<#70686#>;; <#60589#><#2077#>is-5?<#2077#> <#2078#>:<#2078#> <#2079#>number<#2079#> <#2080#><#2080#><#2081#>-;SPMgt;<#2081#><#2082#><#2082#> <#2083#>boolean<#2083#><#60589#><#70686#> <#70687#>;; to determine whether <#60590#><#2084#>n<#2084#><#60590#> is equal to <#60591#><#2085#>5<#2085#><#60591#><#70687#> <#2086#>(d<#2086#><#2087#>efine<#2087#> <#2088#>(is-5?<#2088#> <#2089#>n)<#2089#> <#2090#>(=<#2090#> <#2091#>n<#2091#> <#2092#>5))<#2092#>The function produces <#60592#><#2096#>true<#2096#><#60592#> if, and only if, its input is equal to <#60593#><#2097#>5<#2097#><#60593#>. Its contract contains one novel element: the word <#60594#><#2098#>boolean<#2098#><#60594#>. Just like <#60595#><#2099#>number<#2099#><#60595#>, <#60596#><#2100#>boolean<#2100#><#60596#> represents a class of values that is built into Scheme. Unlike <#60597#><#2101#>number<#2101#><#60597#>, <#60598#><#2102#>boolean<#2102#><#60598#> consists of just two values: <#60599#><#2103#>true<#2103#><#60599#> and <#60600#><#2104#>false<#2104#><#60600#>. Here is a slightly more interesting function with a Boolean output:
<#70688#>;; <#60601#><#2109#>is-between-5-6?<#2109#> <#2110#>:<#2110#> <#2111#>number<#2111#> <#2112#><#2112#><#2113#>-;SPMgt;<#2113#><#2114#><#2114#> <#2115#>boolean<#2115#><#60601#><#70688#> <#70689#>;; to determine whether <#60602#><#2116#>n<#2116#><#60602#> is between 5 and 6 (exclusive)<#70689#> <#2117#>(d<#2117#><#2118#>efine<#2118#> <#2119#>(is-between-5-6?<#2119#> <#2120#>n)<#2120#> <#2121#>(and<#2121#> <#2122#>(;SPMlt;<#2122#> <#2123#>5<#2123#> <#2124#>n)<#2124#> <#2125#>(;SPMlt;<#2125#> <#2126#>n<#2126#> <#2127#>6)))<#2127#>It consumes a number and produces <#60603#><#2131#>true<#2131#><#60603#> if the number is between, but does not include, <#60604#><#2132#>5<#2132#><#60604#> and <#60605#><#2133#>6<#2133#><#60605#>. One good way to understand the function is to say that it describes the following interval on the number line:
<#72378#>
<#2147#>Boundaries<#2147#>:\ An interval boundary marked with ``('' or ``)'' is excluded from the interval; an interval boundary marked with ``['' or ``]'' is included.~<#60614#><#60614#>
The following third function from numbers to Boolean values represents the most complicated form of interval:
<#70692#>;; <#60615#><#2154#>is-between-5-6-or-over-10?<#2154#> <#2155#>:<#2155#> <#2156#>number<#2156#> <#2157#><#2157#><#2158#>-;SPMgt;<#2158#><#2159#><#2159#> <#2160#>boolean<#2160#><#60615#><#70692#> <#70693#>;; to determine whether <#60616#><#2161#>n<#2161#><#60616#> is between 5 and 6 (exclusive) <#70693#> <#70694#>;; or larger than or equal to <#60617#><#2162#>10<#2162#><#60617#><#70694#> <#2163#>(d<#2163#><#2164#>efine<#2164#> <#2165#>(is-between-5-6-or-over-10?<#2165#> <#2166#>n)<#2166#> <#2167#>(or<#2167#> <#2168#>(is-between-5-6?<#2168#> <#2169#>n)<#2169#> <#2170#>(;SPMgt;=<#2170#> <#2171#>n<#2171#> <#2172#>10)))<#2172#>The function returns <#60618#><#2176#>true<#2176#><#60618#> for two portions of the number line:
<#72379#>
<#2199#>Exercise 4.2.1<#2199#>
<#72380#>
<#72381#>
<#72382#>
<#72383#>
<#72384#>
<#2290#>1.<#2290#> <#2291#>(defin<#2291#><#2292#>e<#2292#> <#2293#>(in-interval-1?<#2293#> <#2294#>x)<#2294#> <#2295#>(and<#2295#> <#2296#>(;SPMlt;<#2296#> <#2297#>-3<#2297#> <#2298#>x)<#2298#> <#2299#>(;SPMlt;<#2299#> <#2300#>x<#2300#> <#2301#>0)))<#2301#> <#2302#>2.<#2302#> <#2303#>(defin<#2303#><#2304#>e<#2304#> <#2305#>(in-interval-2?<#2305#> <#2306#>x)<#2306#> <#2307#>(or<#2307#> <#2308#>(;SPMlt;<#2308#> <#2309#>x<#2309#> <#2310#>1)<#2310#> <#2311#>(;SPMgt;<#2311#> <#2312#>x<#2312#> <#2313#>2)))<#2313#> <#2314#>3.<#2314#> <#2315#>(defin<#2315#><#2316#>e<#2316#> <#2317#>(in-interval-3?<#2317#> <#2318#>x)<#2318#> <#2319#>(not<#2319#> <#2320#>(and<#2320#> <#2321#>(;SPMlt;=<#2321#> <#2322#>1<#2322#> <#2323#>x)<#2323#> <#2324#>(;SPMlt;=<#2324#> <#2325#>x<#2325#> <#2326#>5))))<#2326#>Also formulate contracts and purpose statements for the four functions. Evaluate the following expressions by hand:
is a claim concerning some unknown number x. For x = -1 the claim holds:
For x = 1, it doesn't because
and 4 is <#2345#>not<#2345#> equal to 0. A number for which the claim holds is called a <#2346#>solution<#2346#> to the equation. We can use Scheme to formulate equational conditions as a function. If someone then claims to have a solution, we can use the function to test whether the proposed solution is, in fact, a solution. Our running example corresponds to the function
<#70710#>;; <#60684#><#2351#>equation1<#2351#> <#2352#>:<#2352#> <#2353#>number<#2353#> <#2354#><#2354#><#2355#>-;SPMgt;<#2355#><#2356#><#2356#> <#2357#>boolean<#2357#><#60684#><#70710#> <#70711#>;; to determine whether <#60685#><#2358#>x<#2358#><#60685#> is a solution forWhen we apply <#60686#><#2377#>equation1<#2377#><#60686#> to some number, we get <#60687#><#2378#>true<#2378#><#60687#> or <#60688#><#2379#>false<#2379#><#60688#>:#tex2html_wrap_inline72646#<#70711#> <#2359#>(d<#2359#><#2360#>efine<#2360#> <#2361#>(equation1<#2361#> <#2362#>x)<#2362#> <#2363#>(=<#2363#> <#2364#>(+<#2364#> <#2365#>(*<#2365#> <#2366#>x<#2366#> <#2367#>x)<#2367#> <#2368#>(+<#2368#> <#2369#>(*<#2369#> <#2370#>2<#2370#> <#2371#>x)<#2371#> <#2372#>1))<#2372#> <#2373#>0))<#2373#>
<#2384#>(equation1<#2384#> <#2385#>-1)<#2385#> <#2386#>=<#2386#> <#2387#>true<#2387#>and
<#2395#>(equation1<#2395#> <#2396#>+1)<#2396#> <#2397#>=<#2397#> <#2398#>false<#2398#>Translate the following equations into Scheme functions:
<#2424#>(<#2424#><#70713#><#2425#>Fahrenheit<#2425#><#60694#><#2426#><#2426#><#2427#>-;SPMgt;<#2427#><#2428#><#2428#><#60694#><#2429#>Celsius<#2429#><#70713#> <#2430#>32)<#2430#> <#2431#>=<#2431#> <#2432#>0<#2432#>and
<#2440#>(<#2440#><#70714#><#2441#>Fahrenheit<#2441#><#60695#><#2442#><#2442#><#2443#>-;SPMgt;<#2443#><#2444#><#2444#><#60695#><#2445#>Celsius<#2445#><#70714#> <#2446#>212)<#2446#> <#2447#>=<#2447#> <#2448#>100<#2448#>After clicking the <#2452#>Execute<#2452#> button we can compare the numbers to the left and right of <#60696#><#2453#>=<#2453#><#60696#>. If they are equal, we know our function works. As our results become more and more complex, comparing values becomes more and more tedious. Using <#60697#><#2454#>=<#2454#><#60697#>, we can instead translate these equations into claims:
<#2459#>(=<#2459#> <#2460#>(<#2460#><#70715#><#2461#>Fahrenheit<#2461#><#60698#><#2462#><#2462#><#2463#>-;SPMgt;<#2463#><#2464#><#2464#><#60698#><#2465#>Celsius<#2465#><#70715#> <#2466#>32)<#2466#> <#2467#>0)<#2467#>and
<#2475#>(=<#2475#> <#2476#>(<#2476#><#70716#><#2477#>Fahrenheit<#2477#><#60699#><#2478#><#2478#><#2479#>-;SPMgt;<#2479#><#2480#><#2480#><#60699#><#2481#>Celsius<#2481#><#70716#> <#2482#>212)<#2482#> <#2483#>100)<#2483#>Now, if all claims evaluate to <#60700#><#2487#>true<#2487#><#60700#>, we know that our function works for the specified examples. If we see a <#60701#><#2488#>false<#2488#><#60701#> anywhere, something is still wrong. Reformulate the test cases for exercises~#exf2c#2489>
<#2493#>Testing<#2493#>:\ Writing tests as claims is good practice, though we need
to know more about equality to develop good automatic tests. To do so, we
resume the discussion of equality and testing in
section~#secequaltest#2494> Solution<#60702#><#60702#>