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ABSTRACT
In this work, we study the correlation between attribute sets
and the occurrence of dense subgraphs in large attributed
graphs, a task we call structural correlation pattern min-
ing. A structural correlation pattern is a dense subgraph
induced by a particular attribute set. Existing methods are
not able to extract relevant knowledge regarding how vertex
attributes interact with dense subgraphs. Structural corre-
lation pattern mining combines aspects of frequent itemset
and quasi-clique mining problems. We propose statistical
significance measures that compare the structural correla-
tion of attribute sets against their expected values using null
models. Moreover, we evaluate the interestingness of struc-
tural correlation patterns in terms of size and density. An
efficient algorithm that combines search and pruning strate-
gies in the identification of the most relevant structural cor-
relation patterns is presented. We apply our method for
the analysis of three real-world attributed graphs: a collab-
oration, a music, and a citation network, verifying that it
provides valuable knowledge in a feasible time.

1. INTRODUCTION
In several real-life graphs, attributes can be associated

with vertices in order to represent vertex properties. In so-
cial networks, for example, vertex attributes are useful to
model personal characteristics. Moreover, vertex attributes
can be associated with content (e.g., keywords, tags) in the
web graph. Such an extended graph representation, which is
called an attributed graph, may support graph patterns that
provide relevant knowledge in various application scenarios.

An interesting question related to attributed graphs is
how particular attributes are associated with the topology
of real graphs. In other words, do there exist patterns that
explain how vertex attributes interact with the graph struc-
ture? How can we extract and evaluate such patterns? In
this paper, we study the problem of correlating attribute sets
with an important topological property of graphs, which is
the organization of vertices into dense subgraphs. For in-
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stance, we aim to address questions such as: How does a
particular set of interests induce communities in a social
network? What are the communities that emerge around
such interests? Such questions are related to important so-
cial phenomena such as homophily [11] and influence [2].
Although several definitions of dense subgraphs have been
proposed in the literature, most of them do not take vertex
attributes into consideration. Furthermore, such definitions
do not provide any knowledge regarding how different sets
of attributes induce dense subgraphs.

This work studies the correlation between vertex attributes
and dense subgraphs, a task we call structural correlation
pattern mining. The structural correlation of an attribute
set is the probability of a vertex to be member of a dense
subgraph in its induced graph. Moreover, a structural cor-
relation pattern is a dense subgraph induced by a particular
attribute set. Figure 1 illustrates a dataset for structural
correlation pattern mining. The vertex attributes are given
in Figure 1(a) and the graph is shown in Figure 1(b). Ex-
ample dense subgraphs are shown in Figures 1(c) and 1(d).
The structural correlation of the attribute A is 0.82, since
9 out of 11 vertices are covered by dense subgraphs in its
induced graph. On the other hand, the structural correla-
tion of C is 0, because there is no dense subgraph inside the
graph induced by C. The structural correlation of {A,B}
is 1, due to the fact that every vertex is a member of a
dense subgraph in the graph induced by {A,B}. The pair
({A,B}, {6,7,8,9,10,11}) is an example of a structural cor-
relation pattern, for which the subgraph is shown in Figure
1(d). Another example is the pattern ({A}, {3,4,5,6}), for
which the induced subgraph is shown in Figure 1(d).

The structural correlation of attribute sets and the struc-
tural correlation patterns are complementary information,
while the first is a measure of the correlation between a given
attribute set and the occurrence of dense subgraphs, the sec-
ond provides representatives for such a correlation through
specific subgraphs. We formulate the structural correlation
pattern mining in terms of two existing data mining prob-
lems: frequent itemset and quasi-clique mining. Frequent
itemset mining [1, 19] is applied to handle the possible large
number of attribute sets from the graph and quasi-cliques
[14, 10] are used as a definition for dense subgraphs.

We study structural correlation pattern mining focusing
on two important aspects. The first aspect is the significance
of the patterns. More specifically, it is relevant to provide
significance measures for the structural correlation of at-
tribute sets and the structural correlation patterns. The
second aspect is related to the computational cost of the



vertex attributes
1 A, C
2 A
3 A, C, D
4 A,D
5 A, E
6 A, B, C
7 A, B, E
8 A, B
9 A, B
10 A, B, D
11 A, B

(a) Vertex attributes (b) Graph (c) Dense subgraph (d) Dense subgraph

Figure 1: Structural correlation pattern mining (illustrative example)

proposed task. Our objective is to enable the analysis of
large real graphs in a feasible time. Although significance
and high-performance are not necessarily concordant goals,
we propose significance metrics that may lead to efficient
pruning strategies for structural correlation pattern mining.

Regarding the significance of patterns, we formulate nor-
malization approaches for structural correlation pattern min-
ing in order to measure the statistical significance of the
structural correlation of a given attribute set. The idea is
to compare the structural correlation against its expected
value, which is provided by a null model. Moreover, we
evaluate the structural correlation patterns in terms of size
(i.e., number of vertices) and density (i.e., cohesion). Such
evaluation is useful to rank the most interesting patterns
induced by a given attribute set.

We combine the statistical significance of the structural
correlation of attribute sets and the size and density of struc-
tural correlation patterns with effective constraints to prune
down the search space. Moreover, we propose two strate-
gies for computing the structural correlation of attribute
sets efficiently. These pruning and search techniques are
integrated into the SCPM (Structural Correlation Pattern
Mining) algorithm, which is described and evaluated in this
paper. In particular, we apply SCPM to the analysis of
three real attributed graphs: collaboration, music and ci-
tation networks. The results show that SCPM is able to
extract relevant knowledge regarding how vertex attributes
are correlated with the occurrence of dense subgraphs in
large attributed graphs.

2. STRUCTURAL CORRELATION PATTERN
MINING

2.1 Definitions

2.1.1 Structural Correlation
We define an attributed graph as a 4-tuple G = (V, E ,A,F)

where V is the set of vertices, E is the set of edges, A =
{a1, a2, . . . an} is the set of attributes, and F : V → P (A) is
a function that returns the set of attributes of a vertex. P
is the power set function. Each vertex vi in V has a set of
attributes F(vi) = {ai1, ai2, . . . aip}, where p = |F(vi)| and
F(vi) ⊆ A. Figure 1(b) shows an example of an attributed
graph where the vertex attributes are given in Figure 1(a).

Given the set of attributes A, we define an attribute set S
as a subset of A (S ⊆ A). Moreover, we denote by V(S) ⊆ V

the vertex set induced by S (i.e., V(S) = {vi ∈ V|S ⊆
F(vi)}) and by E(S) ⊆ E the edge set induced by S (i.e.,
E(S) = {(vi, vj) ∈ E|vi, vj ∈ V(S)}). The graph G(S), in-
duced by S, is the pair (V(S), E(S)). We also define a sup-
port function σ, which gives the number of occurrences of
an attribute set in the input graph (σ(S) = |V(S)|), i.e .,
the number of vertices that contain S.

The structural correlation function measures the corre-
lation between a given attribute set and the occurrence of
dense subgraphs in an attributed graph. We apply quasi-
cliques as a definition for dense subgraphs. Quasi-cliques
are a natural extension of the traditional clique definition.

DEFINITION 1. (Quasi-clique) Given a minimum den-
sity threshold γmin (0 < γmin ≤ 1) and a minimum size
threshold min size, a quasi-clique is a maximal vertex set
Q such that for each v ∈ Q, the degree of v in Q is at least
dγmin.(|Q| − 1)e and |Q| ≥ min size.

Figures 1(c) and 1(d) are examples of an 1-quasi-clique of
size 4 and a 0.6-quasi-clique of size 6, respectively, from the
graph shown in Figure 1(b). The quasi-clique mining prob-
lem consists of identifying the quasi-cliques from a graph
considering minimum size and density parameters, a prob-
lem known to be #P-hard [14, 17].

We define the structural correlation of an attribute set S
as the probability of a vertex v with attribute S to be part
of a quasi-clique in G(S).

DEFINITION 2. (Structural correlation function ε)
Given an attribute set S, the structural correlation of S,
ε(S), is given as:

ε(S) =
|KS |
|V(S)| (1)

where KS is the set of vertices in quasi-cliques in G(S).

In the graph from Figure 1, we haveK{A} = {3, 4, 5, 6, 7, 8,
9, 10, 11}, K{C} = {} and K{A,B} = {6, 7, 8, 9, 10, 11}, and
thus the corresponding values of ε({A}), ε({C}), and ε({A,B})
are 0.82, 0, and 1, respectively. Structural correlation mea-
sures the dependence between attribute set S and the den-
sity of the associated vertices. It indicates how likely S is
to be part of dense subgraphs. Our formulation enables
the identification of attributes that induce vertices that are
well connected in the graph. In a social network, for in-
stance, such attributes are of great interest since they may



be related to homophily or influence. Nevertheless, it is
also relevant to understand the dense subgraphs induced by
attribute sets. We call structural correlation pattern a quasi-
clique that is homogeneous w.r.t. an attribute set.

DEFINITION 3. (Structural correlation pattern). A
structural correlation pattern is a pair (S,Q), where S is an
attribute set (S ⊆ A), and Q is a quasi-clique from the graph
induced by S (Q ⊆ V(S)), given the quasi-clique parameters
γmin and min size.

The pair ({A},{3, 4, 5, 6}) is an example of a size 4 struc-
tural correlation pattern with density 1 induced by the at-
tribute A in the graph from Figure 1. Another example of a
structural correlation pattern is ({A,B},{6, 7, 8, 9, 10, 11}),
which is a size 6 structural correlation pattern with density
0.6 induced by the attribute set {A,B}.

2.1.2 Structural Correlation Pattern Mining Problem
Based on the definition of structural correlation patterns

and structural correlation function, we formulate the struc-
tural correlation pattern mining problem. It comprises the
identification of the attribute sets significantly correlated
with the occurrence of dense subgraphs and the dense sub-
graphs induced by such attribute sets. We apply a minimum
support threshold σmin for attribute sets in order to prune
down the number of patterns.

DEFINITION 4. (Structural correlation pattern min-
ing problem). Given an attributed graph G(V, E ,A,F), a
minimum support threshold σmin, a minimum quasi-clique
density γmin and size min size, and a minimum structural
correlation εmin, the structural correlation pattern mining
consists of identifying the set of structural correlation pat-
terns (S,Q) from G, such that S is an attribute set for which
σ(S) ≥ σmin, ε(S) ≥ εmin, and Q is a γmin-quasi-clique for
which Q ⊆ V(S) and |Q| ≥ min size.

As an example, we consider the attributed graph shown in
Figure 1 and the parameters σmin, γmin, min size and εmin
set to 3, 0.6, 4, and 0.5, respectively. The set of structural
correlation patterns are shown in Table 1. For each pattern,
we give the pair (attribute set, dense subgraph), the respec-
tive quasi-clique size and density (γ), and the attribute set
support (σ) and structural correlation (ε).

pattern size γ σ ε
({A},{6, 7, 8, 9, 10, 11}) 6 0.60 11 0.82

({A},{3, 4, 5, 6}) 4 1 11 0.82
({A},{3, 4, 6, 7}) 4 0.67 11 0.82
({A},{3, 5, 6, 7}) 4 0.67 11 0.82
({A},{3, 6, 7, 8}) 4 0.67 11 0.82

({B},{6, 7, 8, 9, 10, 11}) 6 0.60 6 1.0
({A,B},{6, 7, 8, 9, 10, 11}) 6 0.60 6 1.0

Table 1: Structural correlation patterns from the
graph shown in Figure 1

Similar to the quasi-clique mining, the structural corre-
lation pattern mining is #P -hard [17]. This is because the
quasi-clique mining problem can be reduced to the structural
correlation pattern mining by assigning the same attribute
to each vertex from the graph and setting σmin to 1.

Structural correlation pattern mining is based on the struc-
tural correlation function, which measures how a given at-
tribute set is associated with the occurrence of dense sub-
graphs in an attributed graph. However, it is important to

assess the significance/interestingness of a given structural
correlation, which is the subject of the next section.

2.1.3 Statistical Significance of the Structural Cor-
relation

Given the structural correlation of an attribute set, how
can we evaluate it? In other words, what can be considered
a high or low structural correlation? In this section, we ad-
dress such questions by proposing null models for structural
correlation. These models specify the expected structural
correlation of an attribute set assuming that the correla-
tion between vertex attributes and dense subgraphs is ran-
dom. Normalized structural correlation measures how the
structural correlation of an attribute set deviates from its
expected value, and allows us to assess the statistical signif-
icance of a given structural correlation value.

DEFINITION 5. (Normalized structural correlation).
Given an attribute set S with support σ(S) and a function
εexp, which gives the expected structural correlation of an at-
tribute set based on its support and the attributed graph G,
the normalized structural correlation of S is given by:

δ(S,G) =
ε(S)

εexp(σ(S),G)
(2)

According to Definition 5, the normalized structural cor-
relation function gives how much the structural correlation
of an attribute set S is higher than expected. Therefore, it
requires the definition of the function εexp, which receives
the support of S (σ(S)) and the attributed graph G as argu-
ments. By normalizing the structural correlation, we expect
to obtain a measure of the correlation of an attribute set S
that is independent of its support and the input graph.

We assume that the input graph G comprises the object of
interest, i.e., it is the “population” graph. Assume that we
are given the attribute set support value σ(S) (independent
of the actual attribute set S). To compute the expected
structural correlation, our sample space is the set of all ver-
tex subsets of size σ(S) drawn randomly from G. The statis-
tic of interest is the mean structural correlation value, εexp.
That is, the expected probability that a random vertex in
a given sample induces dense subgraphs (quasi-cliques) in
that sample of size σ(S). The quasi-clique parameters, γmin
and min size, are assumed to be fixed as well.

An intuitive approach for computing εexp is through sim-
ulation. Given the support σ(S) of the attribute set, a ran-
dom sample of σ(S) vertices from G is selected. Each vertex
from the sample is checked to be in a quasi-clique, according
to the quasi-clique parameters. The structural correlation
of the sample is the fraction of vertices from it that are in at
least one quasi-clique. The simulation-based expected struc-
tural correlation sim-εexp is given by the average structural
correlation of r random samples.

The simulation-based structural correlation is very simple
conceptually but may require a high r to achieve accurate
estimates, which is prohibitive in real settings. Thus we
also propose an analytical formulation for an upper bound
on the expected structural correlation of an attribute set.
The idea is that a vertex must have a minimum degree of
dγmin.(min size − 1)e in order to be member of a γmin-
quasi-clique of minimum size min size. Consequently, the
probability of a vertex to have a degree of dγmin.(min size−



1)e in a random subgraph of size σ(S) from G gives an upper
bound on the expected structural correlation of S.

Given a random size σ(S) subgraph Gσ(S) from G, the
degree of v in G and Gσ(S) are related as follows.

THEOREM 1. (Probability of a vertex that has a
degree α in G to have a degree β in Gσ(S)). If a random
vertex v from G with degree α is selected to be part of Gσ(S),
the probability of such vertex to have a degree β in Gσ(S) is
given by the following binomial function:

F (α, β, ρ) =

 
α

β

!
.ρβ .(1− ρ)α−β (3)

where ρ is the probability of a specific vertex u from G to be
in Gσ(S), if v is already chosen, which is given as:

ρ =
σ(S)− 1

|V| − 1
(4)

Proof sketch. There are α vertices adjacent to v in G,
thus, the probability of v to have a degree of β in Gσ(S) is
the probability of selecting β out of α vertices to be part of
Gσ(S). Since v is already selected, the probability of selecting
any remaining vertex from G is given by equation 4.

Based on Theorem 1, we define an upper bound on the
expected structural correlation as the probability of a vertex
to have a degree of at least dγmin.(min size− 1)e in Gσ(S).

THEOREM 2. (Upper bound on the expected struc-
tural correlation). Given the quasi-clique parameters γmin
and min size, the structural correlation of an attribute set
with support σ(S) is upper bounded by:

max-εexp(σ(S)) =

mX
α=z

p(α).

αX
β=z

F (α, β, ρ) (5)

where z = dγmin.(min size− 1)e, m is the maximum degree
of a vertex from G, and p is the degree distribution of G.
Proof sketch. Given a vertex with degree α in G, the prob-
ability of such vertex to have a degree of at least
dγmin.(min size − 1)e in Gσ(S) is the sum of expression 3
over the degree interval from dγmin.(min size− 1)e to α. If
we multiply this sum by the probability of a vertex of degree
α from G to be in Gσ(S), i.e., p(α), it gives the probabil-
ity of any vertex with degree α from G to have a degree of
at least dγmin.(min size − 1)e in Gσ(S). Equation 5 is the
sum of such products over the vertex degrees higher than
dγmin.(min size− 1)e.

The proposed upper bound on the expected structural
correlation of an attribute S is based on the expected de-
gree distribution of a random graph of size σ(S) from G.
However, the degree is not the only criteria for a vertex to
be part of a quasi-clique. Vertices that satisfy the minimum
degree threshold may not be part of a quasi-clique if they
are connected to low degree vertices. Nevertheless, since we
apply the proposed formulation in order to normalize the
structural correlation of attribute sets with different sup-
ports, our objective is to provide a function that presents a
slope that is similar to expected structural correlation. In
Section 4.1, we compare the expected structural correlation
computed using simulation with the proposed upper bound.

We call δsim and δlb the normalized structural correla-
tion functions that apply the expected structural correla-
tion based on simulation sim-εexp and the theoretical up-
per bound max-εexp on the expected structural correlation,
respectively. Since max-εexp ≥ sim-εexp, we have δlb =

ε(S)
max−εexp

≤ ε(S)
sim−εexp

= δsim. That is, δlb is a lower bound

on δsim.
It is important to notice that max-εexp is monotonically

non-decreasing, i.e., max-εexp(σ1) is greater than max-εexp(σ2)
if and only if σ1 ≥ σ2. It follows directly from the fact that
the analytical upper bound (Equation 5) is based on a cu-
mulative binomial function, which is known to be monoton-
ically non-decreasing w.r.t. ρ. We also assume that sim-εexp
is monotonically non-decreasing for sufficiently high values
of r, since an increase in the size of the random graphs se-
lected from G is not expected to decrease the probability of
finding a vertex in a quasi-clique. Such properties will be
exploited by our pruning techniques, which will be proposed
further in this paper (see Section 3.2.1).

We apply the normalized structural correlation in the iden-
tification of statistically significant structural correlation val-
ues. Therefore, we extend the structural correlation pat-
tern mining problem (Definition 4) by adding a minimum
normalized structural correlation threshold δmin. Such a
threshold may also be useful to improve the performance
of structural correlation pattern mining algorithms, as will
be discussed in Section 3.2. Since a user may be interested
in patterns that have high structural correlation (ε) as well
as being statistically significant (δ), we present results us-
ing both the regular and normalized structural correlation
measures.

2.2 Related Work
Finding communities [6, 3] and dense subgraphs [5, 10, 8,

20] has been an active research topic. A community is usu-
ally defined as set of vertices significantly more connected
among themselves than with vertices outside it [3]. On the
other hand, dense subgraph definitions, such as cliques [18]
and quasi-cliques [14], are strongly based on internal cohe-
sion and maximality.

This work applies a dense subgraph definition called quasi-
clique, which is a set of vertices where each vertex is con-
nected at least to a fraction of the others. [14] introduces the
problem of mining cross-graph quasi-cliques. They further
studied the problem of mining frequent cross-graph quasi-
cliques [8]. In [20] and [21] the authors study the problem of
mining frequent coherent closed quasi-cliques. [10] studies
the problem of finding the set of quasi-cliques from a sin-
gle graph, proposing several powerful pruning techniques for
quasi-clique mining.

Graph clustering and dense subgraph discovery methods
that consider vertex attributes as complementary informa-
tion have attracted the interest of the research community
in the recent years [12, 4, 22, 13]. A general assumption of
these methods is that clusters based on both the topology of
the graph and the attributes of vertices are more meaningful
than those based only on the topology or the attributes. [4]
proposes two efficient algorithms for the connected k-center
problem, which has as objective to partition a graph consid-
ering both the attributes and the topology. [22] proposes a
random walk-based distance metric in an augmented graph
where vertices from the original graph are connected to new
vertices that represent vertex attributes. In [12], the authors



introduce the problem of mining cohesive patterns, which
are dense connected subgraphs where vertices have homo-
geneous attributes (or features). [13] considers the problem
of computing maximal homogeneous cliques in attributed
graphs. Different from these methods, structural correla-
tion pattern mining does not assume that vertex attributes
are complementary information. In fact, we are interested
in finding attribute sets that explain the formation of dense
subgraphs through correlation.

Assessing how vertex attributes are related to the graph
topology has led to the definition of new patterns. [15]
proposed the problem of finding itemset-sharing subgraphs,
which consists of extracting subgraphs with common item-
sets. It is important to notice that such method do not con-
sider the density of subgraphs. [9] defines the proximity pat-
tern mining, which evaluates how close vertex attributes are
in the graph. A proximity pattern is a set of labels that co-
occur in neighborhoods. Therefore, proximity patterns are
not necessarily dense subgraphs or cohesive, differently from
structural correlation patterns. In [7], the authors propose a
different definition for the structural correlation, which com-
pares the closeness among vertices induced by a given single
attribute against a subgraph where attributes are randomly
distributed. Our work differs from [7] by combining multiple
attributes and considering a particular topological property
which is the organization into dense subgraphs. Moreover,
besides the evaluation of structural correlation of attribute
sets, we are interested in the discovery of relevant dense sub-
graphs to be representatives of the structural correlation.

In [16], we introduce the structural correlation pattern
mining and present an algorithm for this problem called
SCORP. In this paper, we study the problem of identifying
statistically significant structural correlation patterns based
on a normalization of the structural correlation. We also
present the SCPM algorithm, which extends SCORP with
new pruning and search strategies for structural correlation
pattern mining. Different from SCORP, SCPM enumerates
the top structural correlation patterns in terms of size and
density efficiently, instead of the complete set of patterns.

3. ALGORITHMS

3.1 Naive Algorithm
Since structural correlation pattern mining combines as-

pects of the frequent itemset mining and the quasi-clique
mining problems, we may combine a frequent itemset min-
ing algorithm and a quasi-clique mining algorithm into a
naive algorithm for structural correlation pattern mining.

The naive algorithm solves the structural correlation pat-
tern mining problem (see Definition 4) by first enumerating
the set of frequent attribute sets F from G and then iden-
tifying the set of quasi-cliques Q from the graph induced
by each frequent attribute set S from F . The structural
correlation of each frequent attribute set S is computed by
checking whether each vertex v ∈ V(S) is part of a quasi-
clique in Q. Frequent attribute sets can be identified using a
frequent itemset mining algorithm [1, 19]. In this work, we
apply the Eclat algorithm [19]. Moreover, any algorithm for
quasi-clique mining can be applied by such naive algorithm.
We apply the Quick algorithm [10].

The main drawback of the naive algorithm is that it enu-
merates the complete set of frequent attribute sets from
G and the complete set of quasi-cliques from each induced

graph G(S), where S is a frequent attribute set. Since the
frequent itemset mining and the quasi-clique mining prob-
lems are known to be #P-hard, the naive algorithm is ex-
pected to not be able to process large attributed graphs.
In order to achieve such goal, in the upcoming sections, we
describe several strategies for efficient structural correlation
pattern mining. We combine such strategies into a new al-
gorithm, which is described in Section 3.2. Further in this
paper, we compare the performance of the proposed algo-
rithm against this naive method.

3.2 SCPM Algorithm
This section presents the SCPM (Structural Correlation

Pattern Mining) algorithm, which applies several strategies
in order to enable the structural correlation pattern min-
ing in large attributed graphs. Unlike the naive algorithm,
SCPM does not enumerate every frequent attribute set but
prunes those attribute sets that cannot satisfy a minimum
structural correlation threshold (see Section 3.2.1). More-
over, instead of identifying each quasi-clique from an in-
duced graph, SCPM checks whether vertices are in quasi-
cliques by verifying a reduced number of quasi-clique can-
didates (see Section 3.2.2). Finally, SCPM returns the set
of the top-k most relevant structural correlation patterns,
instead of the complete set of patterns from the attributed
graph (see Section 3.2.3).

3.2.1 Pruning Strategies for SCP Mining
This section presents pruning techniques for structural

correlation pattern mining. The objective of these pruning
techniques is to reduce the execution time of the structural
correlation pattern mining algorithms without compromis-
ing its correctness. Theorem 3 allows the pruning of vertices
during the level-wise enumeration of attribute sets.

THEOREM 3. (Vertex pruning for attribute sets).
Let KS be the set of vertices in dense subgraphs in the graph
induced by an attribute set S. If Si ⊆ Sj, then KSj ⊆ KSi .
Proof sketch. Lets suppose that there exists a vertex v such
that v ∈ KSj and v /∈ KSi . Since v ∈ KSj , there exists a
dense subgraph V ⊆ V(Sj), such that v ∈ V . Moreover, if
v /∈ KSi , there does not exist any dense subgraph U ⊆ V(Si)
such that v ∈ U . Nevertheless, if Si ⊆ Sj, then V(Sj) ⊆
V(Si), which implies that V ⊆ V(Si) (contradiction).

Based on Theorem 3, we can prune vertices that are not in
dense subgraphs in the graph induced by a given attribute
set before extending it to generate larger attribute sets. At-
tribute sets can also be pruned based on an upper bound on
the structural correlation function, as stated by Theorem 4.

THEOREM 4. (Attribute set pruning based on the
upper bound on the structural correlation). For two at-
tribute sets Si and Sj, if Si ⊆ Sj and σ(Sj) ≥ σmin, then
ε(Sj) ≤ ε(Si).|V(Si)|/σmin
Proof sketch. According to Theorem 3, ε(Si).|V(Si)| ≥
ε(Sj).|V(Sj)|, since every vertex covered by a dense sub-
graph in V(Sj) is also covered by a dense subgraph in V(Si).
Moreover, since σ(Sj) ≥ σmin, ε(Sj) is upper bounded by
ε(Si).|V(Si)|/σmin based on the definition of the structural
correlation function ε (see Definition 2).

Given an attribute set Si, of size i, if ε(Si).|V(Si)|/σmin <
εmin, then Si is not included in the set of attribute sets to



Figure 2: Set enumeration tree

Algorithm 1 General Structural Correlation Algorithm

Require: G(S), γmin, min size
Ensure: Q
1: Q ← ∅
2: X ← ∅
3: candExts(X)← V(S)
4: Apply vertex pruning in candExts(X)
5: qcCands← {(X, candExts(X))}
6: while qcCands 6= ∅ do
7: q ← qcCands.get()
8: Apply candidate quasi-clique pruning in q
9: if q.X ∪ q.candExts(X) is a quasi-clique then
10: Q ← Q∪ {q.X ∪ q.candExts(X)}
11: else
12: if q.X is a quasi-clique then
13: Q ← Q∪ {q.X}
14: end if
15: insert extensions of q into qcCands
16: end if
17: end while

be combined for the generation of size i + 1 attribute sets.
Theorem 4 guarantees that there does not exist an attribute
set Sj , such that Si ⊆ Sj and ε(Sj) ≥ εmin. A similar
pruning rule can be formulated based on the normalized
structural correlation function definition.

THEOREM 5. (Attribute set pruning based on the
upper bound on the normalized structural correlation).
For two attribute sets Si and Sj, if Si ⊆ Sj, εexp is a mono-
tonically non-decreasing, and σ(Sj) ≥ σmin, then δ(Sj) ≤
ε(Si).|V(Si)|/(εexp(σmin).σmin)
Proof sketch. According to Theorem 4,
ε(Sj) ≤ ε(Si).|V(Si)|/σmin. Since σ(Sj) ≥ σmin and εexp is
monotonically non-decreasing, then εexp(σ(Sj)) ≥ εexp(σmin).
Therefore, δ(Sj) ≤ ε(Si).|V(Si)|/(εexp(σmin).σmin).

If δ(Si).|V(Si)|/(εexp(σmin).σmin) < δmin, the attribute
set Si, of size i, is not included in the set of attribute sets to
be combined for the generation of size i + 1 attribute sets.
Since δlb gives a lower bound on the normalized structural
correlation, the whole pruning potential of Theorem 5 may
not be explored. Nevertheless, the results show that use of
δlb enables significant performance gains (see Section 4.2).

The pruning strategy stated by Theorem 3 reduces the
number of vertices to be checked to be in quasi-cliques in
the computation of structural correlation. Theorems 4 and
5 enable the reduction of the attribute sets for which the
structural correlation is computed to a set that is expected
to be smaller than the set of frequent attribute sets.

3.2.2 Computing the Structural Correlation
As discussed in Section 3.1, the naive algorithm computes

the structural correlation of an attribute set S through the
enumeration of the quasi-cliques from G(S). In this section,
we describe how the structural correlation can be computed
by identifying a reduced number of quasi-clique candidates.

Quasi-cliques can be enumerated based on a vertex set
X, initially set as ∅, and a set of candidate extensions of X,
candExts(X), initially set as V. Vertices are moved from
candExts(X) to X, one at a time, until the complete set
of quasi-clique candidates are generated. Figure 2 shows
a set enumeration tree that represents the search space of
quasi-cliques considering a set of 4 vertices (1-4). In order
to prune down such search space, quasi-clique mining algo-
rithms apply several pruning techniques. We divide these
techniques into two groups:

1. Vertex pruning: Removal of vertices that cannot be
part of any quasi-clique in G according to the quasi-
clique definition and the quasi-clique parameters. Ver-
tex pruning is performed iteratively over the graph in
order to minimize the search space of quasi-cliques.

2. Candidate quasi-clique pruning: Removal of a set
of candidate quasi-cliques (i.e., pairs (X, candExts(X)))
from the search space of quasi-cliques. Such removal
is based on the properties of the subgraph composed
by vertices from X and candExts(X).

Algorithm 1 gives a general description of how quasi-
cliques are identified in the computation of structural corre-
lation. This algorithm is also used as the basis for the enu-
meration of the top-k structural correlation patterns. The
algorithm receives an induced graph G(S), and the mini-
mum density (γmin) and size (min size) for quasi-cliques.
It gives as output a set of quasi-cliquesQ from G. Vertex and
quasi-clique candidate prunings are applied in lines 4 and 8,
respectively. Candidate quasi-cliques are managed by the
data structure qcCands, which will be discussed later. Each
candidate pattern is checked to be a lookahead quasi-clique
(i.e., q.X∪q.candExts(X) is a quasi-clique) first, due to the
fact that quasi-cliques are maximal. In case such a condi-
tion does not hold, q.X is checked to be a quasi-clique and
the extensions of q are inserted into qcCands (line 15). The
algorithm finishes when qcCands becomes empty. The set
KS , which is composed of vertices covered by quasi-cliques
in G(S), can be obtained directly from Q.

Since the quasi-clique mining problem is known to be #P-
hard, the identification of quasi-cliques may require process-
ing a large number of quasi-clique candidates, which would
constitute an important limitation to the computation of
the structural correlation of large induced graphs. Neverthe-
less, computing the structural correlation does not require
the enumeration of the complete set of quasi-cliques. The
necessary information is whether each vertex from the in-
duced graph is covered by a quasi-clique or not. Therefore,
candidate quasi-cliques composed of vertices already known
to be covered by quasi-cliques can be pruned from the new
quasi-clique candidates generated in line 15 of Algorithm 1.

Besides pruning candidate quasi-cliques that are already
known to be covered by dense subgraphs, we also propose
search strategies for computing the structural correlation.
These search strategies determine the order in which can-
didate quasi-cliques are enumerated. A breadth-first search



Algorithm 2 SCPM Algorithm
Require: G, σmin, γmin, min size, εmin, δmin, k
Ensure: P
1: P ← ∅
2: T ← ∅
3: I ←frequent attributes from G
4: for all S ∈ I do
5: ε← structural correlation of S
6: if ε ≥ εmin AND ε/εexp(S) ≥ δmin then
7: Q ← top-k patterns from G(S)
8: for all q ∈ Q do
9: P ← P ∪ (S, q)
10: end for
11: end if
12: if ε.σ(S) ≥ εmin.σmin AND ε.σ(S) ≥ δmin.εexp(σmin).σmin

then
13: T ← T ∪ S
14: end if
15: end for
16: P ← P∪ enumerate-patterns(T ,G, σmin, γmin,min size, εmin,

δmin, k)

Algorithm 3 enumerate-patterns
Require: T ,G, σmin, γmin,min size, εmin, δmin, k
Ensure: P
1: P ← ∅
2: for all Si ∈ T do
3: R ← ∅
4: for all Sj ∈ T do
5: if i > j then
6: S ← Si ∪ Sj

7: if σ(S) ≥ σmin then
8: ε← structural correlation of S
9: if ε ≥ εmin AND ε/εexp(S) ≥ δmin then
10: Q ← top-k patterns from G(S)
11: for all q ∈ Q do
12: P ← P ∪ (S, q)
13: end for
14: end if
15: if ε.σ(S) ≥ εmin.σmin AND ε.σ(S) ≥

δmin.εexp(σmin).σmin then
16: R ← R∪ S
17: end if
18: end if
19: end if
20: end for
21: P ← P∪ enumerate-patterns(R,G, σmin, γmin,min size,

εmin, δmin, k)
22: end for

(BFS) strategy for computing the structural correlation tra-
verses the search space of quasi-cliques in a breadth-first
order, starting from the root and visiting the smaller vertex
sets before the larger ones. On the other hand, a depth-
first search (DFS) strategy extends vertex sets as much as
possible. The BFS strategy is expected to perform better
in case covering vertices with smaller quasi-cliques is more
efficient than with larger quasi-cliques. Considering a set
of 4 vertices, for which the search space of quasi-cliques is
shown in Figure 2, the BFS and the DFS strategy visit the
quasi-clique candidates as follows:

• BFS: {1}, {2}, {3}, {4}, {1, 2}, . . . {1, 2, 3, 4}.

• DFS: {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 3}, . . . {4}.

Quasi-cliques can be enumerated in BFS order by using a
queue as a data structure to manage quasi-clique candidates
in Algorithm 1. Similarly, a DFS strategy for enumerating
quasi-cliques can apply a stack in order to manipulate candi-
date patterns. Further in this paper, we evaluate the search
strategies presented in this section in the computation of the
structural correlation of attribute sets.

3.2.3 Enumerating Top-k Patterns
As discussed in Section 2.1.2, enumerating structural cor-

relation patterns is a computationally expensive task. In
this section, we study how to reduce the cost of enumerat-
ing structural correlation patterns by restricting the output
set to only the top-k most relevant patterns in terms of size
(primary criteria) and density (secondary criteria).

The enumeration of the top-k structural correlation pat-
terns follows the same procedure described in Algorithm 1.
In particular, we use a DFS strategy in the discovery of the
top-k patterns because structural correlation patterns are
maximal by definition (see Definition 3). However, since the
number of patterns to be discovered is known, a current set
of patterns can be applied to prune the search space of new
candidates. New candidate quasi-cliques are generated in
line 15. In case the current set of top patterns contains k
patterns and a candidate pattern p cannot produce a pat-
tern larger than the smallest current top-k pattern t (i.e.,
|p.X ∪ p.candExts(X) < |t|), p can be pruned. By updat-
ing the set of top-k patterns, the minimum size threshold is
increased iteratively. As a consequence, the top-k patterns
may be enumerated more efficiently than the complete set
of patterns from an induced graph.

Algorithm 2 is a high-level description of the SCPM al-
gorithm, which applies the strategies for efficient structural
correlation pattern mining presented in this section. The
initial set of attributes I is composed by those with a sup-
port of at least σmin (line 3). The structural correlation of
each size one attribute set S ∈ I is computed as described
in Section 3.2.2. In case the structural correlation of S sat-
isfies minimum structural correlation (εmin) and normalized
structural correlation (δmin) thresholds, the top-k patterns
induced by S are identified using the algorithm described
in this section (line 7). These patterns are included into a
set of patterns P that will be given as output. The pruning
rules for attribute sets based on ε and δ (see Section 3.2.1)
are applied in line 12. Pruned attributes are not included
into the set of attributes T to be extended. These attributes
are extended by the function enumerate-patterns (line 16).

Algorithm 3 describes the function enumerate-patterns.
It receives the same input parameters of SCPM, and also
the set of patterns to be extended T . It returns the set
of top-k patterns (S, V ) that have attribute sets extended
from those in T regarding the input parameters. New at-
tribute sets are extended through the union of existing ones
(line 6). Attribute sets are traversed in a DFS order (e.g.,
{A}, {A,B}, {A,B,C} . . . {E}). The enumerate-patterns func-
tion is very similar to Algorithm 2, except that each new
attribute set S is checked to satisfy the minimum support
threshold σmin (line 7). All valid attribute sets are gener-
ated through recursive calls to enumerate-patterns (line 21).

4. EXPERIMENTAL RESULTS
This section presents case studies on the structural cor-

relation pattern mining using real datasets. Moreover, we
present a performance evaluation of SCPM. Finally, we study
the sensitivity of important input parameters of SCPM in
order to provide guidelines for parameter setting. All exper-
iments presented in this section were executed on a 16-core
Intel Xeon 2.4 Ghz with 50GB of RAM. The implementa-
tions are available as open-source1.

1http://code.google.com/p/scpm/



(a) Graph induced by {search, rank} (b) Pattern induced by {perform, system}

Figure 3: Examples of results from the DBLP dataset

σ ε δlb
S σ ε δlb S σ ε δlb S σ ε δlb

base system 5492 .04 14.0 grid applic 840 .26 41577 search rank 420 .19 635349
base us 5421 .04 13.5 grid servic 599 .23 154703 perform file 404 .14 555067

base model 4852 .03 13.3 environ grid 525 .21 256793 structur index 404 .14 555067
model us 4168 .03 21.0 queri xml 615 .21 123533 search mine 413 .14 490932
system us 3989 .05 36.8 search web 1031 .20 13738 us xml 400 .11 442638

base network 3774 .05 41.8 search rank 420 .19 635349 search web data 424 .14 431589
model system 3460 .02 21.7 dynam simul 469 .19 383169 base search analysi 414 .12 416385

base data 3452 .07 71.6 queri data 1540 .19 2758 model internet 401 .10 406059
base imag 3424 .02 17.6 chip system 702 .19 63351 process data databas 416 .12 405363
imag us 3345 .02 19.6 data stream 1073 .18 10653 perform distribut parallel 416 .11 388818

Table 2: DBLP - Top support (σ), str. correlation (ε), and normalized str. correlation (δlb) attribute sets.

4.1 Case Studies

4.1.1 DBLP
In the attributed graph extracted from the DBLP2 digital

library, each vertex represents an author and two authors are
connected if they have co-authored a paper. The attributes
of authors are terms that appear in the titles of papers au-
thored by them3. In the DBLP dataset an attribute set de-
fines a topic (i.e., set of terms that carry a specific meaning
in the literature) and a dense subgraph is a community.

The DBLP dataset contains 108,030 vertices, 276,658 edges,
and 23,285 attributes. Table 2 shows the top 10 attribute
sets w.r.t support (σ), structural correlation (ε), and nor-
malized structural correlation (δlb). The minimum size
(min size) and density (γmin) parameters were set to 10 and
0.5, respectively. The minimum support threshold (σmin)
was set to 400 and we considered only attribute sets of size
at least 2. The parameters used in our case studies were
selected empirically.

Top-σ attribute sets present a low correlation with the
formation of dense subgraphs in the DBLP dataset. Such
terms are popular in paper titles, but do not carry much

2http://www.informatik.uni-trier.de/~ley/db
3The set of attributes was reduced by stemming and removal
of stop words.
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Figure 4: DBLP - Expected ε computed by the sim-
ulation (sim-εexp) and analytical (max-εexp) models.

knowledge regarding the formation of research communi-
ties. On the other hand, top-ε structural correlation may
be more easily associated to known topics in computer sci-
ence. The attribute set {grid, applic} has the highest struc-
tural correlation (0.26), i.e., 26% of the authors that have
the keywords “grid” and “applic” are inside a community of
researchers of size at least 10 where each of them have col-
laborated with half of the other members. It is interesting
to point out that the graph induced by {grid, applic} has
more vertices in dense subgraphs than the graph induced by
{base, system}, though {base, system} is more than 6 times
more frequent than {grid, applic}. In general, high support
attribute sets do not present high structural correlation.



(a) Graph induced by {S Stevens,Wilco} (b) Pattern induced by {Van Morrison}

Figure 5: Examples of results from the LastFm dataset

σ ε δlb
S σ ε δlb S σ ε δlb S σ ε δlb

Radiohead 121892 .11 .37 Radiohead 121892 .11 .37 S Stevens,Wilco 28798 .04 1.14
Coldplay 118053 .09 .33 Coldplay 118053 .09 .33 S Stevens,Of Montreal 28621 .04 1.13
Beatles 109037 .09 .36 Beatles 109037 .09 .36 Beirut 27605 .04 1.11

RHC Peppers 105984 .09 .35 RHC Peppers 105984 .09 .35 S Stevens,Decemberists,Beatles 27415 .04 1.11
Nirvana 100604 .07 .31 Metallica 83587 .08 .41 NM Hotel,S Stevens 29260 .04 1.10
T Killers 96305 .07 .32 DC for Cutie 82025 .07 .41 S Stevens,F Lips,Beatles 27571 .04 1.09

Muse 94382 .07 .33 Beck 83360 .07 .40 A Collective 33555 .05 1.09
Oasis 87875 .06 .30 Muse 94382 .07 .33 BS Scene,NM Hotel 27308 .04 1.09

F Fighters 87001 .06 .33 Nirvana 100604 .07 .31 Radiohead,Spoon,S Stevens 27113 .04 1.06
P Floyd 86807 .07 .34 The Shins 68480 .07 .50 NM Hotel,Radiohead,Beatles 28776 .04 1.04

Table 3: LastFm - Top support (σ), str. correlation (ε), and normalized str. correlation (δlb) attribute sets.
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Figure 6: LastFm - Expected ε computed by the sim-
ulation (sim-εexp) and analytical (max-εexp) models.

Figure 4, shows the expected structural correlation for
different support values in the DBLP dataset. The input
parameters are the same as those used to generate the re-
sults shown in Table 2. For the simulation model, we ex-
ecuted 1000 simulations for each support value and show
also the standard deviation of the expected structural cor-
relation estimated. The analytical upper bound is not tight
w.r.t. the simulation results, but presents a similar growth,
which shows that it enables accurate comparisons between
the structural correlation of attribute sets.

Based on the proposed analytical model, the third column
of Table 2 shows the top attribute sets in terms of analyti-
cal normalized structural correlation (δlb). The attribute set
{search, rank} has the highest normalized structural corre-
lation (635,349), i.e., the structural correlation is 635,349
times the upper bound on its expected structural correla-
tion given by the analytical model. Figure 3(a) presents the
graph induced by {search, rank}. Vertices contained in a

dense subgraph are indicated. Dense subgraphs cover the
densest components of the induced graph. In general, top-
σ attribute sets have low δlb when compared to the top-δlb
attribute sets. Moreover, high values of ε do not necessar-
ily lead to high values of δlb. Figure 3(b) shows the largest
structural correlation pattern in terms of number of vertices
from DBLP, which represents two important interconnected
research groups on high performance systems.

4.1.2 LastFm
LastFm4 is an online social music network. We use a sam-

ple of the LastFm users crawled through an API provided
by LastFm. In the LastFm network, vertices represent users
and edges represent friendships. The attributes of a vertex
are the artists the respective user has listened to. An at-
tribute set in the LastFm dataset represents, in a more gen-
eral interpretation, a musical taste (i.e., set of artists) and
a dense subgraph is a community.

The LastFm dataset contains 272,412 vertices, 350,239
edges, and 3,929,101 attributes. Table 3 shows the top 10
attribute sets in terms of support (σ), structural correlation
(ε) and normalized structural correlation (δlb) discovered
from LastFm. The minimum size (min size) and density
(γmin) parameters were set to 5 and 0.5, respectively. The
minimum support threshold (σmin) was set to 27,000.

In general, the top-ε attribute sets are the most frequent
ones. However, such attribute sets present low normalized
structural correlation. In other words, although these at-
tributes are frequent and have several vertices covered by

4http://www.last.fm



(a) Graph induced by {node,wireless} (b) Pattern induced by {perform,system}

Figure 7: Examples of results from the CiteSeer dataset

σ ε δlb
S σ ε δlb S σ ε δlb S σ ε δlb

system paper 57906 .16 .77 network sensor 3276 .47 108.7 node wireless 2086 .35 164.4
base paper 56566 .10 .47 network hoc 2744 .47 141.2 protocol rout 2134 .35 157.6

paper result 47516 .08 .45 ad network hoc 2725 .44 134.6 memori cach 2150 .32 143.8
paper model 43929 .09 .59 network rout 5084 .41 48.0 network hoc 2744 .47 141.2

us paper 43573 .05 .32 network wireless 5242 .40 44.7 protocol wireless 2048 .29 138.7
system base 42079 .09 .63 node wireless 2086 .35 164.4 ad network hoc 2725 .44 134.7

approach paper 38690 .05 .40 protocol rout 2134 .35 157.6 network node rout 2075 .25 118.3
perform paper 37349 .13 1.04 ad network 3563 .34 69.3 optim queri 2094 .26 118.2
paper propos 37243 .06 .46 program logic 5895 .33 31.2 perform instruct 2111 .25 115.95

paper algorithm 37027 .12 .95 memori cach 2150 .32 143.8 paper ad network 2081 .23 108.86

Table 4: CiteSeer - Top support (σ), str. correlation (ε), and normalized str. correlation (δlb) attribute sets.

communities, this coverage is not much higher than ex-
pected. Considering the normalized structural correlation,
which takes into account the expected structural correla-
tion of an attribute set, the top patterns change signifi-
cantly. Figure 6 shows the expected structural correlation
for support values varying from 20,000 to 100,000. Each
simulation-based expected structural correlation value cor-
responds to an average of 100 simulations. The top δlb at-
tribute set {S Stevens,Wilco} includes the American singer
and songwriter Sufjan Stevens and the American band Wilco.

Figure 5(a) shows the graph induced by the attribute set
{S Stevens,Wilco}. For clarity, we removed vertices with
degree lower than 2. By visualizing vertices inside and out-
side structural correlation patterns, we can understand how
the structural correlation captures the relationship between
attributes and dense subgraphs. The largest structural cor-
relation pattern found is presented in Figure 5(b). It rep-
resents a community of 34 users who have listened to the
Northern Irish singer and songwriter Van Morrison. Vertex
identifiers are not shown due to privacy issues.

4.1.3 CiteSeer
CiteSeerX5 is a scientific literature digital library and

search engine. We built a citation graph from CiteSeerX

5http://citeseerx.ist.psu.edu
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Figure 9: CiteSeer - Expected ε for the simulation
(sim-εexp) and analytical (max-εexp) models.

as of March of 2010. In the CiteSeer graph, papers are rep-
resented by vertices and citations by undirected edges. Each
paper has as attributes terms extracted from its abstract6.
Attribute sets represent topics and dense subgraphs define
groups of related work in the CiteSeer graph.

The CiteSeer dataset has 294,104 vertices, 782,147 edges,
and 206,430 attributes. The parameters setting applied in
this case study is σmin = 2000, min size = 5, and γmin =
0.5. Table 4 shows the top structural correlation attribute
sets w.r.t. σ, ε, and δlb discovered. Top-σ attribute sets
present low structural correlation and normalized structural

6The set of attributes was reduced by stemming and stop
words removal.
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Figure 8: Performance evaluation

correlation when compared to the top-ε and top-δlb attribute
sets, respectively. Moreover, similar to the DBLP dataset,
while the top-σ attribute sets from the CiteSeer dataset are
generic terms, the top-ε and top-δlb attribute sets may be
easily associated to known research topics (e.g, computer
networks, query optimization).

Figure 9 shows the expected structural correlation for dif-
ferent support values in CiteSeer. The attribute set {node,
wireless} has the highest normalized structural correlation
(δlb =164.40). Figure 7(a) shows the graph induced by
the attribute set {node, wireless} in CiteSeer. Figure 7(b)
presents the largest structural correlation pattern discovered
in the CiteSeer dataset. Vertex labels are the initials of pa-
per titles. The papers included in the pattern cover topics
such as caching, memory management, computer networks,
processor design, and instruction level optimization (e.g.,
Attribute Caches, Systems for Late Code Modification, Lim-
its of Instruction Level Parallelism, Link-time Optimization
of Address Calculation on a 64-bit Architecture). We do not
show the full list of paper titles due to space limitations.

The next section evaluates the performance of the algo-
rithms proposed in this paper.

4.2 Performance Evaluation
This section evaluates the performance of the structural

correlation pattern mining algorithms. The dataset used is
a smaller version of the DBLP dataset (SmallDBLP), which
has 32,908 vertices, 82,376 edges, and 11,192 attributes.

The SCPM-BFS and SCPM-DFS are versions of the
SCPM algorithm using the BFS and DFS strategy, respec-
tively. The Naive algorithm enumerates the complete set of
quasi-cliques from the induced graphs, as described in Sec-
tion 3.1. We vary each parameter of the algorithms keeping
the others constant. Default values for γmin, min size, and
σmin are 0.5, 11, and 100. Moreover εmin, δmin, and k are
set to 0.1, 1, and 5, respectively, unless stated otherwise.

Figures 8(a), 8(b), and 8(c) show the runtime of the al-
gorithms varying the values of γmin, min size, and σmin,
respectively. In general, SCPM-DFS achieves the best re-
sults, being up to 3 orders of magnitude faster than the
Naive algorithm. Moreover, SCPM-BFS performs better
than the Naive algorithm in all the experiments.

In terms of the εmin (Figure 8(d)) and δmin (Figure 8(e))

parameters, both the SCPM-BFS and SCPM-DFS apply
the pruning techniques described in Section 3.2.1. Based on
the results shown in Figures 8(d) and 8(e), we can notice
that such techniques lead to significant performance gains
when the values of εmin and δmin are increased.

In Figure 8(f), we show the runtime of SCPM-DFS and
the Naive algorithm for different values of k. The results of
SCPM-BFS are omitted because both SCPM-BFS and
SCPM-DFS algorithms apply the same strategy for iden-
tifying the top-k structural correlation patterns (see Section
3.2.3). The inset also shows the execution time of SCPM-
DFS using a linear scale for the y-axis, to more clearly see
the effect of k on the runtime. The results show that for low
values of top k, SCPM-DFS is able to achieve low running
times, outperforming the Naive algorithm significantly.

4.3 Parameter Sensitivity and Setting
We now assess how different input parameters affect the

output of structural correlation pattern mining. Our objec-
tive is to provide guidelines for setting the parameters of
SCPM. Figure 10 shows the average structural correlation
and normalized structural correlation of the complete output
(global) and the top-10% attribute sets from the SmallDBLP
dataset varying the γmin, min size, and σmin parameters.
Default values for γmin, min size, and σmin are 0.5, 10 and
100. The results show that more restrictive quasi-clique pa-
rameters (i.e., high values of γmin and min size) reduce the
average ε but may increase δ, since dense subgraphs become
less expected. Moreover, high values of σmin are related to
high values of structural correlation ε. However, such at-
tribute sets also present high values of εexp, leading to low
values of normalized structural correlation δ.

SCPM is an exploratory pattern mining method, and thus
reasonable values for the different parameters can be ob-
tained by searching the parameter space. The minimum
density parameter, γmin, and the minimum quasi-clique size,
min size, will depend on the application. For σmin, a use-
ful guideline is to select values that produce a significant
expected structural correlation. Infrequent attribute sets
may not be expected to induce any dense subgraph. The
other parameters (εmin, δmin, and k) have as objectives to
speedup the algorithm and must be set according to the
available computational resources and time.
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Figure 10: Parameter sensitivity

5. CONCLUSIONS
In this paper, we studied the problem of correlating vertex

attributes and dense subgraphs in large attributed graphs.
The concept of structural correlation, which measures how
an attribute set induces dense subgraphs in an attributed
graph was proposed. We also presented normalization ap-
proaches that compare the structural correlation of a given
attribute set against its expected value, which provides a
measure of the statistical significance for the structural cor-
relation. In order to enable the analysis of large databases,
we introduced search and pruning strategies for structural
correlation pattern mining. We also proposed an algorithm
for the identification of the top structural correlation pat-
terns, which are the largest and densest subgraphs induced
by a given set of attributes. The patterns and algorithms
proposed were applied to three real datasets. The attribute
sets and patterns found represent relevant knowledge in terms
of the correlation between attributes and dense subgraphs.
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