
Graph Macro Dynamics with Self-Attention for Event Detection

Mert Kosan1, Arlei Silva2, Sourav Medya3, Brian Uzzi4, Ambuj Singh1

1University of California, Santa Barbara
2Rice University

3University of Illinois Chicago
4Northwestern University

{mertkosan, ambuj}@ucsb.edu, arlei@rice.edu, medya@uic.edu, uzzi@kellogg.northwestern.edu

Abstract

Event detection is a critical task for timely decision-making in
graph analytics applications. Despite the recent progress to-
wards deep learning on graphs, event detection on dynamic
graphs presents particular challenges to existing architectures.
Real-life events are often associated with sudden deviations
of the normal behavior of the graph. However, existing ap-
proaches for dynamic node embedding are unable to capture
the graph-level dynamics related to events. In this paper, we
propose DyGED, a simple yet novel deep learning model for
event detection on dynamic graphs. DyGED learns correla-
tions between the graph macro dynamics—i.e. a sequence
of graph-level representations—and labeled events. More-
over, our approach combines structural and temporal self-
attention mechanisms to account for application-specific node
and time importances effectively. Our experimental evalua-
tion, using representative datasets, demonstrates that DyGED
outperforms competing solutions in terms of accuracy by up
to 8.5% while being more scalable than the top alternatives.

Introduction
Event detection on dynamic graphs is a relevant task for
effective decision-making in many organizations (Li et al.
2017). In graphs, entities and their interactions are repre-
sented as nodes and edges, respectively. The graph dynamics,
which changes the interactions and attributes over time, can
be represented as a sequence of snapshots. Events, identified
as snapshot labels, are associated with a short-lived deviation
from normal behavior in the graph.

As an example, consider the communication inside an
organization, such as instant messages and phone calls
(Romero, Uzzi, and Kleinberg 2016). Can the evolution of
communication patterns reveal the rise of important events—
e.g., a crisis, project deadline—within the organization?
While one would expect the content of these communications
to be useful for event detection, this data is highly sensitive
and often private. Instead, can events be discovered based
only on structural information (i.e. message participants and
their attributes)? For example, Romero et al. have shown that
stock price shocks induce changes (e.g., higher clustering) in
the structure of a hedge fund communication network.

Given the recent success of deep learning on graphs (Kipf
and Welling 2016; Wu et al. 2019; Georgousis, Kenning, and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Xie 2021) in node/graph classification, link prediction, and
other tasks, it is natural to ask whether the same can also
be useful for event detection. In particular, such an approach
can combine techniques for graph classification and dynamic
representation learning on graphs (Seo et al. 2018; Sankar
et al. 2020; Guo et al. 2019). However, a key design ques-
tion in this setting is whether to detect events based on the
micro (node) or macro (graph) level dynamics. More specif-
ically, the micro dynamics is captured via the application
of a pooling operator to dynamic node embeddings (Nicoli-
cioiu, Duta, and Leordeanu 2019; Pareja et al. 2019). For the
macro dynamics, static snapshot embeddings are computed
via pooling and their evolution is modeled via a recurrent ar-
chitecture (e.g. an LSTM) (Seo et al. 2018; Zhao et al. 2019).
Each of these approaches has implicit assumptions about the
nature of events in the data.

Figure 1 shows two event detection architectures, one
based on micro and another based on macro dynamics. While
they both apply a generic architecture shown in Figure 1a,
they differ in the way dynamic representations for each graph
snapshot are generated.

To illustrate the difference between micro and macro dy-
namics, let us revisit our organization example. Dynamic
node embeddings are learned (non-linear) functions of the
evolution of an employee’s attributed neighborhood. These
local embeddings are expected to be revealing of an em-
ployee’s communication over time. Thus, (pooled) micro
embeddings will capture average dynamic communication
patterns within the organization. On the other hand, by pool-
ing static node embeddings, we learn macro representations
for the communication inside the organization at each times-
tamp. The recurrent architecture will then capture dynamic
communication patterns at the organization level. Pooling
and the RNN thus act as (spatial/temporal) functions that can
be composed in different ways—e.g. f(g(x)) vs g(f(x))—each
encoding specific inductive biases for event detection. We
will show that the choice between micro and macro models
has significant implications for event detection performance.

We propose DyGED (Dynamic Graph Event Detection), a
graph neural network for event detection. DyGED combines
a macro model with structural and temporal self-attention to
account for application-specific node and time importances.
To the best of our knowledge, our work is the first to apply
either macro dynamics or self-attention for the event detec-
tion task. Despite its simplicity, differing from more recent

Gt-1 Gt Gt+1

node
embeddings

graph
embeddings

predictions

features
pooling

(a) Generic architecture for event detection

micro/node
dynamics

(b) Learning graph embeddings based on micro dynamics

macro/graph
dynamics

(c) Learning graph embeddings based on macro dynamics

Figure 1: (a) Event detection on dynamic graphs based on a
deep learning architecture. (b) At the micro scale, the dynam-
ics is captured at node level using a temporal GNN architec-
ture and then pooled for graph-level classification. (c) At the
macro scale, the dynamics is captured at the graph level us-
ing an RNN over graph embeddings. Our work investigates
how the dynamics at different scales affects event detection.

approaches based on micro dynamics, DyGED outperforms
state-of-the-art solutions in three representative datasets.

One of the strengths of our study is its experimental eval-
uation. While the event detection problem has been stud-
ied by a recent paper (Deng, Rangwala, and Ning 2019)—
based on micro dynamics—our work provides key insights
into some of the challenges and possible strategies for effec-
tive event detection. This is partly due to our representative
list of datasets covering mobility, communication, and user-
generated content data. Our main contributions:

• We present the first study comparing micro and macro
deep learning architectures for event detection on dy-
namic graphs, showing the importance of this design
choice for event detection performance;

• We propose DyGED, a simple yet novel deep learning
architecture for event detection based on macro dynam-
ics. DyGED applies both structural and temporal self-
attention to enable the effective learning of node and time
dependent weights;

• We compare DyGED against several baselines—mostly
based on a micro model—using three datasets. Our re-
sults show that DyGED outperforms the baselines by up
to 8.5% while being scalable.

Problem Definition
Definition 1. Dynamic Graph: A dynamic graph G is
a sequence of T discrete snapshots ⟨G1, G2, . . . , GT ⟩
where Gt denotes the graph at timestamp t. Gt is a tuple
(V,Et,Wt, Xt) where V is a fixed set of n vertices, Et is a
set of mt undirected edges, Wt : Et → R+ are edge weights,
and Xt : V → Rd gives d features for each node.

In our earlier example regarding an organization, nodes
in V represent organization members. An edge is created in
Et whenever associated members exchange a message dur-
ing a time interval t and weights Wt might be numbers of
messages exchanged. Finally, features Xt might include an
individual’s job position (static) and the total number of mes-
sages received by them during the time interval t (dynamic).
Definition 2. Event Label Function: We define the function
ℓ(Gt−k:t) ∈ {0, 1} to be an event labelling function of order
k, where Gt−k:t = ⟨Gt−k, Gt−k+1, . . . , Gt⟩, and such that:

ℓ(Gt−k:t) =

{
1, if an event occurs at time t

0, otherwise
Events might also depend on the k previous snapshots

Gt−k, . . . , Gt−1. This allows the function ℓ to model events
that depend on how the graph changes. One can define a sim-
ilar function ℓ∆ for the early detection (or forecasting) of
events ∆ snapshots into the future.
Definition 3. Event Detection Problem: Given a set of
training instances D, composed of pairs (Gt−k:t, ℓ(Gt−k:t)),
learn a function ℓ̂ that approximates the true ℓ for unseen
snapshots.

We treat event detection as a classification problem with
two classes. To evaluate the quality of the learned function
ℓ̂, we use AUC. In this paper, we propose ℓ̂ to be a neural
network.

Proposed Model: DyGED1

We describe DyGED (Dynamic Graph Event Detection),
a novel deep learning architecture for event detection on
dynamic graphs. DyGED combines a Graph Convolutional
Network and a Recurrent Neural Network to learn the macro
dynamics correlated with labeled events. This backbone ar-
chitecture is further enhanced by self-attention mechanisms
in the structural and temporal domains.

We introduce notations A column-wise concatenation
[M1, . . . ,Mt] : Rn×m1 × . . .× Rn×mt → Rn×(m1+...+mt)

maps a sequence of matrices M1, . . . ,Mt to a new matrix M
such that (Mt)i,j = Mi,

∑t−1
r=1 mr+j . A row-wise concatena-

tion as [M1; . . . ;Mt] = [M⊺
1 , . . . ,M

⊺
t]

⊺.

Main Components
Graph Convolutional Network GCNs are neural net-
work architectures that support the learning of h-dimensional
functions GCN(A,X) : Rn×n × Rn×d → Rn×h over ver-
tices based on the graph adjacency matrix A and features X .
For instance, a 2-layer GCN can be defined as follows:

GCN(A,X) = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
1https://github.com/mertkosan/DyGED

where Â = D̃− 1
2 ÃD̃− 1

2 is the normalized adjacency matrix
with D̃ as weighted degree matrix and Ã = In+A with In
being an n × n identity matrix. W (i) is a trainable weight
matrix for the i-th layer.

Pooling The output of the GCN described in the previous
section is an embedding matrix Zt for each graph snapshot
Gt. In order to produce an embedding zt for the entire snap-
shot, we apply a pooling operator v-Att(Zt) : Rn×h → Rh.
In particular, our model applies the self-attention graph pool-
ing operator proposed in (Li et al. 2019):

zt = v-Att(Zt) = softmax(w.tanh(ΦZT
t))Zt

where Φ ∈ Rh×h and w ∈ Rh are learned attention weights.
Intuitively, v-Att re-weights the node embeddings en-

abling some nodes to play a larger role in the detection of
events. In our experiments, we will show that these attention
weights can be used to identify the most important nodes for
our task.

Recurrent Neural Network We assume that events are
correlated with the graph (i.e. macro) dynamics. Thus, our
model applies an RNN to learn dynamic graph representa-
tions. More specifically, we give the pooled snapshot embed-
dings zt as input to a standard LSTM(z′t−1, zt) : Rh ×
Rh → Rh to produce dynamic graph representations z′t
based on a sequence of embeddings, instead of each node’s
(micro) dynamics.

Temporal Self-Attention The RNN enables our architec-
ture to capture the dynamics via embeddings z′t. However,
complex events might not be correlated only with the cur-
rent graph representation but a window Z ′

t = [z′t−k; . . . ; z
′
t].

For instance, in mobility-related events (e.g. sports games),
changes in the mobility dynamics will arise a few hours be-
fore the event. Moreover, these correlations may vary within
a dataset due to the characteristics of the type of event. We
propose a self-attention operator t-Att(Z ′

t) : R(k+1)×h →
Rh for aggregating multiple dynamic embeddings:

z′′t = t-Att(Z ′
t) = softmax(w′.tanh(Φ′Z

′T
t))Z ′

t

where Φ′ ∈ Rh×h and w′ ∈ Rh are learned attentions. Sim-
ilar to v-Att, t-Att enables the adaptive aggregation of dy-
namic embeddings. To the best of our knowledge, we are
the first to apply a similar self-attention mechanism—which
might be of independent interest—in dynamic GNNs.

Classifier and Loss Function The final component of our
model is an MLP (z′′t) : Rh → R2 that returns (nonlinear)
scores for each possible outcome (i.e., event/no event) Yt. We
use cross-entropy as our loss function. Note that event detec-
tion is a highly imbalanced problem—i.e. events are rare. We
address this challenge by weighting our loss function terms
with class ratios. As a result, false negatives are more penal-
ized than false positives.

−
T∑

t=k+1

(1−x)ℓ(Gt−k:t) log (Yt,1)+x(1−ℓ(Gt−k:t)) log (Yt,2)

where ℓ is the event label from Definition 2. Moreover, x
positive (i.e., events) sample ratio in the training set.

Algorithm 1: DyGED Forward Algorithm
Require: Sequence of snapshots Gt−k:t, previous dynamic state

z′t−k−1

Ensure: Event probability
1: for τ ∈ {t− k, . . . , t} do
2: Zτ ← GCN(Gτ , Xτ)
3: zτ ← v-Att(Zτ)
4: z′τ ← LSTM(z′τ−1, zτ)
5: end for
6: z′′t ← t-Att([z′t−k; . . . ; z

′
t])

7: return MLP (z′′t)

DyGED and its Variants
Algorithm 1 provides an overview of the forward steps of

DyGED. It receives a sequence of snapshots Gt−k:t and the
previous dynamic (LSTM) state z′t−k−1 as inputs. The output
is the event probability for Gt. Steps 3 and 6 correspond to
structural and temporal self-attention, respectively. In order
to evaluate some of the key decisions involved in the design
of DyGED, we also consider the following variations of our
model:

• DyGED-CT (with concatenation): Replaces the LSTM
(step 4) and t-Att (step 6) operators by a concatenation,
with z′′t = ([zt−k, . . . , zt]).

• DyGED-NL (no LSTM): Removes the LSTM op-
erator (step 4) from Algorithm 1, with z′′t =
t-Att([zt−k; . . . ; zt]).

• DyGED-NA (no attention): Removes the temporal self-
attention operator t-Att (step 5), with z′′t = z′t.

Experiments
Datasets
Table 2 shows the main statistics of our datasets. The snap-
shot period is the interval [timet, timet + ∆p) covered by
each snapshot Gt, where ∆p denotes the period. We use rep-
resentative datasets of relevant event detection applications.
NYC Cab2 is an example of a mobility network with geo-
tagged mass-gathering events (e.g., concerts, protests). We
use baseball games involving the Yankees or the Mets are the
events of interest. Hedge Fund (Romero, Uzzi, and Klein-
berg 2016) is a communication network for decision mak-
ing in high-risk environments—as in other business settings
and emergency response. Each snapshot covers activities in
a day, and events are price shocks—unexpected changes—
in the S&P500. Twitter Weather relates user-generated con-
tent with extreme events (e.g., terrorist attacks, earthquakes).
Weather events—with monetary damage of at least $50M—
were collected from the US National Climatic Data Center
records.3 We also created a larger version of Twitter Weather
with 1000 words.

Experimental Settings
Baselines: We consider recent approaches that either focus
on micro (node-level) dynamics or are designed for graph
classification. If the pooling is necessary, we apply our v-Att
module.

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://www.ncdc.noaa.gov/stormevents/

Method NYC Cab Hedge Fund TW TW Large

Baselines:
Micro Dynamics

EvolveGCN 0.842∗∗ ± 0.008 0.718∗∗ ± 0.011 0.782∗∗ ± 0.012 0.731∗∗ ± 0.011
ASTGCN 0.903∗∗ ± 0.003 0.753∗ ± 0.022 0.747∗∗ ± 0.018 0.722∗∗ ± 0.014
DynGCN 0.901∗∗ ± 0.003 0.679∗∗ ± 0.030 0.713∗∗ ± 0.012 0.709∗∗ ± 0.007

Classification DiffPool 0.887∗∗ ± 0.003 0.690∗∗ ± 0.020 0.766∗∗ ± 0.014 0.728∗∗ ± 0.007

Proposed:
Macro Dynamics

DyGED-CT 0.910± 0.009 0.776± 0.012 0.775∗∗ ± 0.014 0.743∗∗ ± 0.014
DyGED-NL 0.912 ± 0.004 0.779∗ ± 0.012 0.791∗∗ ± 0.014 0.752∗ ± 0.020
DyGED-NA 0.896∗∗ ± 0.004 0.784∗ ± 0.014 0.800∗ ± 0.009 0.734∗∗ ± 0.012

DyGED 0.905∗ ± 0.004 0.787 ± 0.015 0.810 ± 0.012 0.760 ± 0.014

Table 1: AUC scores of event detection methods. The highest and second highest values for each column are in bold and
underlined, respectively. Our methods, accounting for macro dynamics, achieve the best results, outperforming the best baseline
(ASTGCN) by 4.5% on average and up to 8.5% (on Twitter Weather). We performed a paired t-test comparing the best model
against the others (markers ** and * indicate p-value < .01 and < .05, respectively).

NYC Cab Hedge Fund TW TW-Large

#Nodes (avg) 263 330 300 1000
#Edges (avg) 3717 557 1142 10312

#features 6 5 300 300
#Snapshots 4464 690 2557 2557

Snap. Period hour day day day
#Events 162 55 287 287

Table 2: The statistics of the datasets. TW is Twitter Weather.

• DynGCN (Deng, Rangwala, and Ning 2019): State-of-
the-art for event detection that combines representations
from a GCN at each snapshot with a temporal encoder.

• EvolveGCN (Pareja et al. 2019): Combines recurrent
and GCNs to generate dynamic node embeddings.

• ASTGCN (Guo et al. 2019): It combines spatial and
temporal-attention mechanisms. We consider k previous
time dependencies instead of daily, weekly, and monthly
ones.

• DiffPool (Ying et al. 2018): Computes graph embeddings
via a differentiable graph pooling method. Because this
model is designed for classification, it does not account
for the dynamics.

Other Settings We use p-fold nested cross-validation,
where p was set based on event frequency. Each method runs
20 times per train/test split. We find that training using Adam
optimization with learning rate, dropout rate, and the batch
size set to 0.005, 0.2, and 100, respectively. The embedding
size is set to 64.

Event Detection Accuracy
Table 1 shows the event detection accuracy results. For the
approaches that consider a sliding window, reported results
are the best ones among window sizes (k + 1) varying from
one to five. The optimal window size for all these meth-
ods is either four or five. Results show that DyGED out-
performs the competing approaches in all datasets. In par-
ticular, DyGED outperforms ASTGCN—best baseline—by
0.2%, 4.5%, 8.5%, and 5.2% for NYC Cab, Hedge Fund,
Twitter Weather, and Twitter Weather Large, respectively
(4.5% on average). Notice that, different from most base-
lines, our approach captures the macro-dynamics correlated

with events. DyGED-NL and DyGED, which adopt tempo-
ral self-attention, achieve the best results indicating that it en-
ables the learning of adaptive weights for different snapshots.
Moreover, DyGED-NA and DyGED—using recurrent neural
network to capture the macro dynamics—achieve better per-
formance for the Hedge Fund and Twitter Weather datasets.

NYC Cab Hedge Fund TW TW-Large

EvolveGCN 1.912 0.303 0.949 4.65
ASTGCN 13.57 2.131 6.916 24.41
DynGCN 0.064 0.019 0.080 0.622
DiffPool 0.057 0.016 0.045 0.482
DyGED 0.066 0.017 0.048 0.479

Table 3: Testing times (in secs.) for all methods and datasets.

Event Detection Efficiency
Table 3 shows testing times (in secs.) for a batch size of
100 data points for NYC Cab, Hedge Fund, Twitter Weather,
and Twitter Weather Large, respectively. The window size is
set to 4. Results show that DyGED is scalable—up to 206
and 29 times faster than the top 2 baselines (ASTGCN and
EvolveGCN, respectively).

(a) DyGED Attention (b) Betweenness (c) Clustering

Baseball Stadium

(d) Degree

Figure 2: Top 10 taxi zones (in red) based on various metrics
for NYC Cab dataset. DyGED Attention mechanism finds
closer taxi zones to the stadiums.

Importance via Attention
DyGED applies node and time self-attention for event de-
tection. Here, we analyze these attention weights as a proxy

to infer node and time importance. We notice that the use
of attention weights for interpretability is a contentious topic
(Jain and Wallace 2019; Wiegreffe and Pinter 2019). We still
find that these learned weights provide interesting insights
regarding the role played by self-attention in our model.

Node Attention A critical task in event detection on graphs
is to measure the importance of nodes and subgraphs (Ying
et al. 2019). To answer this question, we analyze attention
weights learned the v-Att(.) operator—normalized by the
softmax function. Figure 2 shows the top 10 taxi zones based
on each importance measure for the NYC Cab dataset. Our
attention weights find taxi zones near the baseball stadiums,
whereas topology-based baseline measures select stations in
downtown Manhattan and the airports. In Twitter Weather,
our solution set contains “fire”, “tree”, and “snow” as the top
words while the topology-based baselines have “weather”,
“update”, and “barometer”. The words found using our mea-
sure are more strongly associated with events of interest.

Time (Snapshot) Attention We also propose a time im-
portance module that uses temporal self-attention weights
via the function t-Att(.), to measure how the past snapshots
(time) affect event detection. We use three previous (i.e.,
k = 4) and the current snapshot in our experiments. Figure
3 shows the attention weights (output of softmax) for snap-
shots (with mean and standard deviation). For NYC Cab, the
current snapshot has significantly higher weights. However,
the remaining datasets reveal more interesting attention pat-
terns. For instance, in Hedge Fund, the importance of earlier
weights can be associated with the definition of an event—
a stock market shock. For Twitter Weather, events often last
few days, and thus weights are expected to be more uniform.

0th 1st 2nd 3rd

previous snapshot

0.1
0.2
0.3
0.4
0.5
0.6

at
te

nt
io

n
we

ig
ht

s

(a) NYC Cab

0th 1st 2nd 3rd

previous snapshot

0.15

0.20

0.25

0.30

0.35

at
te

nt
io

n
we

ig
ht

s

(b) Hedge Fund

0th 1st 2nd 3rd

previous snapshot

0.23

0.24

0.25

0.26

0.27

at
te

nt
io

n
we

ig
ht

s

(c) Twitter Weather

Figure 3: Illustration of the normalized attention weights of
current (0th) and previous three snapshots for all datasets.
Results show the history plays a role in predicting the event.

Conclusions
This paper is focused on event detection on dynamic
graphs. We have proposed a deep learning based method,
DyGED, which learns correlations between the graph
macro dynamics—i.e. a sequence of temporal graph
representations—and events. We compared DyGED against
multiple baselines using a representative set of datasets. Our
approach outperformed the baselines in terms of accuracy
while being scalable. We also showed how our method can be
applied to provide interpretability via self-attention on nodes
and snapshots.

Acknowledgments
This work is funded by NSF via grant IIS 1817046. Some
material is based upon work supported by the Air Force
Office of Scientific Research under Minerva award number
FA9550-19-1-0354.

References
Deng, S.; Rangwala, H.; and Ning, Y. 2019. Learning Dy-
namic Context Graphs for Predicting Social Events. In
SIGKDD.
Georgousis, S.; Kenning, M. P.; and Xie, X. 2021. Graph
deep learning: State of the art and challenges. IEEE Access.
Guo, S.; Lin, Y.; Feng, N.; Song, C.; and Wan, H. 2019. At-
tention based spatial-temporal graph convolutional networks
for traffic flow forecasting. In AAAI.
Jain, S.; and Wallace, B. C. 2019. Attention is not explana-
tion. arXiv preprint arXiv:1902.10186.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; and
Huang, J. 2019. Semi-supervised graph classification: A hi-
erarchical graph perspective. In The Web Conference, 972–
982.
Li, Z.; Sun, D.; Zhu, R.; and Lin, Z. 2017. Detecting event-
related changes in organizational networks using optimized
neural network models. PloS one.
Nicolicioiu, A.; Duta, I.; and Leordeanu, M. 2019. Recur-
rent Space-time Graph Neural Networks. volume 32, 12838–
12850.
Pareja, A.; Domeniconi, G.; Chen, J.; Ma, T.; Suzumura,
T.; Kanezashi, H.; Kaler, T.; and Leisersen, C. E. 2019.
Evolvegcn: Evolving graph convolutional networks for dy-
namic graphs. arXiv preprint arXiv:1902.10191.
Romero, D. M.; Uzzi, B.; and Kleinberg, J. 2016. Social
Networks Under Stress. In WWW.
Sankar, A.; Wu, Y.; Gou, L.; Zhang, W.; and Yang, H. 2020.
DySAT: Deep Neural Representation Learning on Dynamic
Graphs via Self-Attention Networks. In WSDM.
Seo, Y.; Defferrard, M.; Vandergheynst, P.; and Bresson, X.
2018. Structured sequence modeling with graph convolu-
tional recurrent networks. In NeurIPS. Springer.
Wiegreffe, S.; and Pinter, Y. 2019. Attention is not not ex-
planation. arXiv preprint arXiv:1908.04626.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. In NeurIPS.
Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.;
and Leskovec, J. 2018. Hierarchical graph representa-
tion learning with differentiable pooling. arXiv preprint
arXiv:1806.08804.
Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.;
Deng, M.; and Li, H. 2019. T-gcn: A temporal graph convo-
lutional network for traffic prediction. IEEE ITS.

