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COVID-19: Timeline
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Paul Romer.

Population-scale testing:
‘’The intervention is based on: (1) test every
individual (2) repeatedly, and (3) isolation of
infected individuals”. Around 23M tests/day,
$75B. Taibale et al.1

1[TRL20] Population-scale testing can suppress the spread of COVID-19. Taipale,
Romer and Linnarsson. Preprint, 2020.

2The COVID tracking project.
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qRT-PCR test ($100)

1. Swab collection;

2. Transport media;

3. RNA purification;

4. Reverse transcription and quantitative PCR.

(a) Collection (b) PCR (c) Individual testing.
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Robert Dorfman.

‘’Suppose that after the individual blood sera
are drawn they are pooled in groups of, say,
five and that groups rather than individual
sera are subjected to chemical analysis”.
Dorfman, 1943.1

Group testing: Stage 1

... ...

Group testing: Stage 2

1[Dor43] Dorfman. The Detection of Defective Members of Large Populations. 6 / 20
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Group Testing

Prevalence Group Size Savings (%)
1 11 80
5 5 57

10 4 41
30 3 1

$ 75B

Groups assembled at random

In practice, group size bounded by dillution

Used in the US, China, Germany and India
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Literature
Original paper, two-round testing (1943) [Dor43]

Groups assembled at random.

Later applications in production lines, computer networks etc.

Books on group testing:

Combinatorial group testing and its applications [DHH00]
Pooling designs and non-adaptive group testing [DH06]

The benefit of correlated groups:

FAST: a Feasible, Accurate and Speedy Test Strategy for COVID-19
[FLJY20]

Group Testing in a Pandemic: The Role of Frequent Testing,
Correlated Risk, and Machine Learning [AKOW20]

Community aware group testing [NGFD20]

How to group?
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Can network science improve
the cost-effectiveness of group

testing in an epidemic?
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Group Testing on a Network

1. Massive group testing;

2. Contact tracing;

Group testing. Group testing on a network.
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Problem Definition
Contact network: Graph G(V,E,W)

Individuals as nodes V ; Contacts as edges E ;

Infection probabilities as weights W : E → [0, 1]

Figure: Contact network from a primary school.2

GTN: Given a transmission network G , epidemic parameters
θ and a maximum group size k, partition the vertices V into
groups {C1, . . .Cm} such that |Ci | ≤ k, ∀i , and the expected
number of tests σ(G , θ,C ) to screen V is minimized.

2[SVB+11] High-resolution measurements of face-to-face contact patterns in a
primary school. Stehlé et al. PloS one, 2011.
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Why grouping matters?
Multivariate Bernoulli outcomes X = 〈X1,X2, . . .Xn〉, n = |V |

X =  0   0    0   1        0    0    0    0              

C1 C2

Expected tests σ(G , θ,C ) = m +
m∑
j=1

|Cj | × Prob(
∑
v∈Cj

Xv ≥ 1)

= n + m −
m∑
j=1

|Cj | × E[
∏
v∈Cj

(1− Xv )]

Random groups: E[
∏

v∈Cm
(1− Xv )] = (1− p)k

Correlated groups: Need to account for covariances of Xv ’s

k = 2: E[(1− Xu)(1− Xv )] = 1− pu − pv + pupv + covu,v
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Hardness of GTN

GTN: Given a transmission network G , epidemic parameters
θ and a maximum group size k, partition the vertices V into
groups {C1, . . .Cm} such that |Ci | ≤ k, ∀i , and the expected
number of tests σ(G , θ,C ) to screen V is minimized.

GTN is NP-hard

Reduction from 3-partition

Computing σ(G , θ,C ) is #P-hard

Reduction from influence maximization
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Heuristics: Topology vs Sampling-based
Topology-based: Graph clustering fixed size clusters

Contact Network Groups Group Testing

- +
-

+

Sampling-based:
I Sample infection process z times based on parameters θ;
I Cluster nodes (bounded size k) minimizing tests over samples.

Contact Network Groups Group Testing

- +
-

+...

Tests on Samples
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Heuristics: Grouping algorithm

Goal is to minimize score ∆

Greedy:

Initializes each vertex as a cluster;

Merges two clusters minimizing ∆

Kernighan-Lin (KL):

Initializes clusters;

Swaps vertices between clusters minimizing ∆

Four algorithms: {Topology,Sampling}×{Greedy,KL}
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Experiments

|V | |E | time
High School (HS) 326 2,141 1 week
Erdos-Renyi (ER) 500 2,500 -

Gowalla (GW) 1,899 3,565 7 months

Table: Real contact data.

Network SIR simulations

Metric: average tests/person over 100 simulations

Baselines:

I Random [Dor43];

I Origami [KW08];

I Modularity [GN02].
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Tests/person, 4% prevalence

Method HS GW ER

No network
Random .40 ± .01 .38 ± .01 .39 ± .01
Origami .35 ± .00 .34 ± .00 .33 ± .00

Topology
Modularity .27 ± .04 .36 ± .01 .38 ± .02

Greedy .23 ± .05 .32 ± .01 .36 ± .02
KL .23 ± .05 .32 ± .01 .36 ± .02

Sampling
Greedy .23 ± .05 .21 ± .03 .37 ± .02

KL .22 ± .05 .20 ± .02 .36 ± .02

KL-Sampling outperforms Random and Origami for most of
the datasets and by up to 40% and 33%, respectively.
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Tests/person, varying prevalence
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(a) High School (HS)
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(b) Gowalla (GW)

KL-Sampling outperforms all competing approaches for
values of prevalence beyond 2% and is still effective when

prevalence reaches 32%.
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Tests/person, missing edges
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Savings are quite robust to missing edges.
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Conclusions

We have proposed group testing on a network. We have
formalized the problem, characterized its computational
hardness, and proposed heuristics for it.

Experiments show that our approaches:

I Save up to 33% of resources for a prevalence of 4%;

I Are still effective for higher values of prevalence (32%);

I Are robust to missing edges in the transmission network.
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