: $x * \leftarrow \min _{x} a(x) / *$ eigenvalue problem*/
3: $\left(X_{1}, X_{2}\right)_{z} \leftarrow \operatorname{cut}(\{1,2 \ldots z\},\{z+1 \ldots n\})$
4: $\left(X_{i}^{\ell+1}, X_{j}^{\ell+1}\right) \leftarrow \max _{\left(X_{1}, X_{2}\right)_{j}}\left\|a_{k, \ell}\right\|_{2}$ st. cut size $\left|\left(X_{1}, X_{2}\right)\right| \leq q$

Graph signal

Eigenvector/cut

A Spectral Algorithm: Performance

$$
\begin{aligned}
& \mathbf{x}=\left((C+\beta L)^{+}\right)^{\frac{1}{2}} \mathbf{y} \\
& \mathbf{y} *=\min _{\mathbf{y}} \frac{\mathbf{y}^{\top} M \mathbf{y}}{\mathbf{y}^{\top} \mathbf{y}}
\end{aligned}
$$

Straighforward implementation is $O\left(s n^{3}\right)$

- s iterations to find β
- Pseudo-inverse computation $\approx O\left(n^{3}\right)$
- Eigenvalue computation $\approx O\left(n^{3}\right)$

Faster solution $O\left(p m n+t n^{2}\right)$:

- Drop constant β
- $\left(\left(L^{+}\right)^{\frac{1}{2}} \times C S C\right)$ via Chebyshev polynomials: $O(p m n)$ [HVG11]
- Power method: $O\left(t n^{2}\right)$

Results: Scalability and Approximation

Synthetic data with best cut known
Exact algorithm (SWT) vs. fast version (FSWT)
FWST- X, X is the degree of Chebyshev polynomials

Results: Scalability and Approximation

Synthetic data with best cut known
Exact algorithm (SWT) vs. fast version (FSWT)
FWST- X, X is the degree of Chebyshev polynomials

FSWT is up to 100 times faster than SWT
Competitive results for degree ≥ 20

Results: Value Compression

Baselines: Graph Fourier ${ }^{2}$ (GF), Wavelets ${ }^{34}$ (GWT, HWT)

${ }^{2}\left[\mathrm{SNF}^{+} 13\right]$ Shuman et al. The emerging field of signal processing on graphs
${ }^{3}$ [GNC10] Gavish et al. Multiscale wavelets on trees, graphs and high dimensional data
${ }^{4}$ [HVG11] Hammond et al. Wavelets on graphs via spectral graph theory

Results: Value Compression

Baselines: Graph Fourier ${ }^{2}$ (GF), Wavelets ${ }^{34}$ (GWT, HWT)

FSWT achieves up to 8 times lower error than the baselines
${ }^{2}\left[\mathrm{SNF}^{+} 13\right]$ Shuman et al. The emerging field of signal processing on graphs
${ }^{3}$ [GNC10] Gavish et al. Multiscale wavelets on trees, graphs and high dimensional data
${ }^{4}[\mathrm{HVG11]}$ Hammond et al. Wavelets on graphs via spectral graph theory

Final Remarks

In this paper we have studied the problem of computing data-driven graph wavelets via sparse cuts in order to represent graph signals in a compact and accurate manner

- Problem is NP-hard, even to approximate by constant
- Novel algorithm using Spectral Graph Theory
- More efficient solution using several techniques
- Better compression results than existing baselines

Future work:

- Study hardness of approximating a single cut
- Generalize approach to different types of wavelets
- Generalize approach to time-varying graphs

Graph Wavelets via Sparse Cuts @SIGKDD'16, San Francisco, CA

Arlei Silva ${ }^{1}$, Xuan-Hong Dang ${ }^{1}$. Prithwish Basu ${ }^{2}$, Ambuj K. Singh ${ }^{1}$, Ananthram Swami ${ }^{3}$
${ }^{1}$ Computer Science Department - University of California, Santa Barbara, CA
${ }^{2}$ Raytheon BBN Technologies, Cambridge, MA
${ }^{3}$ Army Research Laboratory, Adelphi, MD

Research sponsored by the Army Lab under the Network Science CTA Cooperative Agreement Number W911NF-09-2-0053

References I

[BCLS87] Thang Bui, Soma Chaudhuri, Frank Leighton, and Michael Sipser.
Graph bisection algorithms with good average case behavior.
Combinatorica, 7:171-191, 1987.
[Chu97] Fan RK Chung.
Spectral graph theory.
American Mathematical Society, 1997.
[DJP ${ }^{+}$92] Elias Dahlhaus, David Johnson, Christos Papadimitriou, Paul Seymour, and Mihalis Yannakakis. The complexity of multiway cuts.
In STOC, 1992.
[GNC10] Matan Gavish, Boaz Nadler, and Ronald Coifman.
Multiscale wavelets on trees, graphs and high dimensional data.
In ICML, 2010.
[HVG11] David Hammond, Pierre Vandergheynst, and Rémi Gribonval.
Wavelets on graphs via spectral graph theory.
Applied and Computational Harmonic Analysis, 30:129-150, 2011.
[MBCS05] Mauro Maggioni, James BremerJr, Ronald Coifman, and Arthur Szlam.
Biorthogonal diffusion wavelets for multiscale representations on manifolds and graphs.
In SPIE, 2005.
[SNF ${ }^{+}$13] David Shuman, Sunil Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging field of signal processing on graphs.
IEEE Signal Processing Magazine, 2013.

