
UNCO
RREC

TE
D

PR
O

O
F

COSREV: 7 Model 7 pp. 1–10 (col. fig: NIL)

ARTICLE IN PRESS
C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/cosrev

Research paper

Sampling-based robot motion planning: Towards realistic
applications

Konstantinos I. Tsianos, Ioan A. Sucan, Lydia E. Kavraki∗

Department of Computer Science, Rice University, Houston TX, USA

A R T I C L E I N F O

Article history:

A B S T R A C T

This paper presents some of the recent improvements in sampling-based robot motion

planning. Emphasis is placed on work that brings motion-planning algorithms closer to

applicability in real environments. Methods that approach increasingly difficult motion-

planning problems including kinodynamic motion planning and dynamic environments

are discussed. The ultimate goal for suchmethods is to generate plans that can be executed

with few modifications in a real robotics mobile platform.
c© 2007 Published by Elsevier Ltd

1. Introduction1

One of the important goals in robotics is to create a device –2

the robot – that can take as input a high-level specification3

of a simple task and execute it [39] without providing low4

level details on how to do so. An essential component of5

the task execution is for the robot to be able to move inside6

its environment. The latter typically requires the solution7

to a motion- planning problem, which has been one of the8

fundamental problems in robotics over the last couple of9

decades. Loosely stated, motion planning is the problem of10

deciding the set of motions that can take a robot from an11

initial to a final position while avoiding collisions [39]. Robots12

for planetary exploration, museum tour guides, search and13

rescue robots, robots in surgery are just a few out of the14

many examples of robotics applications that need motion15

planning [16,41]. Nowadays, motion planning is no longer16

restricted to just robotics applications. Structural analysis17

in biology [18] and computer graphics [22] are examples of18

developing research fields that can greatly benefit from the19

use of motion planning algorithms.

∗ Corresponding author. Tel.: +1 713 348 5737; fax: +1 713 347 5390.
E-mail addresses: konstantinos@rice.edu (K.I. Tsianos), isucan@rice.edu (I.A. Sucan), kavraki@rice.edu (L.E. Kavraki).

Depending on the type of robot, different difficulties 20

need to be addressed by a motion-planning algorithm. Over 21

the years, this has given rise to a number of directions 22

in the field: planning for industrial manipulators [56,60,50, 23

59], mobile robots [42,12,48,6], humanoids [36], reconfigurable 24

robots [1] are a few examples. This paper will focus 25

on recent developments in motion planning that could 26

eventually allow the use of motion-planning algorithms in 27

real life applications for mobile robots. The principles of the 28

developed algorithms apply, however, to the aforementioned 29

types of robots as well. 30

A simplified version of the motion-planning problem is 31

planning a collision-free path for a robot made of an arbitrary 32

number of polyhedral bodies among an arbitrary number of 33

polyhedral obstacles, between two collision free positions of 34

the robot. Complexity analysis has shown this instance of 35

the problem to be PSPACE-complete [54,13]. In cases where 36

the problem is more complex (e.g. taking into account the 37

physical properties, and actuator limitations in a real robot) 38

it is not known if the problem is even decidable except for 39

some particular cases [17]. 40

1574-0137/$ - see front matter c© 2007 Published by Elsevier Ltd
doi:10.1016/j.cosrev.2007.08.002

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

www.sciencedirect.com
www.sciencedirect.com
www.sciencedirect.com
http://www.elsevier.com/locate/cosrev
mailto:konstantinos@rice.edu
mailto:isucan@rice.edu
mailto:kavraki@rice.edu
http://dx.doi.org/10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

2 C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

ARTICLE IN PRESS
COSREV: 7

Fig. 1 – A configuration of the robot is completely specified
by the values p and q.

Some of the well-known complete motion-planning algo-1

rithms are cell decomposition and visibility roadmaps [16,41].2

For practical purposes, complete algorithms turn out to be3

computationally expensive and hard to implement. Adding4

various restrictions to the problem made the use of complete5

algorithms [28,23] possible. For the general case of the prob-6

lem, a breakthrough was achieved with the development of7

sampling-based motion planners [7,38]. These algorithms quickly8

became popular for various reasons. Many previously con-9

sidered hard problems could be solved using sampling-based10

motion planners, while the fundamental ideas behind these11

planners were in general easy to describe and implement. The12

increased performance of these algorithms comes at the cost13

of relinquishing completeness. Those algorithms can only14

guarantee probabilistic completeness instead. A probabilistically15

complete algorithm will eventually find a solution if there is16

one [35], but it will run forever if no solution exists.17

In recent years, a number of review papers [46,14] have18

discussed issues in motion planning. This paper attempts19

to continue the work and present recent developments in20

the area of sampling-based motion-planning algorithms. The21

focus is on developments that may allow the application22

of sampling-based motion-planning algorithms on real23

mobile robots. Section 2 contains a formal description24

of the basic motion-planning problem. Section 3 presents25

motion-planning algorithms following the classic distinction26

into roadmap-based and tree-based planners. This section27

covers mostly algorithmic improvements in the fundamental28

modules that are present in most motion planners. Section 429

takes the ideas of the previous section one step further.30

New classes of motion-planning problems are introduced:31

problems that involve several realistic extensions to the basic32

problem. Finally, Section 5 summarizes the ideas described in33

the paper and discusses the future of sampling-based motion34

planners.35

2. The motion-planning problem36

As mentioned in the introduction, the motion-planning37

problem poses the question of how a robot can move from38

an initial to a final position. To acquire a formal statement of39

the problem, the position of the robot needs to be defined. A40

notion that has proved itself useful is that of a configuration41

(see Fig. 1). A configuration is a complete specification of 42

the position of all the points on the robot. The set of 43

all configurations forms the configuration space, C. A robot 44

described by a configuration is just a point in C. The set 45

of all configurations in C in which the robot is in collision 46

with some obstacle in the environment is denoted by Cobst. 47

Similarly, the free space is defined as Cfree = C − Cobst. The 48

motion-planning problem can be stated as follows: 49

Definition. Given an initial and a goal configuration qstart, 50

qgoal ∈ Cfree, find a continuous path p : [0,1] → Cfree where 51

p(0) = qstart and p(1) = qgoal. 52

This is the geometrical version of the motion-planning 53

problem. The result is a collision-free path. This is usually 54

known as path planning, since the planning algorithm is only 55

asked to return a path, without considering the robot’s ability 56

to implement that path. This is not necessarily an issue if 57

a robot is moving slow enough and the dynamic constraints 58

such as friction, gravity, etc. can safely be ignored. As will be 59

discussed in this paper though, there is an increasing interest 60

in planning problems where the dynamic constraints can no 61

longer be ignored. For those cases, planning algorithms need 62

to come up not only with a geometrical path, but rather with 63

what is called a motion plan, i.e. a complete description of 64

what controls need to be applied so the robot can execute 65

a feasible and collision-free trajectory to its goal. The term 66

motion planning will be used in this paper, and it will be 67

clear from the context whether the dynamic constraints are 68

considered or not. 69

3. Recent improvements in sampling-based 70

motion planning 71

Over the last few years, there has been a lot of work in 72

improving sampling-based motion-planning algorithms. It is 73

hard to define a single criterion that can classify all planners 74

in distinct categories. The classical separation is between 75

roadmap-based planners and tree-based planners. This section 76

introduces the basic ideas present in almost all sampling- 77

based motion planners and describes improvements in the 78

aforementioned two categories of algorithms. Algorithms 79

that deal with problems beyond purely geometrical path 80

planning are presented in Section 4. 81

3.1. Roadmap-based planners 82

Roadmap-based planners are typically used as multi-query 83

planners. As their name implies, they maintain a roadmap 84

that can be used to answer different planning queries. The 85

main data structure being used is a graph whose nodes are 86

points in the configuration space. Edges in this graph exist 87

between configurations that are close to one another, and the 88

robot canmove from one point to the other without collisions. 89

A typical algorithm has two phases: a learning phase and 90

a querying phase. In the learning phase, the roadmap is 91

created: 92

• Sampling. Pseudo-random collision-free configurations 93

called samples are generated. These are the vertices of the 94

roadmap. 95

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X 3
ARTICLE IN PRESS

COSREV: 7

Fig. 2 – Sample roadmap.

• Connecting. A number of attempts are made to connect1

each sample to its nearest neighbours, thus adding edges2

to the roadmap.3

To solve a particular query, the start and goal configura-4

tions are added to the roadmap and a graph search algorithm5

is used to find a path. The efficiency of the algorithm depends6

on how well the roadmap can capture the connectivity of the7

configuration space. Moreover, the main performance bottle-8

neck is the construction of the roadmap, since graph search9

algorithms are fast.10

Algorithm 1 presents the well-known PRM [38] method.11

Fig. 2 shows a sample roadmap with k = 2, where k stands for12

number of neighbours each sample tries to connect to. Two13

of the most important challenges of this method are how to14

sample useful configurations that will increase the coverage15

of the roadmap and how to connect samples in the roadmap.16

Algorithm 1 BUILDROADMAP(k)

V← {},E← {}
loop

c← SAMPLEVALIDCONFIGURATION()

V← V ∪ {c}
Nk ← NEARESTNEIGHBOURS(V, k)
for all n ∈ Nk do

E← E ∪ {(c,n)}

17

3.1.1. Improving the sampling strategy18

In a sampling-based motion planner, one of the core issues19

is the sampling strategy. Sampling is the process by which20

new configurations are randomly selected to be added to the21

roadmap.22

There are multiple possible directions for improving23

sampling. Some of the previous work focuses on sampling24

important areas of the configuration space using workspace25

information to derive what the important areas are. A26

well-known example is sampling in the areas of narrow27

passages [24,31]. Increasing the density of sampling around28

narrow passages increases the chances of finding samples in29

areas that are hard to reach and are likely to be needed for30

finding a solution. As an example, the bridge-test, presented31

in [24], uses information from samples found in collision32

in the following manner: if two samples x and x̃ are found33

in collision, their midpoint xm (sample between x and x̃) is34

considered. If xm is not in collision, it is added to the sample 35

set. 36

Different sampling strategies have different strengths. For 37

example, the bridge test described above is effective for 38

sampling narrow passages. A fruitful idea was to try and 39

combine the usually complimentary strengths of different 40

sampling strategies. In [27] an adaptive strategy for selecting 41

the most cost effective sampler out of a set of already existing 42

ones is presented. The selection depends on the sampled 43

region of the configuration space. Another idea is applying 44

existing samplers in a chain-like fashion [58]. The starting 45

sampler is always a uniform one; the following samplers take 46

a sample as input and produce another one as output; a chain 47

is formed by having the output of one sampler be the input 48

of the next sampler. This combination yields good results 49

for some sets of samplers in the sense that it combines the 50

advantages of multiple samplers into one. The disadvantage 51

of this idea is the increased overhead for generating samples. 52

In [55], after an initial step of uniform sampling, the 53

space is divided into regions. Depending on whether most 54

samples were collision free or in collision, different regions 55

are assigned different region-specific samplers. The region 56

specific samplers are then used to further sample in a more 57

cost effective way. 58

Another direction along the same lines is presented in [32]. 59

The authors use different samplers for different components 60

of the robot, where different components here refers to 61

specific features of the robot geometry. The intuition behind 62

this is that a solution – a path in the configuration space 63

– corresponds to a path for every point on the robot in 64

the workspace. The workspace is typically easier to reason 65

about since a complete representation of it is available. 66

Sampling according to certain features of the robot in the 67

workspace produces different samplers. Information from 68

these samplers is then used to guide the sampling process 69

in the configuration space. The importance given to each of 70

the feature samplers is dynamically updated using machine 71

learning techniques. 72

3.1.2. Improving the connection strategy 73

In this section, some of the issues related to connecting 74

samples in the roadmap are presented. While it may seem the 75

more samples are connected, the better, connecting samples 76

is a time consuming process and so a balance between 77

number of connections and runtime needs to be achieved. 78

From a performance point of view, the main drawback 79

of PRM is that it heavily relies on collision checking. To 80

mitigate this effect, algorithms like Lazy PRM [5] have been 81

designed. Lazy PRM delays collision checks by assuming 82

edges to be valid and actually checking them only if they 83

are part of potential solutions. To reduce the number of 84

collision checks even further, and achieve better coverage 85

of the configuration space at the same time, the use of 86

predictive models has been introduced [2]. The idea behind 87

predictive models is to compute an approximation of the 88

configuration space using machine learning techniques. The 89

approximation allows inferring the probability of a certain 90

configuration being collision free. Use of these probabilities is 91

made instead of collision checking when connecting samples 92

in the roadmap. When a potential solution is found, edges 93

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

4 C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

ARTICLE IN PRESS
COSREV: 7

Fig. 3 – Nonoptimal solution found by motion planner
(continuous line), optimal solution (dashed line), in an
obstacle-free environment.

Fig. 4 – Sample RRT.

in the roadmap are validated using a collision checker. If1

a collision is found, samples around the end-points of the2

invalid edge are used in attempts to fix the roadmap. If fixing3

the roadmap fails, the roadmap building process is resumed4

until a path is found.5

Solution paths obtained with a PRM planner are typically6

jagged and quite long (Fig. 3). Typically, a postprocessing –7

smoothing – step is applied to them. Even with this step, the8

produced path may still be far from the shortest one. In [49] a9

method for finding shorter paths has been presented. To allow10

PRM to find shorter paths in a reasonable amount of time,11

the connection strategy is changed so it allows cycles in the12

roadmap, with the condition that the edge that produces the13

cycle shortens the minimal path between the configurations14

it connects. Testing whether the connection criterion is met is15

done using a modified Dijkstra’s algorithm. The modification16

speeds up the algorithm using the fact that the length of the17

minimal path is not needed — only it being longer or shorter18

than the new potential edge is the required information.19

These connection strategies, while they do improve the20

planning algorithms, are specific for the path-planning21

problem. It is possible however, to use similar ideas in22

a motion-planning framework, as will be presented in23

Section 4.24

3.2. Tree-based planners25

In many cases, quickly solving one particular planning26

problem instance is of interest. For these cases, single query27

planners can be used. In these planners, the main data28

structure is typically a tree. The basic idea is that an

initial sample (the starting configuration) is the root of the 29

tree and newly produced samples are then connected to 30

samples already existing in the tree. Significant amounts 31

of work have been dedicated to developing sampling and 32

connection strategies, biasing the direction in which the tree 33

grows and achieving better coverage of the space. The most 34

popular representative of tree-based planners is the RRT 35

algorithm [40,44] (see also Fig. 4 and Algorithm 2). Many of 36

the algorithmic improvements discussed in this section are 37

using an RRT-like algorithm as a base. There are other tree- 38

based planners though: EST [26], SBL [57], utility trees [3], 39

a multiresolution version of [8] algorithm in [47], PDST [45], 40

SRT [51] are well-known tree-based planners. Due to space 41

limitations, not all of these algorithms are presented, but the 42

reader is encouraged to look at the cited papers for details. 43

3.2.1. Improvements in the RRT family of planners 44

In the following paragraphs RRT and improvements to RRT 45

like DDRRT [61] or AD-RRT [30] will be presented. 46

Algorithm 2 BUILDRRT(xinit)

INIT(T, xinit)
for k = 1 to Niterations do

xrand ← RANDOMCONFIGURATION()

xnear ← NEARESTNEIGHBOUR(xrand,T)

if xnew ← NEWSTATE(xnear, xrand) then
INSERT(T, xnew)

return T

47

The RRT algorithm works by growing a tree starting from a 48

given root. The growth is performed one vertex at a time, by 49

alternating the two steps that are common tomost tree-based 50

planners: selection and propagation. 51

• Selection 52

· A sample xrand is chosen uniformly at random. 53

· Among the samples already existing in the tree, the 54

closest one to xrand is selected. Let this sample be xnear. 55

• Propagation 56

· An edge is then extended from xnear toward xrand, not 57

necessarily reaching it. 58

· The ending vertex from the edge extended from xnear is 59

then the new sample added to the tree. 60

One of the bottlenecks of RRTs is that in some 61

environments (see Fig. 5 for an example) most of the 62

randomly selected samples will cause the expansion from the 63

closest node in the RRT tree to fail. This produces a significant 64

increase in the runtime of the algorithm. One way to mitigate 65

this problem is presented in [61]. 66

The idea is to attach a radius to each of the samples 67

in the built tree. If the randomly-selected sample is further 68

away than the specified radius, another sample is picked until 69

the distance to the nearest sample in the tree is less than 70

the attached radius. This change reduces the likelihood of 71

having a connection failure. Samples added to the tree are 72

initially set to infinite radius; when a connection attempt fails 73

from a sample, its radius is set to some workspace-dependent 74

constant. 75

An obvious issue with the method above is the workspace- 76

dependent constant. This issue is addressed in [30]. Their idea 77

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X 5
ARTICLE IN PRESS

COSREV: 7

Fig. 5 – Bug trap. Starting point is inside the trap, goal is
outside. Most of the random samples will be outside the
trap and will fail to produce paths that exit it.

is to adapt the value of the radius according to some other1

constant that is less sensitive to the workspace. The radius2

is increased with every successful connection attempt and3

decreased with every connection failure.4

One of the newer RRT-like algorithms is based on utility5

trees [3]. The main improvement for this type of trees is that6

more aspects of the tree growth are evaluated: the utility7

of the node to be expanded, the expansion direction, the8

expansion distance and connection attempts. The utilities9

of the different aspects are evaluated using approximation10

techniques similar to those of predictive models presented11

above.12

3.2.2. Using multiple trees13

When solving a motion-planning problem, it is often the14

case that multiple trees are used. So-called bidirectional15

algorithms [33] grow trees both from the start and from16

the goal regions, one towards the other and try to connect17

them (Fig. 6). Another situation in which multiple trees18

are used is in algorithms like SRT [51]. The idea behind19

SRT is to have a roadmap of trees. Instead of connecting20

samples, trees are grown from each sample and they are21

connected to other nearby trees to form a roadmap. This is22

a generalization of roadmap-based and tree-based planners.23

The main advantage of using multiple trees is the potential24

for parallel execution.25

An important issue that arises with algorithms that use26

multiple trees is the connection of the trees. Deciding which27

nodes in which trees need to be connected is not a simple28

issue. In addition, connecting two nodes is also a difficult29

problem in the context of motion planning. More details about30

how to deal with these difficulties follow in Section 4.1.31

4. New directions in sampling-based motion32

planning33

So far a number of different ideas that try to improve on34

the essential components present in sampling-based motion35

planners have been described. Most of the algorithms in the36

previous section have the underlying assumption that the37

robot is a free-flying 3-dimensional body moving in a static38

workspace. In the area of mobile robotics though, it is an39

interesting and challenging goal to try and embed a sampling-40

based motion planner in a real robot as a black box, that41

can automatically drive a robot to wherever its goal might42

be. For such functionality in real-life scenarios, there are43

various constraints and difficulties that need to be addressed44

Fig. 6 – Two trees growing one towards the other.

on top of the basic geometrical motion-planning problem. 45

This section tries to identify some of those issues, and show 46

how sampling-based planners are being adapted to deal with 47

them. 48

The extensions to the basic motion-planning problem that 49

will be discussed are summarized below. For real robots these 50

are not the only issues that need to be considered. Dealing 51

with uncertainty in motion and sensors and consequently 52

problems in localization andmapping, are very important but 53

are omitted in this paper. 54

• Robot’s dynamics: One crucial extension towards more 55

physical realism is to try and take into account dynamic 56

constraints. A real robot is not a “free-flying” object. 57

It has motor limitations that impose bounds on its 58

maximum velocity and acceleration [9,44]. These are 59

called kinodynamic constraints and can significantly increase 60

the complexity of motion planning, as the robot might 61

be incapable of implementing certain collision-free paths 62

(infeasible). Furthermore, real robots are subject to other 63

physics-based constraints such as gravity, and friction [45] 64

that can and sometimes need to be taken into account. 65

• Workspaces that change in time: Another extension is to 66

relax the static workspace assumption. This is another 67

important extension that is necessary for robots that 68

are not restricted to operating in a highly-controlled, 69

stationary environment. The difficulty motion planning 70

in such cases can vary based on what is known about 71

the moving obstacles. In the best case, the obstacles are 72

executing repetitive motions and information about their 73

maximum velocity or acceleration is available [11]. It could 74

be though that the moving obstacles are unpredictable or 75

evenmalevolent andmoving arbitrarily fast. In these cases 76

guaranteeing collision avoidance overall for a robot may be 77

impossible [52,10]. 78

• Real-time planning: In real life scenarios, it is frequently 79

the case that a robot will need to move in an only partially 80

known environment. In those cases, as new sensory 81

information is obtained, the robot needs to be able to 82

revise its plan, i.e. to replan [21]. Moreover, in environments 83

that are changing in time, the robot is expected to react 84

to these changes and replan in real-time while moving. 85

Finally, all these considerations become more important 86

when the robot’s dynamics are taken also into account [6, 87

12,20]. 88

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

6 C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

ARTICLE IN PRESS
COSREV: 7

4.1. Kinodynamic planning and physics based constraints1

Real robots have kinodynamic constraints that cannot2

generally be ignored. One common way of taking those3

constraints into account is with the use of an appropriate4

controller that can generate feasible motions. A very common5

approach to solve motion-planning problems is with a6

decoupled approach (decoupled trajectory planning) [37,12].7

First, a path-planning algorithm computes a collision-free8

trajectory ignoring system dynamics. Then, a controller is9

needed to compute appropriate controls that will implement10

the desired path. There is a number of issues in this11

approach. Typically, controllers alone cannot avoid obstacles12

in the environment, and that is why an obstacle free path13

must be found in another way first. Moreover, the produced14

geometrical paths may be infeasible for a real robot and15

even when the controller manages to follow a desired path,16

this may require that the robot moves slowly to minimize17

the influence of dynamic and physical constraints. Finally,18

controllers are system specific, and as today’s robots become19

increasing complex it becomes very hard to develop good20

controllers.21

In the last few years a number of sampling-based22

motion planners and especially tree-based planners, have23

made it possible to accommodate kinodynamic constraints24

and physics constraints in a computationally feasible way.25

Sampling-based planners have a more unified approach as26

they produce feasible paths that at the same time avoid27

obstacles. Moreover, for a those planners also provide the28

time sequence of controls that the robots needs to execute to29

move on the selected path. The main idea behind sampling-30

basedmotion planners for kinodynamic planning, is to search31

a higher dimensional state space X that captures the dynamics32

of the system. Given a configuration q ∈ C, a state of a33

robot can be simply defined as x = (q, q̇) [44]. The goal34

is to plan in the state space similarly to planning in the35

configuration space. In this way the techniques described in36

previous sections can be adapted to deal this new class of37

problems. In the first subsection, planners that are derived38

from classical tree-based planners such as RRT and EST39

are covered. Next, a new family of sampling-based motion40

planners called path directed tree planners is described. Last,41

some ideas are presented on how to use bidirectional trees42

in the presence of kinodynamic constraints.43

4.1.1. Classical tree-based planners44

The first fruitful attempts to incorporate kinodynamic45

constraints in a sampling-based planner, were based on46

modifying existing tree-based planners.47

In [44] an RRT-like planner is described. The paper explains48

how dynamics can be incorporated in a sampling-based49

planning framework. The RRT-tree is produced in a way50

similar to what was described in Section 3. The difference is51

that here the planner samples random controls and tries to52

apply them for some amount of time in order to expand from53

a current state on the towards the newly sampled state. In54

this way, any path on the tree is a feasible and collision-free55

trajectory of the robot. The authors consider complex systems56

such as hovercrafts and satellites in environments that are57

cluttered with obstacles.58

A similar way of planning under kinodynamic constraints 59

is presented in [25]. Planning is done in the state space × 60

time space in a fashion that follows another popular tree- 61

based planner, the EST [26]. The planner picks a state node 62

already on the tree and samples a random control that is 63

applied for some amount of time to add a new node on the 64

tree. The node for the next expansion is selected in a way 65

so as to create a tree that is not too dense in some parts 66

and too sparse in others. The authors provide an analysis of 67

the probabilistic completeness of their algorithm. Moreover, 68

they present experiments on non-holonomic robots both in 69

simulation and for real robots. Some interesting ideas are also 70

discussed with respect to recomputing a trajectory if there is 71

an unexpected change in the environment that conflicts with 72

the current trajectory. 73

Along the same lines is [20], which tries to show the 74

decoupling between the higher level motion planner and the 75

lower level control. Their approach is closer to RRTs but has 76

some important differences. A state is chosen at random, and 77

the planner tries to expand a tree towards a new sample. Yet, 78

contrary to RRT, which is expanding from the node on the tree 79

that is closest to the new sample, the authors evaluate the 80

nodes of the current tree in order of increasing cost to the new 81

sample using some distance metric. Expansion towards the 82

new sample is attempted from all nodes on the tree before the 83

sample is considered unreachable. An optimal control policy 84

in the obstacle-free case is used to drive the robot. Moreover, 85

this algorithm contains ideas about how to deal with real- 86

time planning where the planner only has a time budget to 87

produce a trajectory to the goal. 88

In all of the planners presented above, one of the issues 89

that is dealt with is the direction of growth for the tree. On 90

one hand, coverage needs to be eventually achieved in order 91

to guarantee probabilistic completeness, on the other hand, 92

goal bias needs to be taken into account, in order to speed 93

planning. DSLX [53] (Discrete Search Leading Continuous 94

eXploration) is proposed as a method to address this issue. 95

The idea is that the workspace is discretized and a discrete 96

path from start to goal is found. This path will be used as a 97

hint, to lead the direction of growth of the tree. This method 98

achieves significant computational improvements. 99

4.1.2. Path-directed planners 100

Most sampling-based planners require a distance metric in 101

the space that is being sampled. Metrics are typically required 102

for biasing the search and finding nearest neighbours to 103

compute edges in the tree or roadmap. However, especially 104

in state spaces, it can be hard and counter-intuitive to define 105

a good metric between states. Moreover, metrics are usually 106

not general enough and work well only for a specific system. 107

The motivation for having a planner that does not depend on 108

distancemetrics lead in the last few years in the development 109

of a new family of tree-based planners, called path-directed 110

planners. The major difference of these planners is that the 111

tree-data structure no longer uses single points as samples. 112

Instead, the samples are whole-path segments that can hold 113

useful information in order to speed the exploration of the 114

planning space. 115

PDST [45] is the first planner in the family of path directed 116

tree planners that introduced a new idea for creating a tree 117

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X 7
ARTICLE IN PRESS

COSREV: 7

which does not use a metric to bias the search. The basic1

scheme is illustrated in Algorithm 3. At each iteration, a2

sample γ is selected. Then a random state x on the selected3

sample is chosen and a new sample is propagated from4

that state by applying a newly randomly-selected control u5

for some time δt. The innovation is that PDST has a space-6

subdivision scheme and does not require a metric. The space7

is subdivided into cells. After a new sample is propagated,8

the cell in which that sample starts, is subdivided. An9

invariant of the algorithm is that each sample is contained10

only in one cell. The algorithm keeps track of how many11

samples are located in each space cell and can in this way12

estimate how dense the sampling is in different areas of13

the space. The selection of samples for expansion favours14

those that lead to new unexplored areas of the space. To15

guarantee probabilistic completeness, each sample also has16

an associated priority. Priorities are updated in a way that17

guarantees that eventually every sample in the tree will be18

selected for propagation.19

PDST has been applied to a number of systems with20

complex dynamics, from cars and blimps to a weight21

lifting robot. An interesting idea, that has been tried is the22

combination of PDST with a physics engine, that simulates23

the world. In this way, the planner could be used to plan24

for systems even more realistic situations where physical25

constraints such as gravity and frictions are taken into26

account.27

Algorithm 3 PDST(xinit)

for k = 1 to Niterations do
γ = SELECTSAMPLE()

(x,u, δt) = SELECTSTATECONTROLSURATION(γ)

π = PROPAGATE(x,u, δt)
if INTERSECTGOALREGION(π) then

TERMINATE()

UPDATEPRIORITIES()

SUBDIVIDE(GETCELLOF(γ))

28

Another path directed tree planner is [6]. This planner also29

uses a selection/propagation scheme to create new samples30

and generate a tree. This algorithm tries to avoid the overhead31

of subdivision while still not using a metric to bias the32

search. Instead, a low dimensional navigation function that33

has its global minimum in the goal region is defined. This34

navigation function can be computed very fast, and for any35

point in the workspace, it provides the A* distance of that36

point to the goal. Although this distance cannot capture the37

dynamics of the system, this work shows that it can bias the38

search to the goal sufficiently for simulated cars with second39

order dynamics. Assigning priorities to samples is used to40

guarantee probabilistic completeness.41

4.1.3. Path deformation and closing gaps42

The idea of using multiple trees exists in the case of43

kinodynamic motion planning as well. However, it not44

possible to analytically compute the controls needed for45

connecting nearby states and thus gaps may appear. In the46

following paragraphs, ideas of how to close such gaps are47

presented.48

A possible option for closing the gaps is then perturbing 49

the controls in the potential solution path into ones that 50

achieve smaller gaps. Perturbing controls along such a path 51

may require integration of potentially long sections of the 52

path, which is time consuming. In [15], a method for replacing 53

this integration with translation is presented. The method 54

relies on using group symmetries in the system. 55

Another approach for closing gaps is using path deforma- 56

tion. The authors of [43] present a method of connecting two 57

trees — one grown from the goal and one grown from the 58

source. The method deforms the paths – one path starting 59

at the source and the other ending at the goal – such that the 60

free end-points of the two paths become closer and closer. 61

This is an iterative process that aims to find a minimum us- 62

ing a potential field. The method may get stuck in local min- 63

ima but experimental results show this rarely happens when 64

attempting to connect reasonably close end-points. 65

4.1.4. Remarks on kinodynamic planning 66

The algorithms presented in this section show that the 67

latest tree-based planners are becoming able to deal with 68

kinodynamic constraints by planning directly in the state 69

space. Trees are simple and efficient data structures that 70

can represent temporal information in a natural way. 71

Moreover, tree-based planners can overcome the difficulty 72

that controllers face in implementing a desired path as the 73

produced trajectories are always feasible. 74

The main problem that these algorithms tend to have 75

is that the produced paths are generally suboptimal and 76

typically contain cusps and sharp turns. Postprocessing and 77

smoothing those paths is an active area of research that will 78

not be covered in this paper. 79

4.2. Dynamically-changing environments 80

With the efficiency improvements of planners, interest has 81

grown towards planning for robots in more realistic sce- 82

narios. For example, demand has emerged for planning 83

amongst moving obstacles, dynamically-changing environ- 84

ments and/or unknown environments. In such cases, due to 85

observed changes in the environment, the current plan can 86

be rendered invalid and a new plan has to be produced. More- 87

over, time is an issue and the planner can only rely on tem- 88

porarily valid information obtained from its sensors to quickly 89

come up with a new motion plan while moving. These ideas 90

are captured in the notions of real-time planning and replan- 91

ning. Again, tree-based planners are proving to be a good 92

framework that has been adjusted to deal with these kinds 93

of problems. Nevertheless, there also exist some algorithms 94

that use roadmaps. 95

4.2.1. Basic replanning algorithms 96

A simple replanning framework was presented in [21]. It 97

presents an RRT planner that is the probabilistic analogue 98

to the family of D∗ algorithms [34]. Specifically, an RRT tree 99

is grown to cover the space until an obstacle is sensed in 100

the way. The paper describes how part of the tree is quickly 101

invalidated. The algorithm tries to expand towards the goal 102

from what is left of the pruned tree. Along the same lines, 103

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

8 C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

ARTICLE IN PRESS
COSREV: 7

but in a PRM framework, is [4] which also tries to produce1

paths that optimize some criterion, such as time, stealth etc.2

In this work, the robot first builds a roadmap in the state3

× time space of the environment and finds an initial plan4

that takes any known dynamic obstacles into account. Then,5

as the robot starts executing the plan, it is possible that6

new obstacles might be observed that invalidate the plan. In7

that case, a discrete search algorithm called Anytime D∗, is8

employed. This algorithm can quickly repair the plan, so it no9

longer interferes with the moving obstacles. The above ideas10

are closely related to Artificial Intelligence techniques, where11

replanning has been studied for longer time in a discrete12

graph search context.13

4.2.2. Planning amongst moving obstacles with roadmaps14

This subsection presents algorithms that dynamic environ-15

ments into account with the use of roadmaps. The robot’s16

dynamics is ignored so planning is done in the configura-17

tion space. For environments where obstacles are not nec-18

essarily static, a fixed roadmap cannot maintain informa-19

tion about the connectivity of the space. There are two main20

directions for addressing this problem. One assumes the21

movement of obstacles is predictable and then time can be22

considered an extra parameter of the configuration space.23

This basically allows using roadmap-based algorithms in24

a higher dimensional space. The other direction is to use25

roadmaps that permit updates. This is amore general method26

but raises the problem of updating the roadmap in a useful27

and efficient manner.28

As an example of the first direction, planning in29

environments with obstacles that have known periodic30

motions has been examined in [11]. In order to improve31

efficiency, instead of simply adding a time component, to32

each point in the configuration space a period is associated33

— the interval at which the point is in collision. The points34

that do not change from Cfree to Cobs have a period of zero.35

Compared to simply augmenting the configuration spacewith36

a time component, the presented method is more efficient.37

For the second direction, ideas from [29,60] are presented.38

In [29], relevant portions of the roadmap are checked for39

collision with known dynamic obstacles for every query.40

A bidirectional tree-based planner is used to attempt41

restoration of the connectivity lost from edges that are in42

collision. If the tree-based algorithm fails, more samples43

are added to the roadmap. This allows the roadmap to be44

potentially updated with every query.45

A similar notion is presented in [60]: samples in the46

roadmap are allowed to move and change their connectivity47

— an elastic roadmap. However, the connectivity here is48

defined by the ability of a feedback controller to move the49

robot between connected states. Another major difference is50

that the roadmap is no longer in the configuration space, but51

in the workspace. These changes allow faster computation52

for some problems but lose the probabilistic completeness53

property of the planner.54

4.3. Online replanning for robots with kinodynamic55

constraints56

In this subsection, two algorithms that are combining57

many of the ideas described above are presented. The

robots considered have nontrivial kinodynamic constraints 58

and they move in an environment that is partially known 59

and/or changing. For this reason, robots have to gather new 60

information periodically, and then replan using the latest 61

available information. This is one of the most interesting and 62

relatively newest classes of problems so the present literature 63

is quite limited. 64

In [6], a tree-based planner for car-like robots with second 65

order acceleration constraints is described. A robot is trying 66

to explore an unknown environment. This work shows how 67

previously computed trees can be reused efficiently in the 68

next replanning step. More specifically, by retaining the valid 69

part of a previously computed tree, the planner is able to 70

avoid redundant collision checks. In many cases, the quality 71

of the returned paths towards a chosen goal is improving in 72

consecutive replanning steps. It is important to emphasize 73

that this planner is computing plans in real-time under a time 74

budget. 75

Another work that deals with robots that have nonholo- 76

nomic kinodynamic constraints is presented in [42]. Here, an 77

initial plan in the state space is computed with a sampling- 78

based motion planner. Then, the robot starts executing that 79

plan until it senses some change in the environment or de- 80

viation from the specified trajectory that renders the current 81

plan invalid. At that point the robot has to replan. This is done 82

by deforming the path in a way that still respects the non- 83

holonomic constraints. 84

4.3.1. Safety 85

To close the section of new directions in sampling-based 86

motion planning, it interesting to see how all the extensions 87

to the basic motion-planning problem can coexist in a 88

planning problem. A robot moving in an unknown and/or 89

changing environment needs to change its plan rapidly, 90

depending on the latest sensor input. Yet, if the robot is 91

limited by its dynamic constraints, it cannot instantaneously 92

change its behaviour. All of these considerations have brought 93

up the issue of safety. It is no longer enough to simply produce 94

feasible trajectories that are collision free with respect to 95

static or moving obstacles. The trajectories have to also 96

be safe. Safety has been defined in different ways in the 97

literature, but a simple and generic description defines as safe 98

a plan where the robot never finds itself in what is called an 99

Inevitable Collision State or ICS [19]. Being in ICSmeans that due 100

to dynamic constraints, the robot will collide with an obstacle 101

in the future no matter what controls are applied from that 102

state on. 103

One recent paper that incorporates many of the issues 104

discussed here and in the previous section is [12]. This 105

work deals with real robots that participate in the RoboCup 106

competition. The robots move fast, so dynamics cannot be 107

ignored; the environment is rapidly changing since there 108

are many other robots (in the same or the opposing team) 109

moving in the same area. The robots have a very small time 110

budget to plan their next motion. This paper describes a three 111

stage algorithm. First, an RRT-like planner finds a path to the 112

desired goal position, ignoring dynamics. Then, a controller 113

needs to find the appropriate controls that implement the 114

path. There is also a third stage, responsible for producing 115

safe paths. Out of the possible valid solutions, a search is 116

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X 9
ARTICLE IN PRESS

COSREV: 7

performed to filter out all solutions that can potentially lead1

to inevitable collisions in the future.2

The notion of ICS is also used in [6], to define and3

guarantee the safety of an exploring robot. Specifically, the4

algorithm accepts only the trajectories for which after the5

last state of a trajectory, there exists a contingency plan. The6

contingency plan, describes a plan that the robot can always7

execute in that state, in order to avoid collisions in case the8

planner fails to produce (i.e. due to time limitations) any other9

safe trajectory to the goal.10

5. Conclusion11

Motion planning is an important problem in robotics and12

many approaches to solving it have been examined. Even13

though complete algorithms are PSPACE-complete and thus14

not useful for practical purposes, probabilistically complete15

algorithms have been very successful in a variety of problems.16

These algorithms form the category of Sampling-Based Motion17

Planners.18

Sampling-based motion planners have been used to solve19

difficult geometrical problems, but have also proven flexible20

enough to deal with more realistic, hard, motion-planning21

problems. From the mobile robotics point of view, this work22

discussed planning for robots with kinodynamic constraints23

and planning in dynamic environments. A detail to note24

is most of the algorithms are not specifically designed for25

mobile robots. They are general and powerful algorithms26

that are also used in other areas or robotics such as27

manipulators, humanoids and reconfigurable robots. Due to28

space limitations, topics on these areas are not presented in29

this work.30

Whilemuch progress has beenmade over the last decades,31

motion planning for real robots that can operate in everyday32

life scenarios, is still at its beginnings. Sampling-based33

motions planners started mainly as offline planners for34

geometric problems and static environments. Research in the35

last years has shown that such planners could be a powerful36

alternative in planning for real robots as well. However, there37

is still a number of issues that have to be addressed before38

installing a sampling-based motion planner on a real robot39

becomes possible. Real systems push current planners to40

their computational limits as the state space can be high41

dimensional. Moreover, planning in the state space is not42

fully understood or intuitive, as narrow passages (the main43

difficulty of sampling-based planners) can appear due to44

dynamic constraints. The quality of the paths produced by45

sampling-based motion planners is another problem and it46

is an active area of research. Finally, there is the issue of47

uncertainty inmotion, which is inevitable is real systems, and48

is again an area of active research in the context of sampling-49

based motion planning.50

Acknowledgments51

This work has been supported in part by NS CNS 0615328 and52

IIS 0308237.53

R E F E R E N C E S 54

55

[1] F. Aghili, K. Parsa, Configuration control and recalibration of 56

a new reconfigurable robot, in: IEEE International Conference 57

on Robotics and Automation, 2007, pp. 4077–4083. 58

[2] B. Burns, O. Brock, Sampling-based motion planning using 59

predictive models, in: IEEE International Conference on 60

Robotics and Automation, Barcelona, Spain, April 2005. 61

[3] B. Burns, O. Brock, Single-query motion planning with utility- 62

guided random trees, in: IEEE International Conference on 63

Robotics and Automation, Rome, Italy, 2007. 64

[4] J.v.d. Berg, D. Ferguson, J. Kufner, Anytime path planning and 65

replanning in dynamic environments, in: IEEE International 66

Conference on Robotics and Automation, 2006. 67

[5] R. Bohlin, L. Kavraki, Path planning using lazy prm, in: IEEE 68

International Conference on Robotics and Automation, vol. 1, 69

24–28 April 2000, pp. 521–528. 70

[6] K.E. Bekris, L.E. Kavraki, Greedy but safe replanning under 71

kinodynamic constraints, in: IEEE International Conference 72

on Robotics and Automation, 2007. 73

[7] J. Barraquand, J.-C. Latombe, Robot motion planning: A 74

distributed representation approach, International Journal of 75

Robotics Research 10 (6) (1991) 628–649. 76

[8] J. Barraquand, J. Latombe, Nonholonomic multibody mobile 77

robots: Controllability and motion planning in the presence 78

of obstacles, Algorithmica 10 (1993) 121–155. 79

[9] F. Boyer, F. Lamiraux, Trajectory deformation applied to 80

kinodynamic motion planning for a realistic car model, in: 81

IEEE International Conference on Robotics and Automation, 82

2006. 83

[10] J.P.v.d. Berg, M.H. Overmars, Computing shortest paths 84

amidst growing discs in the plane, in: European Workshop 85

on Computational Geometry, March 2006, pp. 59–62. 86

[11] J.P.v.d. Berg, M.H. Overmars, Path planning in repetitive 87

environments, in: Methods and Models in Automation and 88

Robotics, 2006, pp. 657–662. 89

[12] J. Bruce, M. Veloso, Real-time multi-robot motion planning 90

with safe dynamics, in: Multi-Robot Systems: From Swarms 91

to Intelligent Automata, volume III, 2006. 92

[13] J. Canny, Some algebraic and geometric computations 93

in pspace, in: Annual ACM Symposium on Theory of 94

Computing, Chicago, Illinois, United States, ACM Press, 1988, 95

pp. 460–469. 96

[14] S. Carpin, Randomized motion planning — a tutorial, 97

International Journal of Robotics and Automation 21 (3) (2006) 98

184–196. 99

[15] P. Cheng, E. Frazzoli, S. LaValle, Improving the performance 100

of sampling-based planners by using a symmetry-exploiting 101

gap reduction algorithm, in: IEEE International Conference 102

on Robotics and Automation, vol. 5, 26 April–1 May 2004, pp. 103

4362–4368. 104

[16] H. Choset, K.M. Lynch, S. Hutchinson, G.A. Kantor, W. 105

Burgard, L.E. Kavraki, S. Thrun, Principles of Robot Motion: 106

Theory, Algorithms, and Implementations, MIT Press, 107

ISBN: 0-262-03327-5, June 2005. 108

[17] P. Cheng, G. Pappas, V. Kumar, Decidability of motion plan- 109

ning with differential constraints, in: IEEE International Con- 110

ference on Robotics and Automation, 2007, pp. 1826–1831. 111

[18] J. Cortés, T. Siméon, V. Ruiz De Angulo, D. Guieysse, M. 112

Remaud-Siméon, V. Tran, A path planning approach for 113

computing large-amplitude motions of flexible molecules, 114

Bioinformatics 21 (1) (2005) 116–125. 115

[19] T. Fraichard, H. Asama, Inevitable collision states: A step 116

towards safer robots? in: Conference on Intelligent Robots 117

and Systems, 2003. 118

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

UNCO
RREC

TE
D

PR
O

O
F

10 C O M P U T E R S C I E N C E R E V I E W X X (X X X X) X X X – X X X

ARTICLE IN PRESS
COSREV: 7

[20] E. Frazzoli, M. Dahleh, E. Feron, Real-time motion planning1

for agile autonomous vehicles, in: American Control2

Conference, vol. 1, 2001, pp. 43–49.3

[21] D. Ferguson, N. Kalra, A. Stentz, Replanning with RRTs, in:4

IEEE International Conference on Robotics and Automation,5

2006.6

[22] E. Ferre, J.-P. Laumond, An iterative diffusion algorithm7

for part disassembly, in: IEEE International Conference on8

Robotics and Automation, New Orleans, USA, 2004, pp.9

3149–3154.10

[23] S. Hirsch, D. Halperin, Hybrid motion planning: Coordinating11

two discs moving among polygonal obstacles in the plane, in:12

WAFR, Nice, 2002, pp. 225–241.13

[24] D. Hsu, T. Jiang, J. Reif, Z. Sun, The bridge test for sampling14

narrow passages with probabilistic roadmap planners, in:15

IEEE International Conference on Robotics and Automation,16

2003.17

[25] D. Hsu, R. Kindel, J.-C. Latombe, S. Rock, Randomized18

kinodynamic motion planning with moving obstacles, 2000.19

[26] D. Hsu, J.-C. Latombe, R. Motwani, Path planning in expansive20

configuration spaces, in: IEEE International Conference on21

Robotics and Automation, vol. 3, April 1997, pp. 2719–2726.22

[27] D. Hsu, G. Sanchez-Ante, Z. Sun, Hybrid PRM sampling23

with a cost-sensitive adaptive strategy, in: IEEE International24

Conference on Robotics and Automation, 2005.25

[28] D. Halperin, C.-K. Yap, Combinatorial complexity of translat-26

ing a box in polyhedral 3-space, Computational Geometry:27

Theory and Applications 9 (1998) 181–196.28

[29] L. Jaillet, T. Siméon, A PRM-based motion planner for29

dynamically changing environments, in: Intelligent Robots30

and Systems, Sendai, Japan, 2004.31

[30] L. Jaillet, A. Yershova, S.M. LaValle, T. Siméon, Adaptive32

tuning of the sampling domain for dynamic-domain rrts,33

in: IEEE International Conference on Intelligent Robots and34

Systems, 2005.35

[31] H. Kurniawati, D. Hsu, Workspace importance sampling for36

probabilistic roadmap planning, in: IEEE/RSJ International37

Conference on Intelligent Robots & Systems, 2004.38

[32] H. Kurniawati, D. Hsu, Workspace-based connectivity oracle,39

an adaptive sampling strategy for prm planning, in:40

International Workshop on the Algorithmic Foundations of41

Robotics, 2006.42

[33] J.J. Kuffner, S.M. LaValle, RRT-connect: An efficient approach43

to single-query path planning, in: IEEE International44

Conference on Robotics and Automation, 2000.45

[34] S. Koening, M. Likhachev, Improved fast replanning for46

robot navigation in unknown terrain, in: IEEE International47

Conference on Robotics and Automation, 2002.48

[35] L.E. Kavraki, J.-C. Latombe, R. Motwani, P. Raghavan,49

Randomized query processing in robot path planning, Journal50

of Computer and System Sciences 57 (1) (1998) 50–60.51

[36] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Motion52

planning for humanoid robots, in: Proc. 20th Int’l Symp.53

Robotics Research, ISRR’03, 2003.54

[37] M.B. Kobilarov, S.G.S., Near time-optimal constrained trajec-55

tory planning on outdoor terrain, in: IEEE International Con-56

ference on Robotics and Automation, 2005.Q157

[38] L.E. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars, Prob-58

abilistic roadmaps for path planning in high dimensional59

configuration spaces, IEEE Transactions on Robotics and Au-60

tomation 12 (4) (1996) 566–580.61

[39] J. Latombe, Robot Motion Planning, Kluwer Academic62

Publishers, Boston, MA, 1991.63

[40] S.M. LaValle, Rapidly-exploring random trees: A new tool for64

path planning, Technical Report 11, Computer Science Dept.,65

Iowa State University, 1998.66

[41] S.M. LaValle, Planning Algorithms, Cambridge Uni-67

versity Press, Cambridge, UK, 2006. Available at68

http://planning.cs.uiuc.edu/.69

[42] F. Lamiraux, D. Bonnafous, Reactive trajectory deformation 70

for nonholonomic systems: Application to mobile robots, in: 71

IEEE International Conference on Robotics and Automation, 72

vol. 3, Washington, DC, USA, 2002, pp. 3099–3104. 73

[43] F. Lamiraux, E. Ferr, E. Vallee, Kinodynamic motion planning: 74

Connecting exploration trees using trajectory optimization 75

methods, in: IEEE International Conference on Robotics and 76

Automation, vol. 4, 2004, pp. 3987–3992. 77

[44] S.M. LaValle, J.J. Kuffner, Randomized kinodynamic planning, 78

International Journal of Robotics Research 20 (5) (2001) 79

378–400. 80

[45] A.M. Ladd, L.E. Kavraki, Motion planning in the presence 81

of drift, underactuation and discrete system changes, 82

in: Robotics: Science and Systems, MIT Press, Boston, June 83

2005, pp. 233–241. 84

[46] S. Lindemann, S.M. LaValle, Current issues in sampling- 85

based motion planning, in: Robotics Research: The Eleventh 86

International Symposium, Springer-Verlag, Berlin, 2005, 87

pp. 36–54. 88

[47] S. Lindemann, S.M. LaValle, A multiresolution approach 89

for motion planning under differential constraints, in: IEEE 90

International Conference on Robotics and Automation, 15–19 91

May, 2006, pp. 139–144. 92

[48] S.R. Lindemann, S.M. LaValle, Simple and efficient algorithms 93

for computing smooth, collision-free feedback laws, Interna- 94

tional Journal of Robotics Research (2006). 95

[49] D. Nieuwenhuisen, M.H. Overmars, Useful cycles in proba- 96

bilistic roadmap graphs, in: IEEE International Conference on 97

Robotics and Automation, New Orleans, April 2004. 98

[50] A.L. Olsen, H.G. Petersen, Motion planning for gantry 99

mountedmanipulators: A ship-welding application example, 100

in: IEEE International Conference on Robotics and Automa- 101

tion, 2007, pp. 4782–4786. 102

[51] E. Plaku, K. Bekris, B. Chen, A. Ladd, L. Kavraki, Sampling- 103

based roadmap of trees for parallel motion planning, IEEE 104

Transactions on Robotics 21 (4) (2005) 597–608. 105

[52] S. Petti, T. Fraichard, Safe motion planning in dynamic 106

environments, 2005. 107

[53] E. Plaku, M.Y. Vardi, L.E. Kavraki, Discrete search leading 108

continuous exploration for kinodynamicmotion planning, in: 109

Robotics: Science and Systems, Atlanta, Georgia, 2007. 110

[54] H.J. Reif, Complexity of the mover’s problem and generaliza- 111

tions, in: IEEE Symposium on Foundations of Computer Sci- 112

ence, 1979. 113

[55] S. Rodriguez, S. Thomas, R. Pearce, N.M. Amato, Resampl: A 114

region-sensitive adaptive motion planner, in: International 115

Workshop on the Algorithmic Foundations of Robotics, New 116

York City, July 2006. 117

[56] G. Sanchez, J.-C. Latombe, On delaying collision checking 118

in prm planning application to multi-robot coordination, 119

International Journal of Robotics Research (2002). 120

[57] G. Sánchez, J.-C. Latombe, A single-query bi-directional 121

probabilistic roadmap planner with lazy collision checking, 122

International Journal of Robotics Research (2003) 403–407. 123

[58] S. Thomas, M. Morales, X. Tang, N.M. Amato, Biasing 124

samplers to improve motion planning performance, in: 125

IEEE International Conference on Robotics and Automation, 126

Rome, Italy, April 2005. 127

[59] J. Vannoy, John Xiao, Real-time motion planning of multiple 128

mobilemanipulators with a common task objective in shared 129

work environments, in: IEEE International Conference on 130

Robotics and Automation, 2007, pp. 20–26. 131

[60] Y. Yang, O. Brock, Elastic roadmaps: Globally task-consistent 132

motion for autonomous mobile manipulation, in: Robotics: 133

Science and Systems, 2006. 134

[61] A. Yershova, L. Jaillet, T. Siméon, S. LaValle, Dynamic- 135

domain rrts: Efficient exploration by controlling the sampling 136

domain, in: IEEE International Conference on Robotics and 137

Automation, Barcelona, Spain, 2005. 138

Please cite this article in press as: K.I. Tsianos, et al., Sampling-based robot motion planning: Towards realistic applications, Computer
Science Review (2007), doi:10.1016/j.cosrev.2007.08.002

http://planning.cs.uiuc.edu/

	Sampling-based robot motion planning: Towards realistic applications
	Introduction
	The motion-planning problem
	Recent improvements in sampling-based motion planning
	Roadmap-based planners
	Improving the sampling strategy
	Improving the connection strategy

	Tree-based planners
	Improvements in the RRT family of planners
	Using multiple trees

	New directions in sampling-based motion planning
	Kinodynamic planning and physics based constraints
	Classical tree-based planners
	Path-directed planners
	Path deformation and closing gaps
	Remarks on kinodynamic planning

	Dynamically-changing environments
	Basic replanning algorithms
	Planning amongst moving obstacles with roadmaps

	Online replanning for robots with kinodynamic constraints
	Safety

	Conclusion
	Acknowledgments
	References

