
FlowGEN: A Generative Model for Flow Graphs
Furkan Kocayusufoglu

University of California, Santa
Barbara, CA, USA

furkank@cs.ucsb.edu

Arlei Silva
Rice University,

Houston, TX, USA
arlei@rice.edu

Ambuj K. Singh
University of California, Santa

Barbara, CA, USA
ambuj@cs.ucsb.edu

ABSTRACT
Flow graphs capture the directed flow of a quantity of interest (e.g.,
water, power, vehicles) being transported through an underlying
network. Modeling and generating realistic flow graphs is key in
many applications in infrastructure design, transportation, and
biomedical and social sciences. However, they pose a great challenge
to existing generative models due to a complex dynamics that is
often governed by domain-specific physical laws or patterns. We
introduce FlowGEN, an implicit generative model for flow graphs,
that learns how to jointly generate graph topologies and flows with
diverse dynamics directly from data using a novel (flow) graph
neural network. Experiments show that our approach is able to
effectively reproduce relevant local and global properties of flow
graphs, including flow conservation, cyclic trends, and congestion
around hotspots.

CCS CONCEPTS
• Computing methodologies→ Spatial and physical reason-
ing; Learning latent representations.

KEYWORDS
Representation learning; Graph generative models; Flow networks

ACM Reference Format:
Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh. 2022. FlowGEN: A
Generative Model for Flow Graphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3534678.3539406

1 INTRODUCTION
Generative models for graph data have a long-standing history
in network science [1, 15]. Major motivations for such models
include unavailability of large datasets, due to privacy concerns,
and the cost of data collection. These models are useful for data-
driven discovery, anomaly detection, and large-scale simulations
in the natural sciences. While there is an extensive literature on
mathematical models for graph data, more recent approaches based
on neural generative models have attracted great interest [5, 11, 20,
32, 34, 35, 37, 41, 48].

The main advantage of the recent generative approaches is the
potential to learn how to generate a broad class of graphs from a
limited number of samples. However, they are primarily focused on

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539406

reproducing undirected graph topologies observed in simple graph
structures (e.g., grid, community). In the many real-world applica-
tions, the ability to mimic (binary) connectivity patterns among
nodes alone is not sufficient to capture their key characteristics. To
that end, there have been recent studies in generative models for
other families of graphs that go beyond generic structures, such as
molecular graphs [26, 39], directed acyclic graphs (DAGs) [49], city
road layouts [10], and program (source code) graphs [7].

We focus on the generative modeling of a complex family of
graphs called flow graphs (FGs). Besides structure, FGs capture flows
of a quantity of interest (e.g., water, power, people) being trans-
ported through the graph. As these flows often possess higher-order
graph-level dynamics driven by sources/destinations [8], hotspots
[3], and domain-specific physics [40], generating FGs poses greater
challenges than those only focused on generating a graph topology.

As an example, consider a transportation network where nodes
correspond to locations, edges are routes between them, and flows
indicate the number of people (or vehicles) transported from one
location to another. Besides topological properties, such as the exis-
tence of central nodes and clusters, this FG also reveals specific flow
patterns. For instance, hotspots (e.g. recreational areas) might be-
come prominent sources and destinations depending on the time of
the day. Moreover, the prevalence of cyclic flows can unveil diurnal
variations in travel patterns. The ability to generate realistic mobil-
ity flows is key for the understanding of urban dynamics [3] and
the spread of epidemics [9]. Similar examples can be constructed
for the analysis of load distribution in power networks [14, 23] and
flux balance in biological systems [38].

It is important to emphasize some of the key differences be-
tween flow graphs and general weighted graphs. In typical weighted
graphs, weights represent the strength of a relationship between
two nodes (e.g. homophily in social networks). Conversely, FG
flows depend on higher order structures that induce patterns such
as source-destinations, cycles, congestion [40], and the degree to
which flows are conserved at nodes (does inflow equal outflow?).

We first investigate how existing graph generative models can
be combined with a learnable flow generating function to produce
FGs based on observed samples. While this two-step approach is
flexible and can be integrated with any existing model, it is unable
to learn the joint relationship between graph structure and flows
in an end-to-end fashion. To address this limitation, we introduce
FlowGEN, an implicit generative model for FGs based on the Gen-
erative Adversarial Networks (GAN) framework [18]. FlowGEN
learns to generate both the (directed) graph topology and edge
flows. The main ingredient of FlowGEN’s architecture is a discrimi-
nator with the following components: (1) a permutation invariant
flow-pooling layer, (2) bi-directional neural message-passing layers,
and (3) an attention-based readout layer. This enables FlowGEN to

813

https://doi.org/10.1145/3534678.3539406
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539406

KDD ’22, August 14–18, 2022, Washington, DC, USA Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh

learn hidden node representations (or states) capturing a complex
coupling between the graph topology and edge flows.

We assess the performance of flow graph generative models both
qualitatively and quantitatively, using novel evaluation metrics de-
signed for FGs. Our results show that FlowGEN can effectively
reproduce flow properties of a diverse set of real-world and simu-
lated networks, including transportation, power transmission, and
water networks, outperforming the alternative approaches.

2 RELATEDWORK
The generation of realistic graphs that mirror the characteristics of
real-world graphs is a long-standing research problem. The earliest
graph generative models [1, 15, 46] focus on reproducing certain sta-
tistical properties (e.g., degree distribution, graph density) found in
real-world graphs using a stochastic generation process. Although
simple to use, these models are limited in that the selected prop-
erties may not sufficiently represent many other characteristics of
real-world graphs.

To address the above problem and inspired by recent advance-
ments in deep learning [31, 45], several neural graph generative
models have been proposed [5, 11, 19, 20, 30, 32, 34, 35, 37, 41, 47, 48].
Compared to traditional models, neural models are able to learn
rather complex structural properties from data (e.g., spectral co-
efficients and orbit counts), and to reproduce graphs with funda-
mentally different topologies (e.g., grids and egonets). Amongst
the pioneer models, GraphVAE [41] utilizes variational autoen-
coders (VAE) [28] to generate a probabilistic fully-connected graph
and then applies an expensive graph matching algorithm to cal-
culate the reconstruction loss. As an alternative, NetGAN [5] con-
verts graphs into random walks and learns an implicit probabilistic
model for generating walks using adversarial training [18], thus
eliminating the need for expensive graph matching. More recently,
EDP-GNN [37] leverages a score-based generative modeling frame-
work [42] to achieve permutation invariant graph generation.

Another recent paradigm is tomodel graphs via an auto-regressive
process—as a sequence of additions of new nodes and edges, condi-
tioned on the current sub-graph structures [11, 32, 34, 48]. GraphRNN
[48] utilizes RNNs for the sequential modeling of nodes, while
GRAN [34] considers the sequential modeling of blocks of nodes,
employing GNNs with attention [45] for conditioning. BiGG [11]
further exploits the sparsity of real-world graphs by combining a
recursive edge generation scheme with auto-regressive condition-
ing, resulting in a technique that sidesteps the explicit generation
of each entry in an adjacency matrix. Although these approaches
are able to generate larger graphs relative to their counterparts,
they rely on pre-defined node orderings of graphs (BFS/DFS) since
computing the full likelihood is intractable due to all possible node-
orderings. However, this limits their capacity to model long-range
(global) dependencies, which is a key element for generating realis-
tic flow graphs, as we show in Section 4. Moreover, determining a
suitable node ordering is subject to the task and data of interest.

Flow graphs are a richer model than simple graphs because they
capture the dynamics of a system with node states [6]. The coupling
between edge flows and node states is governed by domain-specific
physical models, such as the Kirchhoff’s laws for power and the
LWR model for traffic [16]. Recent work has shown how learning
such models from data can improve the prediction of missing edge

flows [40]. Here, we focus on learning how to generate flow graphs
by implicitly capturing the coupling between topology and flows.
Measuring flows (of mobility, water etc.) on graphs requires much
effort and resources. Generative models are especially useful in
these settings in order to replicate the behavior of real data for
analysis, simulation, and algorithm development.

3 PROPOSED MODELS
We start by providing some notation, background, and a formal
definition of our problem.

A flowmatrix𝑋 ∈ R𝑑×𝑑+ is a non-negative square matrix where
the entry 𝑥𝑢,𝑣 denotes a directed flow from the source node 𝑢 to
destination node 𝑣 . A flow graph 𝐺 (𝑉 ,𝐸,𝑋) is a directed graph,
where 𝑉 is the set of vertices (|𝑉 | = 𝑁), 𝐸 is the set of edges, and
𝑋 ∈ R𝑁×𝑁

+ is the flow matrix denoting the observed edge flows,
where 𝑥𝑢,𝑣 = 0,∀(𝑢, 𝑣) ∉ 𝐸.

By convention, a negative edge flow indicates that the flowmoves
in a direction opposite to the direction of the edge. We can always
change the sign of the flow to positive as long as we change the edge
direction. Therefore, without loss of generality, we assume that all
edge flows are non-negative, i.e., 𝑥𝑢,𝑣 ≥ 0,∀(𝑢, 𝑣) ∈ 𝐸. Moreover, in
cases like human crowd flows, some node pairs are likely to have
flows in both directions (say, 𝑥𝑢,𝑣 ≥ 𝑥𝑣,𝑢 > 0). In this work, we are
only interested in net-flows, that is 𝑥𝑢,𝑣 =max(0, 𝑥𝑢,𝑣 −𝑥𝑣,𝑢). We
refer to net-flow as flow throughout this paper.

Problem: Given a set of flow graphs {𝐺1, · · · ,𝐺𝐿 } sampled from
a ground-truth distribution (𝑃𝑑𝑎𝑡𝑎), our aim is to implicitly learn to
mimic these graphs’ complex characteristics such that the graphs
(𝑃\) generated by our model can simulate both the graph topology
and the flow dynamics found in data. The proposed framework
should be generic enough to capture various flow dynamics intrinsic
to numerous real-world networks. (Examples are given in Section 4).

In the remainder of this Section, we first discuss how existing gen-
erative models for undirected (topological) graphs can be adapted
to our problem. Next, we introduce an implicit flow graph genera-
tive model (named FlowGEN) that is designed to capture the graph
structure as well as complex flow characteristics observed in real
data, being the first end-to-end graph generative model to generate
FGs from a domain-agnostic standpoint.

3.1 A Two-step Approach
One can think of most (undirected) graph generative models as a
parametric functionH : Z−→{0, 1}𝑁×𝑁 (typically a neural network
of some kind) that given samples drawn from a prior distribution,
learns to generate graphs, ultimately in the form of an adjacency
matrix or its counterparts. This is true whether one generates the
entire graph at once [5] or as a sequential process of adding new
nodes and edges [48]. It is possible to adapt these models to the
generation of flow graphs by a two-step model in which the second
step learns an additional flow function F : {0, 1}𝑁×𝑁−→R𝑁×𝑁 that
takes an adjacency matrix A as input and generates a non-negative
flowmatrix whose values correspond to the non-zero elements of𝐴.
Within this two-step framework (that can be summarized as F◦H),
one can choose to use any undirected graph generative model as
function H that is learnt on undirected versions of the observed
FGs. We focus on the learning of F , as illustrated in Figure 1.

814

FlowGEN: A Generative Model for Flow Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 1: An illustration of our two-step approach for gener-
ating flow graphs.

The problem of learning F is closely related to flow estimation,
which can be formulated as a semi-supervised learning problem on
graphs [31]. This problemwasmost recently studied by [25, 40] for a
single FG snapshot, where the goal is to predict edge flows based on
the graph topology and partial flow observations. [25] achieves this
by solving a constrained optimization problem involving domain-
specific physical constraints (flow conservation), while [40] further
relaxes these constraints and instead enforces them as a regularizer
whose weights are learned based on various node/edge features.
However, these methods cannot be applied to our setting because
we do not assume access to other information such as partial flows
(or contextual features), and we aim to learn generative models in
a domain-agnostic manner based purely on data.

We now discuss various ways of constructing F . Similar to [47],
given a graph in the form of an adjacency matrix 𝐴 ∈ {0, 1} |𝑉 |× |𝑉 | ,
we first generate node features M ∈ R |𝑉 |×𝑑𝑘 as a standard low-
dimensional spectral embedding [4] based on 𝐴. Notice that this
transformation allows us to handle variable sized graphs. Next,
we learn node states based on the node features using a standard
two-layer MLP:

𝐻 = 𝑀𝐿𝑃 (M) = 𝑅𝑒𝐿𝑈 (M𝑊0)𝑊1 (1)

Alternatively, we can better utilize the graph topology by using a
GCN model instead of MLP:

𝐻 = 𝐺𝐶𝑁 (M, 𝐴) = �̃�𝑅𝑒𝐿𝑈 (�̃�M𝑊0)𝑊1 (2)

where𝐻 ∈ R |𝑉 |×𝑑𝑙 ,𝑊0 ∈ R𝑑𝑘×𝑑𝑙 , and𝑊1 ∈ R𝑑𝑙×𝑑𝑙 . �̃� = 𝐷− 1
2𝐴𝐷− 1

2

is symmetric normalized adjacency matrix of 𝐴, and 𝐷 is the diag-
onal degree matrix with 𝐷𝑖𝑖 =

∑ |𝑉 |
𝑗=1𝐴𝑖 𝑗 . Lastly, we adapt a final

linear transformation to predict edge flows based on the topological
encoding of source (ℎ𝑠 ∈ R𝑑𝑙) and target (ℎ𝑡 ∈ R𝑑𝑙) nodes:

g(ℎ𝑠 , ℎ𝑡) = (ℎ𝑠 − ℎ𝑡)𝑊2 (3)

where𝑊2 ∈ R𝑑𝑙×1, and ℎ𝑖 = 𝐻𝑖,: for 𝑖 ∈ 𝑉 . The bias terms are
omitted for convenience.

Notice that g(ℎ𝑠 , ℎ𝑡) intrinsically captures the edge direction be-
tween nodes 𝑠 and 𝑡 , where g(ℎ𝑠 , ℎ𝑡) = −g(ℎ𝑡 , ℎ𝑠). This ensures
consistency with our problem setting, i.e., a negative flow means
movement against the orientation of the edge. Therefore, the re-
spective directions of non-negative flows are assigned for each node
pair (𝑠, 𝑡) ∈ 𝐸, such that 𝑠−→𝑡 when g(ℎ𝑠 , ℎ𝑡) > g(ℎ𝑡 , ℎ𝑠).

Finally, we can define the flow function F as a stack of g func-
tions applied on each edge of the input graph. All layers of F can be
trained jointly using graphs from 𝑃𝑑𝑎𝑡𝑎 , with MSE loss computed
between predicted (g(ℎ𝑠 , ℎ𝑡)) and ground-truth (𝑥𝑠,𝑡) flows. We re-
fer to our Appendix for all training details including the formulation
of the loss function, hyper-parameters, and more.

3.2 FlowGEN Framework
Though the two-step approach presented in the previous section
can reuse existing graph generative models, it does not account for
the joint relationship between graph structure and flow distribu-
tion. To this end, we introduce FlowGEN (illustrated in Figure 2),
an implicit flow graph generative model that can generate FGs in
an end-to-end fashion based on the GAN framework [18]. As in
the standard GAN framework, our model consists of two compo-
nents trained jointly: (1) A generator G\ that takes a sample from a
prior distribution and learns to generate flow graph samples that
approximate those drawn from the dataset, and (2) a discriminator
D𝜙 that learns to distinguish whether an input graph is sampled
from the dataset or the generator.

3.2.1 Generator. The generator G\ (parameterized by \) takes as
input a random vector 𝑧 ∈ R𝑑0 sampled fromN(0, 𝐼𝑑0) and outputs
a flow graph. Precisely, a flow matrix 𝑋 ∈ R𝑁×𝑁

+ is computed
by passing the sampled vector 𝑧 through multiple layers of fully
connected neural networks (MLP):

𝑋 = 𝑅𝑒𝐿𝑈

(
𝑓 𝑘
\
◦ · · · ◦ 𝑓 1

\
(𝑧)

)
(4)

where ◦ represents function composition. We use ReLU activations
for all layers including the final layer to obtain a non-negative flow
matrix. Note that the mapping \ ↦→ 𝑃\ is continuous (𝑃\ denotes
the model distribution) which differentiates our problem space from
the discrete graph generative models [34, 48].

3.2.2 Discriminator. The discriminator D𝜙 (parameterized by 𝜙)
takes a flow graph as input and outputs a scalar value indicating
whether an input graph is likely to be sampled from the dataset
or the generator. Our discriminator is a customized (flow) graph
neural network (GNN) consisting of three main components: (1)
permutation invariant flow-pooling layer, (2) bi-directional neural
message-passing layers, and (3) an attention-based readout layer,
each designed to collectively account for domain-agnostic and com-
plex flow dynamics in directed flow graphs.

More formally, given a flow graph 𝐺 (𝑉 , 𝐸, 𝑋), we first compute
two node-level flow (feature) vectors—in and out—using a permu-
tation invariant flow-pooling function over the column and row
vectors of the flow matrix, respectively.

𝑖𝑛ℎ
1
𝑢 = 𝑓𝑝𝑜𝑜𝑙 (𝑋:,𝑢) , 𝑜𝑢𝑡ℎ

1
𝑢 = 𝑓𝑝𝑜𝑜𝑙 (𝑋𝑢,:) 𝑢 ∈ 𝑉 (5)

Here, 𝑓𝑝𝑜𝑜𝑙 (𝑥) = [MEAN(𝑥);MAX(𝑥); SUM(𝑥)] is a stack of
element-wise pooling aggregators—the symbol ’;’ denotes concate-
nation and 𝑥 ∈ R𝑑 . 𝑋:,𝑢 and 𝑋𝑢,: ∈ R |𝑉 | indicate the columns and
rows of 𝑋 , which, respectively, hold the incoming and outgoing
flow information of node 𝑢 from and to its neighbors. Node flow
vectors 𝑖𝑛ℎ

1
𝑣 and 𝑜𝑢𝑡ℎ

1
𝑣 ∈ R𝑑1 (𝑑1 = 3 in this case) are then used

as initial hidden states to in and out neural message-passing chan-
nels, where respective node updates are computed independently
as follows:

𝑖𝑛ℎ
𝑡+1
𝑢 = 𝑓 𝑡𝑖 (𝑖𝑛ℎ

𝑡
𝑢 ,

∑︁
𝑣∈𝐺𝑜𝑢𝑡 (𝑢)

𝑚𝑡
𝑖 (𝑖𝑛ℎ

𝑡
𝑣, 𝑥𝑢,𝑣)) (6)

𝑜𝑢𝑡ℎ
𝑡+1
𝑢 = 𝑓 𝑡𝑜 (𝑜𝑢𝑡ℎ𝑡𝑢 ,

∑︁
𝑣∈𝐺𝑖𝑛 (𝑢)

𝑚𝑡
𝑜 (𝑜𝑢𝑡ℎ𝑡𝑣, 𝑥𝑣,𝑢)) (7)

815

KDD ’22, August 14–18, 2022, Washington, DC, USA Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh

Figure 2: A high-level illustration of FlowGEN architecture (best viewed in color). The left part pictures the adversarial training
process. The right part shows a detailed sketch of our discriminator: (1) The flow pooling layer assigns two initial feature vectors
(in and out) to each node in a permutation-invariant manner. (2) The message-passing layers comprise bi-directional channels
that exchange in and out flow messages (spiral arrows) independently in opposing directions. (3) The read-out layer fuses in
and out states of each node, and further aggregates them to construct a global flow graph representation. All components are
trained jointly. See Section 3.2 for details.

where, for each node 𝑢 at layer 𝑡 ∈ {1, · · · ,𝑇 − 1} , the in and
out message functions (𝑚𝑡

𝑖
and𝑚𝑡

𝑜), respectively take as input the
concatenation of out and in neighbors’ corresponding to hidden
states and edge flow values to compute latent flow message vectors.
The in and out node update functions (𝑓 𝑡

𝑖
and 𝑓 𝑡𝑜) take as input the

concatenation of current in and out-states of 𝑢 and aggregated flow
messages from its neighbors to update its next hidden states 𝑖𝑛ℎ𝑡+1𝑢

and 𝑜𝑢𝑡ℎ
𝑡+1
𝑢 ∈ R𝑑𝑡+1 accordingly. {𝑓 𝑡

𝑖
,𝑚𝑡

𝑖
, 𝑓 𝑡𝑜 ,𝑚𝑡

𝑜 |𝑡 = 1, · · · ,𝑇 − 1}
are all modeled independently as MLPs, with no weight sharing.

After𝑇−1message passing layers, we apply another node update
function, which takes as input the in and out node states, and
combines them into final node representations.

ℎ𝑇𝑢 = 𝑓𝑖𝑜 (𝑖𝑛ℎ𝑇𝑢 , 𝑜𝑢𝑡ℎ
𝑇
𝑢) 𝑢 ∈ 𝑉 (8)

where 𝑓𝑖𝑜 is another MLP. The vector ℎ𝑇𝑢 ∈ R𝑑𝑇 is a fused latent
representation of node𝑢, capturing in and out flow dynamics condi-
tioned on its neighbors as well as its relative location in the graph.

We aggregate these node representations and obtain a latent
graph representation ℎ𝐺 ∈ R𝑑𝐺 using an attention-based readout
layer (a.k.a. gated sum) following [33]:

ℎ𝐺 =
∑︁
𝑢∈𝐺

𝜎 (𝑓𝑎 (ℎ̃𝑢)) ⊙ 𝑓𝑏 (ℎ̃𝑢) (9)

where ℎ̃𝑢 = [ℎ𝑇𝑢 ; ℎ1𝑢] ∈ R𝑑𝑇 +2𝑑1 and ℎ1𝑢 = [𝑖𝑛ℎ1𝑢 ; 𝑜𝑢𝑡ℎ
1
𝑢] ∈ R2𝑑1

is the concatenation of initial in and out flow vectors (Eq. 5). This
is loosely analogous to skip connections in residual networks [22]
which we empirically find to be effective in capturing global flow
statistics. The first term in the summation (Eq. 9) essentially serves
as a soft attention mechanism assigning contextual importance
scores to nodes, where 𝜎 is the sigmoid activation and ⊙ denotes
element-wise multiplication. The context functions 𝑓𝑎 and 𝑓𝑏 are
again modeled as small MLPs. Note that such gated sum can model

injective multiset functions, and is invariant to input (node) order.
Lastly, ℎ𝐺 is processed by a final MLP layer (𝑓𝐺) which outputs
a graph-level scalar. Model parameters {\, 𝜙} are trained jointly
using theWasserstein GAN objective [2] with gradient penalty [21].
For all training details (hyper-parameters, activation functions etc.),
see the Appendix.

3.3 Discussion
We now present a brief rationale behind the design of some of
FlowGEN’s components. Since we generate the entire flow graph
at once, this limits us to graphs whose sizes do not exceed a cer-
tain threshold. However, generating an entire flow graph at once
is more appropriate for capturing global statistics of flows (e.g.
number of nodes with conserved flows) and graph topology (e.g.
number of k-cycles), as well as correlations between the two (e.g.
hotspot nodes and their relative locations in the graph). That said,
our model is capable of generating graphs with varying number
of edges and fewer nodes than the predetermined maximum (by
removing disconnected nodes). In addition, since 𝑓𝑝𝑜𝑜𝑙 is invariant
to permutations of the flow matrix and can handle flow distribu-
tions of varying sizes, our discriminator also remains permutation
invariant and is able to model variable-sized flow graphs.

One potential shortcoming of FlowGEN lies in its generator,
which has a quadratic memory footprint in the number of nodes,
similar to other non-autoregressive models [5, 35, 37]. Here we
emphasize that our primary goal is to generate high-quality flow
graphs. For larger flow graphs, one can resort to the proposed
two-step approach by leveraging a more scalable topological graph
generative model [11].

4 EXPERIMENTS
In this section, we present an experimental analysis of the proposed
approaches on both synthetic and real graph datasets with various

816

FlowGEN: A Generative Model for Flow Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

flow characteristics (Section 4.2). We also examine the diversity
of the generated graphs (Section 4.3), analyze the topology of the
generated graphs (Section 4.3), and perform an ablation study of our
model components (Section 4.5). Additional results are presented
in the Appendix, including multiple case studies demonstrating the
downstream utilities of the generated flow graphs.

4.1 Experimental Setup
Datasets.
(1) Power: European power transmission graphs [24] where nodes
(|𝑉 |=25) represent power infrastructure (buses, plants etc.) belong-
ing to European countries, edges (|𝐸 |𝑎𝑣𝑔=45) represent transmission
lines between the countries, and edge flows measure the total ac-
tive power being transmitted through these lines. We randomly
sample 2000 hourly snapshots from the year 2013.
(2) Water: 1000 directed barbell graphs with 20 nodes and 10-40%
of edges inside the communities removed uniformly at random.
Flows are synthetically generated based on a simple water distri-
bution process with either a source or a sink node assigned to each
community. For each node pair (𝑢, 𝑣), the flow is the net amount of
water that passed through either direction during the simulation.
(3) Taxi Trips: Real flow graphs with nodes and edges representing
taxi zones in Manhattan, NYC, and routes between zones, respec-
tively. Flows are net volumes of passengers traveled between
zones during 584 different snapshots (weekdays in [2017,2019]). We
create two versions of this dataset, with data from 8-9am (|𝑉 |𝑚𝑎𝑥 =

32, |𝐸 |𝑎𝑣𝑔 ≈ 133.1) and 6-7pm (|𝑉 |𝑚𝑎𝑥 = 32, |𝐸 |𝑎𝑣𝑔 ≈ 156.2).
Evaluation Metrics. Evaluating generative models is known to be
challenging [44]. In our case, this evaluation requires a comparison
between the generated and the ground truth flow graphs while ac-
counting for both the graph structures and edge flow characteristics.
To this end, we identify a comprehensive set of metrics which allow
us to quantitatively evaluate the effectiveness of our model on this
novel task. These metrics include: (1-2) in/out degree distributions,
(3) edge flow distributions, (4) node divergence distributions, and (5-6)
number of directed 𝑘-cycles (𝑘 ∈ {3, 4}). We define the divergence on
node 𝑢 as the difference between total in-flow and total out-flow,
normalized by their maximum, in order to compare graphs across
different datasets. Formally, 𝑋𝑑𝑖𝑣

𝑢 = (𝑋𝑜𝑢𝑡
𝑢 −𝑋 𝑖𝑛

𝑢)/𝑚𝑎𝑥 (𝑋𝑜𝑢𝑡
𝑢 , 𝑋 𝑖𝑛

𝑢)
where 𝑋𝑜𝑢𝑡

𝑢 =
∑

{𝑢→𝑣 } 𝑥𝑢,𝑣 and 𝑋 𝑖𝑛
𝑢 =

∑
{𝑣→𝑢 } 𝑥𝑣,𝑢 . Note that

𝑋𝑑𝑖𝑣
𝑢 ∈ [−1, 1] for all𝑢 ∈ 𝑉 and node𝑢 is a source (sink) node of the

flow graph if 𝑋𝑑𝑖𝑣
𝑢 ≈ 1 (𝑋𝑑𝑖𝑣

𝑢 ≈ −1). There can be multiple source
and sink nodes in a graph.

For graph-level metrics such as number of directed k-cycles, we
compute the average statistics of the entire set. For the remaining
node-level and edge-level metrics, following previous work [34, 48],
we compute the maximum mean discrepancy (MMD) over the two
sets of distributions using the total variation (TV) distance.
Methods. To the best of our knowledge, no baseline is available
for the novel task of generating FGs that exhibit the characteristics
of a given set of (ground-truth) graphs. Therefore, we experiment
with approaches introduced in Section 3 including FlowGEN and
a variety of two-step alternatives. Following our discussion on
two-step approaches (Section 3.1), we consider two state-of-the-
art deep (undirected) graph generative models —NetGAN [5] and
GRAN [34]— as the first step (function H), which are trained on
the undirected versions of the datasets. As for the second step

(function F), we implement three approaches namely FMLP (based
on Equation 1), FGCN (based on Equation 2), and DFF (short for
Divergence-Free Flows proposed by [25]). This results in six vari-
ants: NetGAN-FMLP, NetGAN-FGCN, NetGAN-DFF, GRAN-FMLP,
GRAN-FGCN, GRAN-DFF. More details on these methods are pro-
vided in the Appendix.
Experiment settings. Following [34], for each dataset, we ran-
domly split the graphs into train (80%) and test (20%) sets. We use
20% of the training graphs as the validation set. For fair comparison,
we use the same splits for all the models, and each model—at testing
time—generates the same number of graph samples as the test set.
For all the methods, we fix the size of input and output graphs
as the size of the largest graph in the dataset. All evaluations are
performed on the test set.

4.2 Experimental Results
Table 1 reports the performance of all seven methods on all four
datasets. The set of metrics we use evaluates graphs from varying
perspectives and the proposed end-to-end model consistently dis-
plays top results on all of them with very few exceptions. In more
detail, we observe that:
• FlowGEN excels at capturing global cyclic trends in all datasets
compared to other methods. This demonstrates that FlowGEN is
able to successfully replicate various higher-order patterns of di-
rected graphs including acylic water flows and real human-crowd
flows at different rush hours.
• FlowGEN fits the underlying edge flow and node divergence distri-
butions in the data considerably better than the competing methods
on nearly all the measures. This suggests that while FlowGEN is
effective in learning the edge flow distributions directly from data,
it also learns the coupling between edge flows and graph topology
which is intrinsically tied to the node-divergence distribution.
• GRAN-based two-step variants are particularly good at recover-
ing degree statistics and often outperform other methods regarding
in/out-degree distributions. This is a natural outcome given that
GRAN is considered to be the state-of-the-art (undirected) graph
generative model. FlowGEN, on the other hand, has competitive—if
not better, as forWater—scores than GRAN variants regarding these
metrics, while consistently outperforming on flow-related metrics.

We display graph examples generated by FlowGEN and the best-
performing two-step method, together with training samples for
the taxi trips datasets in Figure 3. We can observe that, in addition
to generating similar graph structures to those in the training set,
FlowGEN remarkably exhibits similar numbers of source (green)
and sink (red) nodes (as opposed to divergence-free nodes) together
with their relative locations in the graph. For instance, the morn-
ing hour exhibits unique flow patterns where the vast majority of
mobility flow is directed towards a few high centrality nodes cor-
responding to business centers in Manhattan. Conversely, during
the evening hour, such nodes become the source of mobility flows
being directed towards periphery nodes, coupled with more cycles
due to variations in travel patterns.

To further illustrate these findings, Figure 4 plots node-level
flow divergence distributions of graphs randomly sampled from
training data (1-5), FlowGEN (6-10), NetGAN-FGCN (11-15), and
GRAN-FGCN (16-20) for both dataset variants, with the top plot cor-
responding to 8-9am and the bottom plot corresponding to 6-7pm.

817

KDD ’22, August 14–18, 2022, Washington, DC, USA Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh

Simulated Data Taxi Trips
Top: Power / Bottom: Water Top: 8-9am / Bottom: 6-7pm

In-deg.
dist.

Out-deg.
dist.

{𝑥𝑢,𝑣} {𝑋𝑑𝑖𝑣
𝑢 }

Avg.
rank

In-deg.
dist.

Out-deg.
dist.

{𝑥𝑢,𝑣} {𝑋𝑑𝑖𝑣
𝑢 }

Avg.
rank

test data − − − − 2.58 2.33 − − − − − 10.34 17.71 −
NetGAN-FMLP 1.69𝑒−2 3.73𝑒−2 4.71𝑒−2 7.26𝑒−2 2.21 1.45 5.2 3.01𝑒−2 4.45𝑒−2 9.81𝑒−2 6.62𝑒−2 2.56 5.68 4.5
NetGAN-FGCN 1.88𝑒−2 1.21𝑒−2 1.89𝑒−2 5.95𝑒−2 2.01 1.77 3.6 3.56𝑒−2 2.49𝑒−2 5.32e−2 3.73𝑒−2 6.74 10.85 2.6
NetGAN-DFF 5.85𝑒−2 2.76𝑒−2 4.22𝑒−2 0.126 3.74 5.01 5.8 0.128 4.76𝑒−2 8.51𝑒−2 0.322 26.41 67.84 5.8
GRAN-FMLP 3.16𝑒−3 2.28𝑒−3 3.94𝑒−2 5.62𝑒−2 4.24 3.16 3.6 1.96𝑒−2 2.33𝑒−2 0.122 5.45𝑒−2 17.53 55.37 3.8
GRAN-FGCN 1.18e−3 1.79e−3 7.02𝑒−3 4.51𝑒−2 3.98 3.14 2.3 2.28𝑒−2 9.81e−3 6.77𝑒−2 2.85𝑒−2 34.19 110.51 3.3
GRAN-DFF 1.56𝑒−2 1.73𝑒−2 3.61𝑒−2 0.164 7.23 6.62 5.6 8.97𝑒−2 1.11𝑒−2 0.101 0.315 61.24 263.43 5.6
FlowGEN 1.35𝑒−2 9.36𝑒−3 3.73e−3 2.98e−3 2.66 2.41 1.6 1.42e−2 3.47𝑒−2 8.32𝑒−2 1.99e−2 11.76 28.02 2.1

test data − − − − 0.0 0.0 − − − − − 34.10 92.56 −
NetGAN-FMLP 4.92𝑒−2 4.53𝑒−2 0.107 0.497 5.58 6.89 5.3 6.44𝑒−2 1.27𝑒−2 3.07𝑒−2 4.32𝑒−2 8.59 20.25 5.2
NetGAN-FGCN 2.65𝑒−2 2.16𝑒−2 8.94𝑒−2 0.419 4.84 6.07 3.2 4.09𝑒−2 1.32𝑒−2 2.81𝑒−2 2.96𝑒−2 11.45 27.02 4.2
NetGAN-DFF 7.52𝑒−2 7.64𝑒−2 8.99𝑒−2 0.264 9.16 12.87 5.3 5.03𝑒−2 5.67𝑒−2 9.34𝑒−2 0.243 28.36 72.30 4.8
GRAN-FMLP 3.91𝑒−2 4.18𝑒−2 9.98𝑒−2 0.464 9.78 14.96 3.5 3.14𝑒−2 5.98e−3 3.04𝑒−2 2.44𝑒−2 22.17 75.58 2.6
GRAN-FGCN 1.81e−2 1.78𝑒−2 8.51𝑒−2 0.408 8.23 12.56 3.0 1.39𝑒−2 8.76𝑒−3 2.66e−2 2.21𝑒−2 53.21 205.41 3.0
GRAN-DFF 3.66𝑒−2 4.35𝑒−2 8.16𝑒−2 0.235 13.54 25.32 4.5 5.12e−3 4.27𝑒−2 0.140 0.289 95.18 417.35 5.8
FlowGEN 1.99𝑒−2 1.76e−2 2.41e−2 5.53e−2 3.39 5.82 1.2 6.77𝑒−3 1.23𝑒−2 7.44𝑒−2 1.93e−2 23.69 81.48 2.3
Table 1: Flow graph generation results for simulated (left) and real-world (right) datasets. Metrics from left to right: (1-2) in&out
degree distribution, (3) edge flow distribution, (4) node divergence distribution, (5-6) average number of directed 3&4-cycles.
For MMD scores (1-4), the smaller the better; for average statistics (5-6), the closer to test data, the better. Last column (7) shows
average rank of models per each dataset for the reader’s convenience. The symbol ‘–’ means not applicable as MMD scores are
computed with respect to test data. FlowGEN consistently ranks top across all four datasets by showing superior performance on
flow-related metrics (3-6), while being competitive with other methods on topological metrics (1-2).

Train FlowGEN Baseline*

Ta
xi

T
ri
ps

8-
9a

m

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

6-
7p

m

Figure 3: Visualization of flow graphs (FGs) sampled from train splits and top-2 models for taxi trips. ‘*’ indicates the best
performing baseline variant (e.g., NetGAN-FGCN for 8-9am). Node colors represent flow divergence with green for source, red for
sink and gray for divergence-free node. Node sizes indicate total in/out flow normalized per graph. See color map on the right
for scale. FGs generated by FlowGEN exhibit similar patterns to those observed in data regarding the coupling of graph structure
and flow distributions.

818

FlowGEN: A Generative Model for Flow Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Flow graph samples (taxi trips 8-9am)

1.0

0.5

0.0

0.5

1.0
Fl

ow
 d

iv
er

ge
nc

e
Data FlowGEN NetGAN-FGCN GRAN-FGCN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Flow graph samples (taxi trips 6-7pm)

1.0

0.5

0.0

0.5

1.0

Fl
ow

 d
iv

er
ge

nc
e

Figure 4: Node-level flow divergence distributions of randomly sampled graphs from training data (1-5), FlowGEN (6-10),
NetGAN-FGCN (11-15), and GRAN-FGCN (16-20) for taxi trips 8-9am (top) and 6-7pm (bottom) variants. The horizontal axis
corresponds to color-coded graph samples (five each), while the vertical axis represents flow divergence distributions. FlowGEN
successfully replicates the flow divergence distribution observed in data, outperforming the two-step approaches.

The results show that FlowGEN consistently matches the ground-
truth distribution observed in both settings of the data, while the
two-step approaches NetGAN-FGCN and GRAN-FGCN struggle to
reproduce such complex characteristics. The ability to capture the
joint relationship between underlying graph topology and global
flow distribution is one of the key desiderata in generating realistic
flow graphs observed in diverse settings.

Through both qualitative and quantitative analyses, we conclude
that FlowGEN can effectively capture flow dynamics of graphs
with vastly differing characteristics—being able to learn complex
distributions like divergence-free flows as well as more natural
distributions of flows like human crowds and power transmissions.
Furthermore, we refer to the Appendix for multiple case studies
demonstrating the downstream utilities of generated flow graphs.
4.3 Diversity Analysis
We also analyze the diversity of generated graphs, an important
aspect in assessing generativemodels’ capacity as they are known to
suffer frommode collapse [2, 43]. In the context of graph generative
models, the notion of diversity is typically defined for undirected
graphs and does not directly apply to our case (e.g. graphs with
the same topology but different flow distributions are considered
different). We observe that FlowGEN is able to generate diverse sets
of flow graphs with varying topological and flow characteristics.

Figure 5 demonstrates the distribution of generated graph struc-
tures observed in all four datasets, as well as graphs generated by
NetGAN, GRAN, and FlowGEN. To generate this plot, we choose
(undirected) degree assortativity coefficient [36] as our metric,
which is a graph-level scalar value allowing us to conveniently
examine and compare structural diversity across generated graphs.
For FlowGEN, we use the undirected versions of the generated flow
graphs for a fair comparison. Our results show that while FlowGEN

and GRAN generate diverse underlying graph structures, NetGAN
tends to generate graphs with similar structures, particularly for
Taxi 8-9am (Figure 5a) and Power (Figure 5c) datasets.

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(a) Taxi 8-9am

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(b) Taxi 6-7pm

0.5 0.4 0.3 0.2 0.1 0.0
Degree assortativity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(c) Power

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(d) Water

Figure 5: Distributions of degree assortativity coefficients
observed in graphs from training data, NetGAN, GRAN, and
FlowGEN for all four datasets used in our experiments.

819

KDD ’22, August 14–18, 2022, Washington, DC, USA Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh

Simulated Data Taxi Trips
Power (top) / Water (bottom) 8-9am (top) / 6-7pm (bottom)

Deg.
dist.

Clus.
coeff.

Assort-
ativity

Deg.
dist.

Clus.
coeff.

Assort-
ativity

test data − − -0.196 16.0 23.0 − − -0.255 275.3 2031.4
E-R 0.177 0.114 -8.55𝑒−2 7.92 18.63 8.53𝑒−2 1.99𝑒−2 -7.29𝑒−2 113.4 749.5
B-A 0.479 0.998 -0.428 0.0 0.0 6.80𝑒−2 2.02𝑒−2 -0.195 120.2 771.2
NetGAN 5.32𝑒−2 0.172 -0.247 7.95 12.19 3.54𝑒−2 2.03𝑒−2 -0.223 87.3 416.7
GRAN 3.86e−3 4.27e−2 -0.188 16.65 25.60 5.32e−3 1.97e−2 -0.251 231.9 1768.8
FlowGEN 1.91𝑒−2 0.106 -0.221 13.20 21.23 1.48𝑒−2 1.99𝑒−2 -0.234 256.4 2170.2

test data − − -2.63𝑒−2 36.69 108.84 − − -7.86𝑒−2 340.3 2523.0
E-R 2.48𝑒−2 2.51𝑒−2 -0.131 17.5 57.96 9.21𝑒−2 2.01𝑒−2 -6.36𝑒−2 173.1 1277.0
B-A 0.101 4.62𝑒−2 -0.322 13.32 38.78 6.11𝑒−2 2.00𝑒−2 -0.186 197.4 1460.3
NetGAN 2.59𝑒−2 2.23𝑒−2 -0.138 22.2 56.4 6.20𝑒−2 2.02𝑒−2 -7.23e−2 94.5 441.4
GRAN 4.20e−3 2.08e−2 -5.54𝑒−2 38.37 116.39 3.01e−3 2.00𝑒−2 -0.152 358.5 2876.4
FlowGEN 9.27𝑒−3 2.19𝑒−2 -3.49e−2 36.01 102.38 1.57𝑒−2 1.99e−2 -6.89𝑒−2 299.7 2671.3

Table 2: Results with respect to graph topology. Metrics from left: (1) degree and (2) clustering coefficient distributions; average
(3) degree assortativity and (4-5) number of 3&4-cycles. For MMD scores (1-2), the smaller the better; for average statistics (3-5),
the closer to test data, the better.

4.4 Reproducing graph topology
The previous experimental results given in Table 1 primarily assess
the generated graphs from a flow-centric standpoint, mainly be-
cause our objective is to generate realistic flow graphs. That said,
an important step towards achieving this goal is the ability to repro-
duce underlying graph topologies found in data. Thus, we present
a comprehensive analysis on all four datasets with additional graph
statistics in Table 2. We also include two more traditional graph
generativemodels as baselines: Erdos-Renyi (E-R) [15] and Barabasi-
Albert (B-A) [1]. Results show that FlowGEN consistently yields
competitive results against neural baselines while outperforming
the traditional approaches.

In-deg.
dist.

Out-deg.
dist.

{𝑥𝑢,𝑣} {𝑋𝑑𝑖𝑣
𝑢 }

test data − − − − 2.58 2.33
FlowGEN 1.35𝑒−2 9.36𝑒−3 3.73𝑒−3 2.98𝑒−3 2.66 2.41
w/o FPL 2.51𝑒−2 3.17𝑒−2 4.19𝑒−3 9.23𝑒−3 2.60 2.56
w/o BMPL 4.25𝑒−2 8.63𝑒−2 4.39𝑒−3 5.73𝑒−2 0.85 1.48
w/o ARL 1.81𝑒−2 2.38𝑒−2 3.08𝑒−3 7.16𝑒−3 1.83 3.64

Table 3: Ablation study of model components on Power
dataset.

4.5 Ablation Study
Lastly, we conduct a detailed ablation study in order to demon-
strate the contributions of each FlowGEN component by disabling
these components one by one, and replacing them with standard
approaches from the literature. We name these variants as follows:
• FlowGEN without Flow-Pooling Layer (w/o FPL): This variant
disables our flow-pooling component and instead uses Gaussian
random vectors as initial in and out node features ([𝑖𝑛ℎ1𝑢 ;𝑜𝑢𝑡 ℎ1𝑢] ∼
N (0, 𝐼6)). This is a well-known approach for cases where external
node features are not available [47].

• FlowGENwithout BidirectionalMessage-Passing Layer (w/o BMPL):
This variant disables our bidirectional message passing scheme
where the node states are computed using two independent (in
and out) neural message-passing channels (Equations 6 and 7). We
instead employ a single message-passing channel to simultaneously
update both node representations. More formally, for each node 𝑢
at layer 𝑡 , the respective node update is computed as follows:

ℎ𝑡+1𝑢 = 𝑓 𝑡 (ℎ𝑡𝑢 ,𝑚𝑡
𝑢), 𝑡 = 1,· · ·,𝑇−1 (10)

where

𝑚𝑡
𝑢 =

∑︁
𝑣∈𝐺𝑖𝑛 (𝑢)

𝑚𝑡 (ℎ𝑡𝑣, 𝑥𝑣,𝑢) +
∑︁

𝑣∈𝐺𝑜𝑢𝑡 (𝑢)
𝑚𝑡 (ℎ𝑡𝑣, 𝑥𝑢,𝑣)

ℎ1𝑢 = [𝑖𝑛ℎ1𝑢 ;𝑜𝑢𝑡 ℎ1𝑢] (11)

{𝑓 𝑡 ,𝑚𝑡 |𝑡 = 1, · · · ,𝑇−1} are again modeled as MLPs.
• FlowGEN without Attention-based Readout Layer (w/o ARL):
This variant replaces the attention-based readout layer [33] with
a standard SUM aggregator. More formally, we modify Equation 9
and compute the latent graph representation as ℎ𝐺 = 1

|𝑉 |
∑
𝑢∈𝑉 ℎ̃𝑢

which simply assigns equal weights to all nodes in the graph.
Analysis: Table 3 demonstrates that each FlowGEN component

contributes to final model performance, where different compo-
nents have varying effects on different evaluation metrics. We ob-
serve that the proposed bidirectional message-passing layer (BMPL)
enables our discriminator to better capture higher-order directed
flow characteristics found in data, which results in significant im-
provements on related metrics such as in/out degree distributions,
node-divergence distribution and directed 𝑘-cycles. With that obser-
vation, we hypothesize that bidirectional message-passing channels
can account for heterogeneous in-flow and out-flow dynamics of
nodes. As an example, for certain nodes like divergence-free nodes,
larger total in-flow naturally indicates larger total out-flow, while
this does not hold for some other nodes like sink or source nodes,
for which the relationship is clearly not linear.

820

FlowGEN: A Generative Model for Flow Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

Moreover, while the flow-pooling layer (FPL) does not seem to
have a notable impact on directed cyclic trends, it leads to improve-
ments on in/out degree distributions and (more prominently) on
node-divergence distribution. This suggests that explicitly assign-
ing rather simple flow statistics of nodes as initial node states—in
addition to inducing the key property of permutation invariance—
results in improved capacity in capturing global flow characteristics.

The third component of our discriminator is the attention-based
readout layer (ARL). Such a layer is widely used in the literature to
adjust the contributions of each node to the final graph represen-
tation, as intuitively, certain nodes play a more critical role than
others [17]. We also leverage this technique to improve our model’s
ability to replicate critical nodes in flow graphs (e.g. source and sink
nodes), which directly leads to desirable improvements observed
through both qualitative (Figure 3) and quantitative (Table 3) eval-
uations. More specifically, we observe that ARL leads to enhanced
performance on the node-divergence distribution and directed 𝑘-
cycle count metrics compared to the standard SUM aggregator.

The results discussed in this section justify the different choices
made in the design of the FlowGEN architecture. As discussed above,
each component contributes to our model’s ability to reproduce
one or more desired properties of real flow graphs, which explains
why FlowGEN outperforms the baselines (see Table 1).

5 CONCLUSION
We introduce the problem of generating flow graphs, which poses
greater challenges than those only related to the graph topology (or
even weighted graphs), due to the complexity of higher-order flow
patterns, such as flow conservation, cyclic trends, and congestion
around hotspots. We further introduce domain-agnostic generative
models for FGs, including FlowGEN—our main contribution. At the
heart of FlowGEN’s architecture is a custom graph neural network
designed to capture the complex coupling between graph topology
and edge flows. Our experiments demonstrate how these compo-
nents collectively address limitations of existing graph generative
models to handle flow graphs, enabling FlowGEN to reproduce
relevant local and global flow properties in multiple domains.

ACKNOWLEDGMENTS
This project was partially supported by funding from the National
Science Foundation under grant IIS-1817046 and the Defense Threat
Reduction Agency under grant HDTRA1-19-1-0017.

REFERENCES
[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47, 2002.
[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In ICML, 2017.
[3] Aleix Bassolas et al. Hierarchical organization of urban mobility and its connec-

tion with city livability. Nature communications, 10(1):1–10, 2019.
[4] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural computation, 15(6):1373–1396, 2003.
[5] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günne-

mann. Netgan: Generating graphs via random walks. In ICML, 2018.
[6] Alberto Bressan et al. Flows on networks: recent results and perspectives. EMS

Surveys in Mathematical Sciences, 1(1):47–111, 2014.
[7] Marc Brockschmidt et al. Generative code modeling with graphs. In ICLR, 2019.
[8] Francesco Calabrese, Giusy Di Lorenzo, et al. Estimating origin-destination flows

using mobile phone location data. IEEE Pervasive Computing, (4):36–44, 2011.
[9] Matteo Chinazzi et al. The effect of travel restrictions on the spread of the 2019

novel coronavirus (covid-19) outbreak. Science, 368(6489):395–400, 2020.

[10] Hang Chu, Daiqing Li, et al. Neural turtle graphics for modeling city road layouts.
In ICCV, 2019.

[11] Hanjun Dai et al. Scalable deep generative modeling for sparse graphs. In ICML,
2020.

[12] Hermann W Dommel and William F Tinney. Optimal power flow solutions. IEEE
Transactions on power apparatus and systems, (10):1866–1876, 1968.

[13] Florian Dörfler et al. Electrical networks and algebraic graph theory: Models,
properties, and applications. Proceedings of the IEEE, 106(5):977–1005, 2018.

[14] Florian Dörfler and Francesco Bullo. Synchronization in complex networks of
phase oscillators: A survey. Automatica, 50(6):1539–1564, 2014.

[15] Paul Erdös and Alfréd Rényi. On random graphs. Publicationes mathematicae,
6(26):290–297, 1959.

[16] M. Garavello and B. Piccoli. Traffic Flow on Networks: Conservation Laws Model.
AIMS series on applied mathematics. AIMS, 2006.

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In ICML, 2017.

[18] Ian Goodfellow et al. Generative adversarial nets. In NeurIPS, 2014.
[19] Nikhil Goyal et al. Graphgen: a scalable approach to domain-agnostic labeled

graph generation. In Proceedings of The Web Conference 2020, 2020.
[20] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative

modeling of graphs. In ICML, 2019.
[21] Ishaan Gulrajani et al. Improved training of wasserstein gans. In NeurIPS, 2017.
[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.
[23] D.J. Hill and Guanrong Chen. Power systems as dynamic networks. In 2006 IEEE

International Symposium on Circuits and Systems, 2006.
[24] Jonas Hörsch et al. Pypsa-eur: An open optimisation model of the european

transmission system. Energy strategy reviews, 22:207–215, 2018.
[25] Junteng Jia, Michael T Schaub, Santiago Segarra, and Austin R Benson. Graph-

based semi-supervised & active learning for edge flows. In KDD, 2019.
[26] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational

autoencoder for molecular graph generation. In ICML, 2018.
[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.
[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.
[29] Ryan Kinney et al. Modeling cascading failures in the north american power

grid. The European Physical Journal B-Condensed Matter and Complex Systems,
46(1):101–107, 2005.

[30] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Work-
shop on Bayesian Deep Learning, 2016.

[31] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[32] Yujia Li et al. Learning deep generative models of graphs. arXiv preprint
arXiv:1803.03324, 2018.

[33] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. In ICLR, 2016.

[34] Renjie Liao et al. Efficient graph generation with graph recurrent attention
networks. In NeurIPS, 2019.

[35] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph
normalizing flows. In NeurIPS, 2019.

[36] Mark EJ Newman. Mixing patterns in networks. Physical review E, 2003.
[37] Chenhao Niu et al. Permutation invariant graph generation via score-based

generative modeling. In AISTATS, 2020.
[38] J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis? Nat

Biotechnol, 28(3):245–248, Mar 2010.
[39] Chence Shi et al. Graphaf: a flow-based autoregressive model for molecular

graph generation. In ICLR, 2020.
[40] Arlei Silva et al. Combining physics and machine learning for network flow

estimation. ICLR, 2021.
[41] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of

small graphs using variational autoencoders. In ICANN, 2018.
[42] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. In NeurIPS, 2019.
[43] Akash Srivastava et al. Veegan: Reducing mode collapse in gans using implicit

variational learning. In NeurIPS, 2017.
[44] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation

of generative models. arXiv preprint arXiv:1511.01844, 2015.
[45] Petar Veličković et al. Graph attention networks. In ICLR, 2017.
[46] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. Nature, 393(6684):440, 1998.
[47] Carl Yang et al. Conditional structure generation through graph variational

generative adversarial nets. In NeurIPS, 2019.
[48] Jiaxuan You et al. Graphrnn: Generating realistic graphs with deep auto-

regressive models. In ICML, 2018.
[49] Xun Zheng et al. Dags with no tears: Continuous optimization for structure

learning. In NeurIPS, 2018.

821

KDD ’22, August 14–18, 2022, Washington, DC, USA Furkan Kocayusufoglu, Arlei Silva, and Ambuj K. Singh

6 APPENDIX
6.1 Case Study: European Power Network
We perform a case study focused on the generation of a particu-
lar type of flow graphs, namely power networks. Such networks
are often applied in the analysis of large power distribution in-
frastructure, including their robustness [29] and optimization [12].
Moreover, the dynamics of power networks is governed by physical
laws—in this case, Kirchhoff’s laws—posing a great challenge to
domain-agnostic generative models for flow graphs. In this case
study, we apply a new domain-specific evaluation metric in order
to assess whether the generated graphs are consistent with the
expected properties of power networks.

Evaluation: Besides the metrics described in Section 4.1, we also
apply a more specific one to evaluate power flow graphs. Our goal
is to assess whether the generated flows are consistent with the
dynamics observed in real power networks. For each generated flow
graph 𝐺 (𝑉 , 𝐸, 𝑋), we compute node divergences 𝑋𝑑𝑖𝑣

𝑢 = (𝑋𝑜𝑢𝑡
𝑢 −

𝑋 𝑖𝑛
𝑢), where 𝑋 𝑖𝑛

𝑢 and 𝑋𝑜𝑢𝑡
𝑢 are total in and out flows for node 𝑢,

respectively. These values capture the net power consumed (𝑋𝑑𝑖𝑣
𝑢 <

0) or generated (𝑋𝑑𝑖𝑣
𝑢 > 0) at each node in the flow graph. However,

notice that different assignments of flows can satisfy the same node
divergences—flows can be increased arbitrarily along the cycles in
𝐺—and thus one can define a notion of optimality to compare them.
We define the optimal flow assignment 𝑋 ∗ given node divergences
𝑋𝑑𝑖𝑣 and a set of edges 𝐸 using the following formulation:

𝑋 ∗ = argmin
𝑋

∥(𝑋 − 𝑋𝑇)1 − 𝑋𝑑𝑖𝑣 ∥22 + _∥𝑋 ∥2𝐹

s.t. ∀𝑋𝑢,𝑣 > 0, (𝑢, 𝑣) ∈ 𝐸 (12)

where _ (set to 0.1) is a regularization parameter. 𝑋 ∗ attempts to
satisfy the node divergences as those in𝑋𝑑𝑖𝑣 while also minimizing
a regularization term. Besides making the solution unique, this
regularization has a physical interpretation from Kirchhoff’s volt-
age law [13]. Intuitively, it penalizes cyclic flows, which are not
driven by differences of potentials, while smoothly distributing
flow values as if line resistances are uniform. Therefore, given the
same node divergences and graph topology, one would expect an
effective model to produce flows that are close to 𝑋 ∗. We define the
efficiency score of a flow matrix 𝑋 as 1 − ||𝑋 − 𝑋 ∗ | |𝐹 , where both
flow matrices are normalized.

Eff. score
test data 0.69
NetGAN-FGCN 0.47
GRAN-FGCN 0.52
FlowGEN 0.58

Table 4: Evaluation of power network generated by the dif-
ferent methods using the defined efficiency score. A higher
score means better performance.

Experimental Results: Table 4 shows the performance of Flow-
GEN and the best performing baseline variants on the power dataset.
In Section 4.2 we showed that while GRAN variants excel at repro-
ducing topological properties, FlowGEN achieves the best results
regarding flow-related metrics (i.e., edge flows, node divergences
and directed cycles) at both local and global levels. Similarly, re-
garding the efficiency score, results show that FlowGEN produces

flow graphs that are closer to optimal compared to the baselines.
Moreover, notice that neither FlowGEN nor the baselines take into
account the objective function from Equation 12 explicitly. These
results give substantial evidence that FlowGEN is able to capture
complex domain-specific flow dynamics observed in the data.

6.2 Case Study: Downstream Utility of
Generated Flow Graphs

Network flow estimation [25, 40] is one of the mainstream problems
that has a broad practical use in many real-world applications, es-
pecially in which the availability of flow information can be limited
due to their measurements requiring a lot of effort and resources.
Moreover, one of the exciting motivations behind high-fidelity
synthetic data generation is that it can serve as a valuable data
augmentation tool to provide researchers with an opportunity to
develop and test analytical tools on numerous real-world problems
where certain data limitations and/or privacy measures may apply.

Combining these two motivations, we present an additional case
study, which aims to quantitatively analyze whether the generated
flow graphs can be employed in combination with the ground-
truth data to improve network flow estimation performance. In
particular, we conduct the following additional experiments on
the Taxi Trips 8-9am dataset. First, we randomly sample 40 flow
graphs from the ground-truth data, which are split 20/10/10 for
training/validation/testing. Following the same procedure in our
two-step framework (see Section 3.1), we train a GCN model on the
training set and evaluate its performance on the test set. Next, we
further sample 20 more flow graphs, but this time from FlowGEN,
which are then combined with the previously sampled graphs for
training. We again train another GCN model on the extended train-
ing set and evaluate its performance on the same test set used in
the previous setting. Training is continued until no improvements
are observed on the validation set for 10 consecutive epochs. We
repeat the experiments 10 times and compute the average RMSE
scores normalized per graph. Our results show that adding the
synthetically generated flow graphs by FlowGEN leads to 16.7%
relative improvement on the RMSE metric (8.08𝑒 − 2 vs 6.73𝑒 − 2).
This provides a strong evidence towards the broader utility of our
framework.

6.3 FlowGEN Training Details
Our generator (G\) comprises a 4-layer MLP with hidden units
of {64, 128, 256, 𝑁 2}, where 𝑁 is the maximum number of nodes
assigned accordingly per each dataset. A 𝑅𝑒𝐿𝑈 activation is applied
after each layer. The input to the generator is a 16-dimensional
vector drawn from a multivariate standard normal distribution. In
the discriminator (D𝜙), we employ four bi-directional message-
passing steps. The in and out message functions ({𝑚𝑡

𝑖
,𝑚𝑡

𝑜 }4𝑡=1) are
single layer MLPs without activation, where the hidden units are
16 for all steps. Node update functions ({𝑓 𝑡

𝑖
, 𝑓 𝑡𝑜 }4𝑡=1) are two-layer

MLPs with hidden units of {32, 16}, and 𝑅𝑒𝐿𝑈 activations. In the
read-out layer, 𝑓𝑖𝑜 is a single layer MLP with 16 hidden units and
a 𝑡𝑎𝑛ℎ activation. The context functions 𝑓𝑎 and 𝑓𝑏 are both single-
layer MLPs with hidden units of 16, and the former is followed by
a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation while the latter has no activation. Lastly, the
graph-level representation is processed by 𝑓𝐺 which is modeled as
a 2-layer linear MLP with hidden units of {8, 1}. Notice that there is

822

FlowGEN: A Generative Model for Flow Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

no activation for the final layer, and the output is a scalar score ∈ R
rather than a probability. The model parameters {\, 𝜙} are trained
using mini-batch SGD with the Adam optimizer [27]. The learning
rate is set to 1𝑒-3. L2 regularization is applied for all weights with
a penalty of 1𝑒-6. We set the Wasserstein gradient penalty to 10
as suggested by [21] (applied to the discriminator). To allow for a
warm start during the training, for the first 10 epochs, we perform
four update steps for the parameters of the discriminator for each
single update step of the parameters of the generator (i.e., n_critic
ratio = 4:1). The hyper-parameters we tune are the n_critic ratio
∈ {4:1, 2:1, 1:1, 1:2, 1:4} (effective after 10th epoch), the mini-batch
size ∈ {32, 64, 128}, and the dropout ratio ∈ {0, 0.5} (applied after
all MLP layers).

6.4 Training Details of Two-Step Approaches
For both topological graph generative models (NetGAN and GRAN),
we set the hyper-parameters based on recommendations made in
their respective papers, except for the mini-batch size which is
tuned ∈{32, 64, 128}. Recall from Section 4.1 that we also employ
three approaches as flow generating function F , namely FMLP,
FGCN and DFF. The first two extensions predict flows on edges
based on topological encoding of participating nodes with the help
of neural networks. The latter extension instead assigns flows on
edges by solving a flow-balance equation (Equation 14). We now
detail how these flows are derived.

FMLP and FGCN: As discussed in Section 3.1, for both variants,
we first generate 16-dim node featuresM ∈ R |𝑉 |×16 using a stan-
dard spectral embedding based on the Laplacian eigenmaps of the
input graph’s adjacency matrix 𝐴. This step allows our two-step
variants to handle variable sized graphs as the baseline models
are likely to generate graphs with varying number of nodes and
edges. Next, we experiment with two different encoder layers: (1)
The FMLP variant consists of two-layer fully connected neural
network, (2) the FGCN variant consists of two graph convolution
layers [31]. Both variants apply ReLU activations after each layer.
The hidden units are tuned ∈ {8, 16, 32} and mini-batch size is tuned
∈ {32, 64, 128}. The loss objective is formally defined as follows:

L =
∑︁

𝐴,𝑋∼𝑃𝑑𝑎𝑡𝑎

√√
1

|𝐴>0 |
∑︁

(𝑢,𝑣) ∈𝐴>0

(F (𝐴)𝑢,𝑣 − 𝑋𝑢,𝑣)2 (13)

where𝐴 and𝑋 respectively denote the adjacency and flowmatrices.
𝐴>0 = {(𝑢, 𝑣) |𝐴𝑢,𝑣 > 0} represents the non-zero elements of A,
while 𝑋𝑢,𝑣 ∈ R is the corresponding flow value directed from node
𝑢 to 𝑣 . The parameters of F are jointly learned by minimizing L
using Adam optimizer with a learning rate of 1𝑒-3. We use the same
train/validation/test split across all graph generative models for a
fair comparison. Early stopping is applied based on the MSE score
computed on the validation set with a patience of 10 epochs.

Divergence-free flows (DFF): The third variant aims to distrib-
ute flow values on the graph’s edges so that flows on majority of
the nodes are nearly conserved, i.e., total flow that enters a node
should be approximately equal to the total flow that leaves. This
is a well-studied phenomenon observed in many real-world set-
tings including transportation networks, water supply networks
and power grid networks. For this variant, for each graph 𝐺 (𝑉 , 𝐸)
generated by undirected graph generative model (e.g. GRAN), we

first randomly pick 20% of the edges (𝐸𝐿) and assign them flow
values sampled from the ground truth distribution (X𝑢,𝑣 ∼ 𝑃𝑑𝑎𝑡𝑎).
Next, ensuring that flows are almost conserved, we compute flow
values for the rest of the edges by solving the following constrained
optimization problem introduced by [25]:1

𝑋 ∗ = argmin
𝑋

∥(𝑋 − 𝑋𝑇)1∥22 + _∥𝑋 ∥2𝐹

s.t. 𝑋𝑢,𝑣 = X𝑢,𝑣,∀(𝑢, 𝑣) ∈ 𝐸𝐿 and 𝑋𝑢,𝑣 = 0,∀(𝑢, 𝑣) ∉ 𝐸 (14)

where 1 is a column vector of size |𝑉 | whose entries are all 1’s. _ is
a constant that controls the regularization term—which guarantees
a unique optimal solution—and is set to 0.1. Note that 𝑋 ∗ may have
negative flows after solving the above objective. Therefore, we
further apply the following transformation in order to ensure the
non-negative flow matrix: 𝑋 =𝑚𝑎𝑥 (0, 𝑋 ∗ − 𝑋 ∗𝑇).

6.5 Stopping Criterion
Notice that all the models employed in our experiments have differ-
ent underlying objectives. Consequently, an early stopping criterion
based on a non-decreasing loss is not appropriate and is likely to
result in unfair comparisons. So, we apply an early stopping crite-
rion that is based on the model performance measured with respect
to evaluation metrics. Since we employ a collection of metrics that
measure the performance from various perspectives (recall from
Section 4.1), considering only a single metric (e.g. degree distribu-
tion)might not translate to similar performance in othermetrics (e.g.
divergence distribution) due to the complex nature of flow graphs.
Therefore, we continue training the models—evaluating after each
epoch—until more than half of the metrics stop improving with
a patience of 10 epochs. For the baseline models, we re-generate
the flows before each evaluation step as the generated graphs are
likely to change. Once the training is complete, we rank all the snap-
shots based on the evaluation metrics and report the best-ranked
snapshot for each model.

6.6 Efficiency comparison
Due to our rather complicated early stopping criterion, it is not
reasonable to compare the total training times of models. Especially,
since baseline models are not designed to generate flow graphs,
they tend to have a fluctuating performance on flow-related metrics,
which often results in longer training times. Instead, we report one
full pass (single iteration) time for each model on Taxi Trips 8-9am
in Table 5. Times are measured with batch size of 32 on a GeForce
GTX 1070. As evident, NetGAN and FlowGEN have similar running
times, while GRAN is significantly slower due to its sequential
generation process.

NetGAN GRAN FlowGEN
0.176 1.293 0.154

Table 5: Running time comparisons of themodels (in seconds)
on the Taxi Trip dataset.

1Notation is modified from the original version to be consistent with our setting.

823

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Models
	3.1 A Two-step Approach
	3.2 FlowGEN Framework
	3.3 Discussion

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Diversity Analysis
	4.4 Reproducing graph topology
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References
	6 Appendix
	6.1 Case Study: European Power Network
	6.2 Case Study: Downstream Utility of Generated Flow Graphs
	6.3 FlowGEN Training Details
	6.4 Training Details of Two-Step Approaches
	6.5 Stopping Criterion
	6.6 Efficiency comparison

