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Graphs as a space

Water
distribution

Social influence Traffic IoT

We know a lot about structure but not much about
how to represent information on top of graphs
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Graphs as a space

Node values as a function W : V → R

How to compress, de-noise, and sample W ?
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Smoothness

(u, v) ∈ E → W (u) ≈ W (v)

Function Graph

Sparse representation of W in some space
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What framework can exploit the smoothness in the
data? Signal processing

Euclidean space
Graph space

How to generalize signal processing to graphs?
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Signal Processing on Graphs

Popular approach: Graph Fourier [SNF+13]

I Eigenvectors (u1, . . . un) of the Laplacian

I Transform: λi (W ) = 〈W , ui 〉
I Inverse: W (v) =

∑
i λi (W ).uiv

I Problems handling localized signals

Alternative: Wavelets on Graphs

I Spectral theory [HVG11]

I Diffusion [MBCS05]

I Partitioning [GNC10]
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Wavelets on Graphs by Partitioning [GNC10]1

Partitioning leads to a binary tree X (G )

I X 1
1 = V

I X `
k ⊆ V has children X `+1

i , X `+1
j

Spaces of functions V`, W`

I V` are functions constant over X `
k : {1X `

k
}

I W` ⊥ V` are wavelet functions: {ψk,`}
I ψk,` is piecewise constant on X `+1

i , X `+1
j

I ψk,` ⊥ 1X `
k

Xi
ℓ+1 Xj

ℓ+1

Xk
ℓ

X1
1

1Xk
ℓ

... ...

ᷤk,ℓ

1[GNC10] Gavish, Nadler and Coiffman. Multiscale wavelets on trees,
graphs and high dimensional data. ICML’10.
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Wavelets on Graphs by Partitioning [GNC10]
Wavelet transform:

ak,` =
|X `+1

j |
|X `

k |
∑

v∈X `+1
i

W (v)−
|X `+1

i |
|X `

k |
∑

v∈X `+1
j

W (v)

Energy of wavelet coefficient:

||ak,`||2 =
a2
k,`

|X `+1
i |

+
a2
k,`

|X `+1
j |

Wavelet inverse:

ϕ−1W (v) = a0,0 +
∑
k

∑
`

νk,`(v)ak,`

νk,`(v) =


1/|X `+1

i |, if v ∈ X `+1
i

−1/|X `+1
j |, if v ∈ X `+1

j

0, otherwise
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Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing
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Wavelets on Graphs by Partitioning [GNC10]

Build a basis via partitioning + averaging/differencing

Advantages:

I Basis is orthogonal

I Smoothness of values is captured

I Graph partitioning is a familiar problem
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weighted difference:
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(2*(-10) - 2*(-18)) / 4

Challenges:

I Sparsity of the transform depends on the basis/partitioning

I Good basis should capture the geometry of the data
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Our Paper

Computing graph wavelet basis via sparse cuts

I Sparse cut leads to low-dimensional encoding

Connections with existing hard graph partitioning problems

I Graph bisection, multiway cuts

I NP-hard

Formulation as a relaxation of a vector optimization

I Spectral algorithm

More efficient approximate solution

I Power method

I Chebyshev polynomials
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Wavelet Basis via Sparse Cuts
|X (G )|E is the size of the cut of a tree X (G )

I Cut is a set of edges E ′ ⊆ E
I There is not path connecting leaves X a

i ,X
a
j in G (V ,E − E ′)

Problem: Given a graph G (V ,E ), signal W and a constant q
compute a wavelet tree X (G ) with cut |X (G )|E of size q that
minimizes the reconstruction error ||W − ϕ−1ϕW ||2
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Wavelet Basis via Sparse Cuts: Hardness
Problem is NP-hard to approximate by a constant

I Reduction from 3-Multiway Cut [DJP+92]

Performing each of the cuts is NP-hard

I Reduction Graph Bisection [BCLS87]

s1 s2

s3

Multiway cut Graph bisection
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A Spectral Algorithm: Overview
Spectral Graph Theory [Chu97]

Combinatorial graph problem
e.g. graph cut

Matrix
e.g. Normalized Laplacian

Lx = λx

Eigenvalue
problem

Approximate solution
e.g. Cheeger’s inequality

Graph 
world

Linear Algebra 
world

Relaxation

Rounding

Our approach:

I Build matrices that capture graph structure and signal values

I Formulate our problem as a vector optimization problem

I Relax constraints and solve it as eigenvalue problem

I Round solution to discover sparse cut
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A Spectral Algorithm: Formulation
Three matrices (L,C ,S):

I Laplacian matrix of G : L = D − A

I Laplacian of a complete graph: C = nI− 1n×n
I Signal matrix: Su,v = (W (u)−W (v))2

Indicator vector x:

xv =


1, if v ∈ X `+1

i

−1, if v ∈ X `+1
j

0, otherwise

Finding a sparse graph wavelet cut is equivalent to:

x∗ = max
x∈{−1,1}n

||ak,`||2 = min
x∈{−1,1}n

xᵀCSCx

xᵀCx
st. xᵀLx ≤ 4q

where q is the cut size
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A Spectral Algorithm: Relaxation

Regularized eigenvalue problem:

x∗ = min
x ∈ [−1, 1]n

xᵀCSCx

xᵀCx + βxᵀLx

where β can be searched over a line.

Using substitution x = ((C + βL)+)
1
2 y: y∗ = miny

yᵀMy
yᵀy

Assuming W has 0-mean:

Mij = 2n2
n∑

v=1

n∑
u=1

(( ∑n
r=2

1√
λr
er ,ier ,u

)
W (u).W (v)

)( ∑n
r=2

1√
λr
er ,ver ,j

)
where (λr , er ) is an eigenvalue-eigenvector pair of (C + βL)
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A Spectral Algorithm
Require: Graph G , values W , set X `

k ,
regularization constant β, cut size q

Ensure: Partitions X `+1
i and X `+1

j

1: Create matrices C , L,S
2: x∗ ← minx a(x) /*eigenvalue problem*/
3: (X1,X2)z ← cut ({1, 2 . . . z}, {z + 1 . . . n})
4: (X `+1

i ,X `+1
j )← max(X1,X2)j ||ak,`||2 st. cut size |(X1,X2)| ≤ q
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A Spectral Algorithm: Performance

x = ((C + βL)+)
1
2 y

y∗ = min
y

yᵀMy

yᵀy

Straighforward implementation is O(sn3)

I s iterations to find β

I Pseudo-inverse computation ≈ O(n3)

I Eigenvalue computation ≈ O(n3)

Faster solution O(pmn + tn2):

I Drop constant β

I ((L+)
1
2 × CSC ) via Chebyshev polynomials: O(pmn) [HVG11]

I Power method: O(tn2)
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Results: Scalability and Approximation
Synthetic data with best cut known

Exact algorithm (SWT) vs. fast version (FSWT)

FWST-X , X is the degree of Chebyshev polynomials

Scalability Approximation

FSWT is up to 100 times faster than SWT
Competitive results for degree ≥ 20
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Results: Value Compression

Baselines: Graph Fourier2 (GF), Wavelets34 (GWT, HWT)

Traffic Human

Wiki Blogs

FSWT achieves up to 8 times lower error than the baselines

2[SNF+13] Shuman et al. The emerging field of signal processing on graphs
3[GNC10] Gavish et al. Multiscale wavelets on trees, graphs and high

dimensional data
4[HVG11] Hammond et al. Wavelets on graphs via spectral graph theory
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Final Remarks

In this paper we have studied the problem of computing
data-driven graph wavelets via sparse cuts in order to
represent graph signals in a compact and accurate manner

I Problem is NP-hard, even to approximate by constant

I Novel algorithm using Spectral Graph Theory

I More efficient solution using several techniques

I Better compression results than existing baselines

Future work:

I Study hardness of approximating a single cut

I Generalize approach to different types of wavelets

I Generalize approach to time-varying graphs
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