Transforming Functions into Accumulator-Style

The most complex part of the design recipe is the requirement to formulate an accumulator invariant. Without that we cannot produce functioning accumulator-style functions. Because formulating invariants is clearly an art that deserves a lot of practice, we practice it in this section with three small, well-understood structural functions that do not need an accumulator. The section concludes with a group of exercises concerning this step. For the first example, consider the function <#67552#><#40897#>sum<#40897#><#67552#>:
<#71628#>;; <#67553#><#40902#>sum<#40902#> <#40903#>:<#40903#> <#40904#>(listof<#40904#> <#40905#>number)<#40905#> <#40906#><#40906#><#40907#>-;SPMgt;<#40907#><#40908#><#40908#> <#40909#>number<#40909#><#67553#><#71628#>
<#71629#>;; to compute the sum of the numbers on <#67554#><#40910#>alon<#40910#><#67554#><#71629#> 
<#40911#>;; structural recursion <#40911#> 
<#40912#>(d<#40912#><#40913#>efine<#40913#> <#40914#>(sum<#40914#> <#40915#>alon)<#40915#> 
  <#40916#>(c<#40916#><#40917#>ond<#40917#> 
    <#40918#>[<#40918#><#40919#>(empty?<#40919#> <#40920#>alon)<#40920#> <#40921#>0]<#40921#> 
    <#40922#>[<#40922#><#40923#>else<#40923#> <#40924#>(+<#40924#> <#40925#>(first<#40925#> <#40926#>alon)<#40926#> <#40927#>(sum<#40927#> <#40928#>(rest<#40928#> <#40929#>alon)))]<#40929#><#40930#>))<#40930#> 
Here is the first step toward an accumulator version:
<#71630#>;; <#67555#><#40938#>sum<#40938#> <#40939#>:<#40939#> <#40940#>(listof<#40940#> <#40941#>number)<#40941#> <#40942#><#40942#><#40943#>-;SPMgt;<#40943#><#40944#><#40944#> <#40945#>number<#40945#><#67555#><#71630#>
<#71631#>;; to compute the sum of the numbers on <#67556#><#40946#>alon0<#40946#><#67556#><#71631#> 
<#40947#>(d<#40947#><#40948#>efine<#40948#> <#40949#>(sum<#40949#> <#40950#>alon0)<#40950#> 
  <#40951#>(l<#40951#><#40952#>ocal<#40952#> <#40953#>(<#40953#><#71632#>;; <#67557#><#40954#>accumulator<#40954#><#67557#> ...<#71632#> 
          <#40955#>(d<#40955#><#40956#>efine<#40956#> <#40957#>(sum-a<#40957#> <#40958#>alon<#40958#> <#40959#>accumulator)<#40959#> 
            <#40960#>(c<#40960#><#40961#>ond<#40961#> 
              <#40962#>[<#40962#><#40963#>(empty?<#40963#> <#40964#>alon)<#40964#> <#40965#>...]<#40965#> 
              <#40966#>[<#40966#><#40967#>e<#40967#><#40968#>lse<#40968#> 
                <#40969#>...<#40969#> <#40970#>(sum-a<#40970#> <#40971#>(rest<#40971#> <#40972#>alon)<#40972#> #tex2html_wrap74008#<#40976#>)<#40976#> 
                <#40977#>...<#40977#> <#40978#>]<#40978#><#40979#>)))<#40979#> 
    <#40980#>(sum-a<#40980#> <#40981#>alon0<#40981#> <#40982#>...)))<#40982#> 
As suggested by our first step, we have put the template for <#67559#><#40986#>sum-a<#40986#><#67559#> into a <#67560#><#40987#>local<#40987#><#67560#> definition, added an accumulator parameter, and renamed <#67561#><#40988#>sum<#40988#><#67561#>'s parameter. Our goal is to develop an accumulator invariant for <#67562#><#40989#>sum<#40989#><#67562#>. To do so, we must consider how <#67563#><#40990#>sum<#40990#><#67563#> proceeds and what the goal of the process is. Like <#67564#><#40991#>rev<#40991#><#67564#>, <#67565#><#40992#>sum-a<#40992#><#67565#> processes the numbers on the list one by one. The goal is to add up these numbers. This suggests that <#67566#><#40993#>accumulator<#40993#><#67566#> represent the sum of the numbers <#40994#>seen so far<#40994#>:
<#40999#>..<#40999#><#41000#>.<#41000#>
  <#41001#>(l<#41001#><#41002#>ocal<#41002#> <#41003#>(<#41003#><#71633#>;; <#67567#><#41004#>accumulator<#41004#><#67567#> is the sum of the numbers that preceded<#71633#> 
          <#71634#>;; those in <#67568#><#41005#>alon<#41005#><#67568#> on <#67569#><#41006#>alon0<#41006#><#67569#><#71634#> 
          <#41007#>(d<#41007#><#41008#>efine<#41008#> <#41009#>(sum-a<#41009#> <#41010#>alon<#41010#> <#41011#>accumulator)<#41011#> 
            <#41012#>(c<#41012#><#41013#>ond<#41013#> 
              <#41014#>[<#41014#><#41015#>(empty?<#41015#> <#41016#>alon)<#41016#> <#41017#>...]<#41017#> 
              <#41018#>[<#41018#><#41019#>e<#41019#><#41020#>lse<#41020#> 
                <#41021#>...<#41021#> <#41022#>(sum-a<#41022#> <#41023#>(rest<#41023#> <#41024#>alon)<#41024#> <#41025#>(+<#41025#> <#41026#>(first<#41026#> <#41027#>alon)<#41027#> <#41028#>accumulator))<#41028#> 
                <#41029#>...<#41029#> <#41030#>]<#41030#><#41031#>)))<#41031#> 
    <#41032#>(sum-a<#41032#> <#41033#>alon0<#41033#> <#41034#>0)))<#41034#> 
When we apply <#67570#><#41038#>sum-a<#41038#><#67570#> we must use <#67571#><#41039#>0<#41039#><#67571#> as the value of <#67572#><#41040#>accumulator<#41040#><#67572#>, because it hasn't processed any of the numbers on <#67573#><#41041#>alon<#41041#><#67573#> yet. For the second clause, we must add <#67574#><#41042#>(first<#41042#>\ <#41043#>alon)<#41043#><#67574#> to <#67575#><#41044#>accumulator<#41044#><#67575#> so that the invariant holds again for the function application. Given a precise invariant, the rest is straightforward again. If <#67576#><#41045#>alon<#41045#><#67576#> is <#67577#><#41046#>empty<#41046#><#67577#>, <#67578#><#41047#>sum-a<#41047#><#67578#> returns <#67579#><#41048#>accumulator<#41048#><#67579#> because it represents the sum of all numbers on <#67580#><#41049#>alon<#41049#><#67580#> now. Figure~#figaccumulatorstyle#41050> contains the final definition of the accumulator-style version of <#67581#><#41051#>sum<#41051#><#67581#>.
<#71635#>;; <#67582#><#41056#>sum<#41056#> <#41057#>:<#41057#> <#41058#>(listof<#41058#> <#41059#>number)<#41059#> <#41060#><#41060#><#41061#>-;SPMgt;<#41061#><#41062#><#41062#> <#41063#>number<#41063#><#67582#><#71635#>
<#71636#>;; to compute the sum of the numbers on <#67583#><#41064#>alon0<#41064#><#67583#><#71636#> 
<#41065#>(d<#41065#><#41066#>efine<#41066#> <#41067#>(sum<#41067#> <#41068#>alon0)<#41068#> 
  <#41069#>(l<#41069#><#41070#>ocal<#41070#> <#41071#>(<#41071#><#71637#>;; <#67584#><#41072#>accumulator<#41072#><#67584#> is the sum of the numbers that preceded<#71637#> 
          <#71638#>;; those in <#67585#><#41073#>alon<#41073#><#67585#> on <#67586#><#41074#>alon0<#41074#><#67586#><#71638#> 
          <#41075#>(d<#41075#><#41076#>efine<#41076#> <#41077#>(sum-a<#41077#> <#41078#>alon<#41078#> <#41079#>accumulator)<#41079#> 
            <#41080#>(c<#41080#><#41081#>ond<#41081#> 
              <#41082#>[<#41082#><#41083#>(empty?<#41083#> <#41084#>alon)<#41084#> <#41085#>accumulator]<#41085#> 
              <#41086#>[<#41086#><#41087#>else<#41087#> <#41088#>(sum-a<#41088#> <#41089#>(rest<#41089#> <#41090#>alon)<#41090#> <#41091#>(+<#41091#> <#41092#>(first<#41092#> <#41093#>alon)<#41093#> <#41094#>accumulator))]<#41094#><#41095#>)))<#41095#> 
    <#41096#>(sum-a<#41096#> <#41097#>alon0<#41097#> <#41098#>0)))<#41098#> 
<#71639#>;; <#67587#><#41106#>!<#41106#> <#41107#>:<#41107#> <#41108#>N<#41108#> <#41109#><#41109#><#41110#>-;SPMgt;<#41110#><#41111#><#41111#> <#41112#>N<#41112#><#67587#><#71639#>
<#41113#>;; to compute #tex2html_wrap_inline73972#<#41113#> 
<#41114#>(d<#41114#><#41115#>efine<#41115#> <#41116#>(!<#41116#> <#41117#>n0)<#41117#> 
  <#41118#>(l<#41118#><#41119#>ocal<#41119#> <#41120#>(<#41120#><#71640#>;; <#67588#><#41121#>accumulator<#41121#><#67588#> is the product of all natural numbers in [<#67589#><#41122#>n0<#41122#><#67589#>, <#67590#><#41123#>n<#41123#><#67590#>)<#71640#> 
          <#41124#>(d<#41124#><#41125#>efine<#41125#> <#41126#>(!-a<#41126#> <#41127#>n<#41127#> <#41128#>accumulator)<#41128#> 
            <#41129#>(c<#41129#><#41130#>ond<#41130#> 
              <#41131#>[<#41131#><#41132#>(zero?<#41132#> <#41133#>n)<#41133#> <#41134#>accumulator]<#41134#> 
              <#41135#>[<#41135#><#41136#>else<#41136#> <#41137#>(!-a<#41137#> <#41138#>(sub1<#41138#> <#41139#>n)<#41139#> <#41140#>(*<#41140#> <#41141#>n<#41141#> <#41142#>accumulator))]<#41142#><#41143#>)))<#41143#> 
    <#41144#>(!-a<#41144#> <#41145#>n0<#41145#> <#41146#>1)))<#41146#> 
<#41150#>Figure: Some simple accumulator-style functions<#41150#>
Let's compare how the original definition of <#67591#><#41152#>sum<#41152#><#67591#> and the accumulator-style definition produce an answer for the same input:
  <#41157#>(sum<#41157#> <#41158#>(list<#41158#> <#41159#>10.23<#41159#> <#41160#>4.50<#41160#> <#41161#>5.27))<#41161#>
<#41162#>=<#41162#> <#41163#>(+<#41163#> <#41164#>10.23<#41164#> <#41165#>(sum<#41165#> <#41166#>(list<#41166#> <#41167#>4.50<#41167#> <#41168#>5.27)))<#41168#> 
<#41169#>=<#41169#> <#41170#>(+<#41170#> <#41171#>10.23<#41171#> <#41172#>(+<#41172#> <#41173#>4.50<#41173#> <#41174#>(sum<#41174#> <#41175#>(list<#41175#> <#41176#>5.27))))<#41176#> 
<#41177#>=<#41177#> <#41178#>(+<#41178#> <#41179#>10.23<#41179#> <#41180#>(+<#41180#> <#41181#>4.50<#41181#> <#41182#>(+<#41182#> <#41183#>5.27<#41183#> <#41184#>(sum<#41184#> <#41185#>empty))))<#41185#> 
<#41186#>=<#41186#> <#41187#>(+<#41187#> <#41188#>10.23<#41188#> <#41189#>(+<#41189#> <#41190#>4.50<#41190#> <#41191#>(+<#41191#> <#41192#>5.27<#41192#> <#41193#>0)))<#41193#> 
<#41194#>=<#41194#> <#41195#>(+<#41195#> <#41196#>10.23<#41196#> <#41197#>(+<#41197#> <#41198#>4.50<#41198#> <#41199#>5.27))<#41199#> 
<#41200#>=<#41200#> <#41201#>(+<#41201#> <#41202#>10.23<#41202#> <#41203#>9.77)<#41203#> 
<#41204#>=<#41204#> <#41205#>20.0<#41205#> 
  <#41211#>(sum<#41211#> <#41212#>(list<#41212#> <#41213#>10.23<#41213#> <#41214#>4.50<#41214#> <#41215#>5.27))<#41215#>
<#41216#>=<#41216#> <#41217#>(sum-a<#41217#> <#41218#>(list<#41218#> <#41219#>10.23<#41219#> <#41220#>4.50<#41220#> <#41221#>5.27)<#41221#> <#41222#>0)<#41222#> 
<#41223#>=<#41223#> <#41224#>(sum-a<#41224#> <#41225#>(list<#41225#> <#41226#>4.50<#41226#> <#41227#>5.27)<#41227#> <#41228#>10.23)<#41228#> 
<#41229#>=<#41229#> <#41230#>(sum-a<#41230#> <#41231#>(list<#41231#> <#41232#>5.27)<#41232#> <#41233#>14.73)<#41233#> 
<#41234#>=<#41234#> <#41235#>(sum-a<#41235#> <#41236#>empty<#41236#> <#41237#>20.0)<#41237#> 
<#41238#>=<#41238#> <#41239#>20.0<#41239#> 


On the left side, we see how the plain recursive function descends the list of numbers all the way to the end and sets up addition operations on the way. On the right side, we see how the accumulator-style version adds up the numbers as it goes. Furthermore, we see that for each application of <#67592#><#41243#>sum-a<#41243#><#67592#> the invariant holds with respect to the application of <#67593#><#41244#>sum<#41244#><#67593#>. When <#67594#><#41245#>sum-a<#41245#><#67594#> is finally applied to <#67595#><#41246#>empty<#41246#><#67595#>, the accumulator is the final result, and <#67596#><#41247#>sum-a<#41247#><#67596#> returns it.
<#41250#>Exercise 31.3.1<#41250#> A second difference between the two functions concerns the order of addition. While the original version of <#67597#><#41252#>sum<#41252#><#67597#> adds up the numbers from left to right, the accumulator-style version adds them up from right to left. For exact numbers, this difference has no effect on the final result. For inexact numbers, the difference is significant. Consider the following definition:
<#41257#>(d<#41257#><#41258#>efine<#41258#> <#41259#>(g-series<#41259#> <#41260#>n)<#41260#>
  <#41261#>(c<#41261#><#41262#>ond<#41262#> 
    <#41263#>[<#41263#><#41264#>(zero?<#41264#> <#41265#>n)<#41265#> <#41266#>empty]<#41266#> 
    <#41267#>[<#41267#><#41268#>else<#41268#> <#41269#>(cons<#41269#> <#41270#>(expt<#41270#> <#41271#>-0.99<#41271#> <#41272#>n)<#41272#> <#41273#>(g-series<#41273#> <#41274#>(sub1<#41274#> <#41275#>n)))]<#41275#><#41276#>))<#41276#> 
Applying <#67598#><#41280#>g-series<#41280#><#67598#> to a natural number produces the beginning of a decreasing geometric series (see section~#secseqsfunc#41281>). Depending on which function we use to sum up the items of this list, we get vastly different results. Evaluate the expression
<#41286#>(sum<#41286#> <#41287#>(g-series<#41287#> <#41288#>1000))<#41288#>
with both the original version of <#67599#><#41292#>sum<#41292#><#67599#> as well as its accumulator-style version. Then evaluate
<#41297#>(*<#41297#> <#41298#>10e15<#41298#> <#41299#>(sum<#41299#> <#41300#>(g-series<#41300#> <#41301#>1000)))<#41301#>
which proves that, depending on the context, the difference can be arbitrarily large.~ external Solution<#67600#><#67600#>
For the second example, we return to the factorial function from part~#partstructural#41312>:
<#71641#>;; <#67601#><#41317#>!<#41317#> <#41318#>:<#41318#> <#41319#>N<#41319#> <#41320#><#41320#><#41321#>-;SPMgt;<#41321#><#41322#><#41322#> <#41323#>N<#41323#><#67601#><#71641#>
<#41324#>;; to compute #tex2html_wrap_inline73974#<#41324#> 
<#41325#>;; structural recursion <#41325#> 
<#41326#>(d<#41326#><#41327#>efine<#41327#> <#41328#>(!<#41328#> <#41329#>n)<#41329#> 
  <#41330#>(c<#41330#><#41331#>ond<#41331#> 
    <#41332#>[<#41332#><#41333#>(zero?<#41333#> <#41334#>n)<#41334#> <#41335#>1]<#41335#> 
    <#41336#>[<#41336#><#41337#>else<#41337#> <#41338#>(*<#41338#> <#41339#>n<#41339#> <#41340#>(!<#41340#> <#41341#>(sub1<#41341#> <#41342#>n)))]<#41342#><#41343#>))<#41343#> 
While <#67602#><#41347#>relative-2-absolute<#41347#><#67602#> and <#67603#><#41348#>reverse<#41348#><#67603#> processed lists, the factorial function works on natural numbers. Its template is that for <#67604#><#41349#>N<#41349#><#67604#>-processing functions. We proceed as before by creating a <#67605#><#41350#>local<#41350#><#67605#> definition of <#67606#><#41351#>!<#41351#><#67606#>:
<#71642#>;; <#67607#><#41356#>!<#41356#> <#41357#>:<#41357#> <#41358#>N<#41358#> <#41359#><#41359#><#41360#>-;SPMgt;<#41360#><#41361#><#41361#> <#41362#>N<#41362#><#67607#><#71642#>
<#41363#>;; to compute #tex2html_wrap_inline73976#<#41363#> 
<#41364#>(d<#41364#><#41365#>efine<#41365#> <#41366#>(!<#41366#> <#41367#>n0)<#41367#> 
  <#41368#>(l<#41368#><#41369#>ocal<#41369#> <#41370#>(<#41370#><#71643#>;; <#67608#><#41371#>accumulator<#41371#><#67608#> ...<#71643#> 
          <#41372#>(d<#41372#><#41373#>efine<#41373#> <#41374#>(!-a<#41374#> <#41375#>n<#41375#> <#41376#>accumulator)<#41376#> 
            <#41377#>(c<#41377#><#41378#>ond<#41378#> 
              <#41379#>[<#41379#><#41380#>(zero?<#41380#> <#41381#>n)<#41381#> <#41382#>...]<#41382#> 
              <#41383#>[<#41383#><#41384#>e<#41384#><#41385#>lse<#41385#> 
                <#41386#>...<#41386#> <#41387#>(!-a<#41387#> <#41388#>(sub1<#41388#> <#41389#>n)<#41389#> #tex2html_wrap74010#<#41391#>)<#41391#> <#41392#>...]<#41392#><#41393#>)))<#41393#> 
    <#41394#>(!-a<#41394#> <#41395#>n0<#41395#> <#41396#>...)))<#41396#> 
This sketch suggests that if <#67610#><#41400#>!<#41400#><#67610#> is applied to the natural number n, <#67611#><#41401#>!-a<#41401#><#67611#> processes n, then n-1, n-2, and so on until it reaches <#67612#><#41402#>0<#41402#><#67612#>. Since the goal is to multiply these numbers, the accumulator should be the product of all those numbers that <#67613#><#41403#>!-a<#41403#><#67613#> has encountered:
<#41408#>..<#41408#><#41409#>.<#41409#>
  <#41410#>(l<#41410#><#41411#>ocal<#41411#> <#41412#>(<#41412#><#71644#>;; <#67614#><#41413#>accumulator<#41413#><#67614#> is the product of all natural numbers between<#71644#> 
          <#71645#>;; <#67615#><#41414#>n0<#41414#><#67615#> (inclusive) and <#67616#><#41415#>n<#41415#><#67616#> (exclusive)<#71645#> 
          <#41416#>(d<#41416#><#41417#>efine<#41417#> <#41418#>(!-a<#41418#> <#41419#>n<#41419#> <#41420#>accumulator)<#41420#> 
            <#41421#>(c<#41421#><#41422#>ond<#41422#> 
              <#41423#>[<#41423#><#41424#>(zero?<#41424#> <#41425#>n)<#41425#> <#41426#>...]<#41426#> 
              <#41427#>[<#41427#><#41428#>e<#41428#><#41429#>lse<#41429#> 
                <#41430#>...<#41430#> <#41431#>(!-a<#41431#> <#41432#>(sub1<#41432#> <#41433#>n)<#41433#> <#41434#>(*<#41434#> <#41435#>n<#41435#> <#41436#>accumulator))<#41436#> <#41437#>...]<#41437#><#41438#>)))<#41438#> 
    <#41439#>(!-a<#41439#> <#41440#>n0<#41440#> <#41441#>1)))<#41441#> 
To make the invariant true at the beginning, we must use <#67617#><#41445#>1<#41445#><#67617#> for the accumulator. When <#67618#><#41446#>!-a<#41446#><#67618#> recurs, we must multiply the current value of the accumulator with <#67619#><#41447#>n<#41447#><#67619#> to re-establish the invariant. From the purpose statement for the accumulator of <#67620#><#41448#>!-a<#41448#><#67620#>, we can see that if <#67621#><#41449#>n<#41449#><#67621#> is <#67622#><#41450#>0<#41450#><#67622#>, the accumulator is the product of <#67623#><#41451#>n<#41451#><#67623#>, ..., <#67624#><#41452#>1<#41452#><#67624#>. That is, it is the desired result. So, like <#67625#><#41453#>sum<#41453#><#67625#>, <#67626#><#41454#>!-a<#41454#><#67626#> returns <#67627#><#41455#>accumulator<#41455#><#67627#> in the first case and simply recurs in the second one. Figure~#figaccumulatorstyle#41456> contains the complete definition. It is instructive to compare hand-evaluations for the two versions of <#67628#><#41457#>!<#41457#><#67628#>:
  <#41462#>(!<#41462#> <#41463#>3)<#41463#>
<#41464#>=<#41464#> <#41465#>(*<#41465#> <#41466#>3<#41466#> <#41467#>(!<#41467#> <#41468#>2))<#41468#> 
<#41469#>=<#41469#> <#41470#>(*<#41470#> <#41471#>3<#41471#> <#41472#>(*<#41472#> <#41473#>2<#41473#> <#41474#>(!<#41474#> <#41475#>1)))<#41475#> 
<#41476#>=<#41476#> <#41477#>(*<#41477#> <#41478#>3<#41478#> <#41479#>(*<#41479#> <#41480#>2<#41480#> <#41481#>(*<#41481#> <#41482#>1<#41482#> <#41483#>(!<#41483#> <#41484#>0))))<#41484#> 
<#41485#>=<#41485#> <#41486#>(*<#41486#> <#41487#>3<#41487#> <#41488#>(*<#41488#> <#41489#>2<#41489#> <#41490#>(*<#41490#> <#41491#>1<#41491#> <#41492#>1)))<#41492#> 
<#41493#>=<#41493#> <#41494#>(*<#41494#> <#41495#>3<#41495#> <#41496#>(*<#41496#> <#41497#>2<#41497#> <#41498#>1))<#41498#> 
<#41499#>=<#41499#> <#41500#>(*<#41500#> <#41501#>3<#41501#> <#41502#>2)<#41502#> 
<#41503#>=<#41503#> <#41504#>6<#41504#> 
  <#41510#>(!<#41510#> <#41511#>3)<#41511#>
<#41512#>=<#41512#> <#41513#>(!-a<#41513#> <#41514#>3<#41514#> <#41515#>1)<#41515#> 
<#41516#>=<#41516#> <#41517#>(!-a<#41517#> <#41518#>2<#41518#> <#41519#>3)<#41519#> 
<#41520#>=<#41520#> <#41521#>(!-a<#41521#> <#41522#>1<#41522#> <#41523#>6)<#41523#> 
<#41524#>=<#41524#> <#41525#>(!-a<#41525#> <#41526#>0<#41526#> <#41527#>6)<#41527#> 
<#41528#>=<#41528#> <#41529#>6<#41529#> 


The left column shows how the original version works, the right one how the accumulator-style function proceeds. Both traverse the natural number until they reach <#67629#><#41533#>0<#41533#><#67629#>, but while the original version only schedules multiplications, the new one multiplies the numbers as they are processed. In addition, the right column illustrates how the new factorial function maintains the accumulator invariant. For each application, the accumulator is the product of <#67630#><#41534#>3<#41534#><#67630#> to <#67631#><#41535#>n<#41535#><#67631#> where <#67632#><#41536#>n<#41536#><#67632#> is the first argument to <#67633#><#41537#>!-a<#41537#><#67633#>.
<#41540#>Exercise 31.3.2<#41540#> Like <#67634#><#41542#>sum<#41542#><#67634#>, <#67635#><#41543#>!<#41543#><#67635#> performs the primitive computation steps (multiplication) in reverse order. Surprisingly, this affects the performance of the function in a negative manner. Use DrScheme's <#67636#><#41544#>time<#41544#><#67636#>-facility to determine how long the two variants need to evaluate <#67637#><#41545#>(!<#41545#>\ <#41546#>20)<#41546#><#67637#> 1000 times. <#41547#>Hint:<#41547#> \ (1) Develop the function
<#71646#>;; <#67638#><#41552#>many<#41552#> <#41553#>:<#41553#> <#41554#>N<#41554#> <#41555#>(<#41555#><#41556#>N<#41556#> <#41557#><#41557#><#41558#>-;SPMgt;<#41558#><#41559#><#41559#> <#41560#>N<#41560#><#41561#>)<#41561#> <#41562#><#41562#><#41563#>-;SPMgt;<#41563#><#41564#><#41564#> <#41565#>true<#41565#><#67638#><#71646#>
<#71647#>;; to evaluate <#67639#><#41566#>(f<#41566#> <#41567#>20)<#41567#><#67639#> <#67640#><#41568#>n<#41568#><#67640#> times <#71647#> 
<#41569#>(define<#41569#> <#41570#>(many<#41570#> <#41571#>n<#41571#> <#41572#>f)<#41572#> <#41573#>...)<#41573#> 
(2) Evaluating <#67641#><#41577#>(time<#41577#>\ <#41578#>an-expression)<#41578#><#67641#> determines how much time the evaluation of <#67642#><#41579#>an-expression<#41579#><#67642#> takes. external Solution<#67643#><#67643#>
For the last example, we study a function on simplified binary trees. The example illustrates that accumulator-style programming is not just for data definitions with a single self-reference. Indeed, it is as common for complicated data definitions as it is for lists and natural numbers. Here is the structure definition for a stripped-down version of binary trees:
<#41591#>(define-struct<#41591#> <#41592#>node<#41592#> <#41593#>(left<#41593#> <#41594#>right))<#41594#>
and its corresponding data definition:
A <#67644#><#41599#>binary tree<#41599#><#67644#> (short: tree) is either
  1. <#67645#><#41601#>empty<#41601#><#67645#>
  2. <#67646#><#41602#>(make-node<#41602#>\ <#41603#>tl<#41603#>\ <#41604#>tr)<#41604#><#67646#> where <#67647#><#41605#>tl<#41605#><#67647#>, <#67648#><#41606#>tr<#41606#><#67648#> are <#67649#><#41607#>trees<#41607#><#67649#>.
These trees contain no information, and all of them end in <#67650#><#41610#>empty<#41610#><#67650#>. Still, there are many different trees as figure~#figsimbtex#41611> shows. The table indicates how to think of each tree as a graphical element, that is, of <#67651#><#41612#>empty<#41612#><#67651#> as a plain dot and <#67652#><#41613#>make-node<#41613#><#67652#> as a dot that combines two trees.

#tabular41617#

<#41657#>Figure: Some stripped-down binary trees<#41657#>


Using the graphical representation of binary trees we can easily determine properties of trees. For example, we can count how many nodes it contains, how many <#67661#><#41659#>empty<#41659#><#67661#>s there are, or how high it is. Let's look at the function <#67662#><#41660#>height<#41660#><#67662#>, which consumes a tree and determines how high it is:
<#71649#>;; <#67663#><#41665#>height<#41665#> <#41666#>:<#41666#> <#41667#>tree<#41667#> <#41668#><#41668#><#41669#>-;SPMgt;<#41669#><#41670#><#41670#> <#41671#>number<#41671#><#67663#><#71649#>
<#71650#>;; to measure the height of <#67664#><#41672#>abt0<#41672#><#67664#><#71650#> 
<#41673#>;; structural recursion <#41673#> 
<#41674#>(d<#41674#><#41675#>efine<#41675#> <#41676#>(height<#41676#> <#41677#>abt)<#41677#> 
  <#41678#>(c<#41678#><#41679#>ond<#41679#> 
    <#41680#>[<#41680#><#41681#>(empty?<#41681#> <#41682#>abt)<#41682#> <#41683#>0]<#41683#> 
    <#41684#>[<#41684#><#41685#>else<#41685#> <#41686#>(+<#41686#> <#41687#>(max<#41687#> <#41688#>(height<#41688#> <#41689#>(node-left<#41689#> <#41690#>abt))<#41690#> 
                  <#41691#>(height<#41691#> <#41692#>(node-right<#41692#> <#41693#>abt)))<#41693#> <#41694#>1)]<#41694#><#41695#>))<#41695#> 
Like the data definition, this function definition has two self-references. To transform this function into an accumulator-style function, we follow the standard path. We begin with putting an appropriate template into a <#67665#><#41699#>local<#41699#><#67665#> definition:
<#71651#>;; <#67666#><#41704#>height<#41704#> <#41705#>:<#41705#> <#41706#>tree<#41706#> <#41707#><#41707#><#41708#>-;SPMgt;<#41708#><#41709#><#41709#> <#41710#>number<#41710#><#67666#><#71651#>
<#71652#>;; to measure the height of <#67667#><#41711#>abt0<#41711#><#67667#><#71652#> 
<#41712#>(d<#41712#><#41713#>efine<#41713#> <#41714#>(height<#41714#> <#41715#>abt0)<#41715#> 
  <#41716#>(l<#41716#><#41717#>ocal<#41717#> <#41718#>(<#41718#><#71653#>;; <#67668#><#41719#>accumulator<#41719#><#67668#> ...<#71653#> 
          <#41720#>(d<#41720#><#41721#>efine<#41721#> <#41722#>(height-a<#41722#> <#41723#>abt<#41723#> <#41724#>accumulator)<#41724#> 
            <#41725#>(c<#41725#><#41726#>ond<#41726#> 
              <#41727#>[<#41727#><#41728#>(empty?<#41728#> <#41729#>abt)<#41729#> <#41730#>...]<#41730#> 
              <#41731#>[<#41731#><#41732#>e<#41732#><#41733#>lse<#41733#> 
                <#41734#>...<#41734#> <#41735#>(height-a<#41735#> <#41736#>(node-left<#41736#> <#41737#>abt)<#41737#> 
                              #tex2html_wrap74014#<#41741#>)<#41741#> <#41742#>...<#41742#> 
                <#41743#>...<#41743#> <#41744#>(height-a<#41744#> <#41745#>(node-right<#41745#> <#41746#>abt)<#41746#> 
                              #tex2html_wrap74016#<#41750#>)<#41750#> <#41751#>...<#41751#> <#41752#>]<#41752#><#41753#>)))<#41753#> 
    <#41754#>(height<#41754#> <#41755#>abt0<#41755#> <#41756#>...)))<#41756#> 
The problem, as always, is to determine what knowledge the accumulator should represent. An obvious choice is that <#67671#><#41760#>accumulator<#41760#><#67671#> should be a number. More specifically, <#67672#><#41761#>accumulator<#41761#><#67672#> should represent the number of <#67673#><#41762#>node<#41762#><#67673#>s that <#67674#><#41763#>height-a<#41763#><#67674#> has processed so far. Initially, it has seen <#67675#><#41764#>0<#41764#><#67675#> nodes; as it descends the tree, it must increase the accumulator as it processes a <#67676#><#41765#>node<#41765#><#67676#>:
<#41770#>..<#41770#><#41771#>.<#41771#>
  <#41772#>(l<#41772#><#41773#>ocal<#41773#> <#41774#>(<#41774#><#71654#>;; <#67677#><#41775#>accumulator<#41775#><#67677#> represents how many nodes <#67678#><#41776#>height-a<#41776#><#67678#> <#71654#> 
          <#71655#>;; has encountered on its way to <#67679#><#41777#>abt<#41777#><#67679#> from <#67680#><#41778#>abt0<#41778#><#67680#><#71655#> 
          <#41779#>(d<#41779#><#41780#>efine<#41780#> <#41781#>(height-a<#41781#> <#41782#>abt<#41782#> <#41783#>accumulator)<#41783#> 
            <#41784#>(c<#41784#><#41785#>ond<#41785#> 
              <#41786#>[<#41786#><#41787#>(empty?<#41787#> <#41788#>abt)<#41788#> <#41789#>...]<#41789#> 
              <#41790#>[<#41790#><#41791#>e<#41791#><#41792#>lse<#41792#> 
                <#41793#>...<#41793#> <#41794#>(height-a<#41794#> <#41795#>(node-left<#41795#> <#41796#>abt)<#41796#>  <#41797#>(+<#41797#> <#41798#>accumulator<#41798#> <#41799#>1))<#41799#> <#41800#>...<#41800#> 
                <#41801#>...<#41801#> <#41802#>(height-a<#41802#> <#41803#>(node-right<#41803#> <#41804#>abt)<#41804#> <#41805#>(+<#41805#> <#41806#>accumulator<#41806#> <#41807#>1))<#41807#> <#41808#>...]<#41808#><#41809#>)))<#41809#> 
    <#41810#>(height<#41810#> <#41811#>abt0<#41811#> <#41812#>0))<#41812#> 
That is, the accumulator invariant is that <#67681#><#41816#>accumulator<#41816#><#67681#> counts how many steps <#67682#><#41817#>height-a<#41817#><#67682#> has taken on a particular path into the tree <#67683#><#41818#>abt<#41818#><#67683#>. The result in the base case is <#67684#><#41819#>accumulator<#41819#><#67684#> again; after all it represents the height or length of the particular path. But, in contrast to the first two examples, it is not the final result. In the second <#67685#><#41820#>cond<#41820#><#67685#>-clause, the new function has two heights to deal with. Given that we are interested in the larger one, we use Scheme's <#67686#><#41821#>max<#41821#><#67686#> operation to select it.
<#71656#>;; <#67687#><#41826#>height<#41826#> <#41827#>:<#41827#> <#41828#>tree<#41828#> <#41829#><#41829#><#41830#>-;SPMgt;<#41830#><#41831#><#41831#> <#41832#>number<#41832#><#67687#><#71656#>
<#71657#>;; to measure the height of <#67688#><#41833#>abt0<#41833#><#67688#><#71657#> 
<#41834#>(d<#41834#><#41835#>efine<#41835#> <#41836#>(height<#41836#> <#41837#>abt0)<#41837#> 
  <#41838#>(l<#41838#><#41839#>ocal<#41839#> <#41840#>(<#41840#><#71658#>;; <#67689#><#41841#>accumulator<#41841#><#67689#> represents how many nodes <#67690#><#41842#>height-a<#41842#><#67690#> <#71658#> 
          <#71659#>;; has encountered on its way to <#67691#><#41843#>abt<#41843#><#67691#> from <#67692#><#41844#>abt0<#41844#><#67692#><#71659#> 
          <#41845#>(d<#41845#><#41846#>efine<#41846#> <#41847#>(height-a<#41847#> <#41848#>abt<#41848#> <#41849#>accumulator)<#41849#> 
            <#41850#>(c<#41850#><#41851#>ond<#41851#> 
              <#41852#>[<#41852#><#41853#>(empty?<#41853#> <#41854#>abt)<#41854#> <#41855#>accumulator]<#41855#> 
              <#41856#>[<#41856#><#41857#>else<#41857#> <#41858#>(max<#41858#> <#41859#>(height-a<#41859#> <#41860#>(node-left<#41860#> <#41861#>abt)<#41861#>  <#41862#>(+<#41862#> <#41863#>accumulator<#41863#> <#41864#>1))<#41864#> 
                         <#41865#>(height-a<#41865#> <#41866#>(node-right<#41866#> <#41867#>abt)<#41867#> <#41868#>(+<#41868#> <#41869#>accumulator<#41869#> <#41870#>1)))]<#41870#><#41871#>)))<#41871#> 
    <#41872#>(height-a<#41872#> <#41873#>abt0<#41873#> <#41874#>0)))<#41874#> 
<#67693#>Figure: The accumulator-style version of <#41878#>height<#41878#><#67693#>
Figure~#figheightaccu#41880> contains the complete definition for <#67694#><#41881#>height<#41881#><#67694#>. Our final step is to check out a hand-evaluation of the new function. We use the most complex example from the above table:
  <#41886#>(height<#41886#> <#41887#>(m<#41887#><#41888#>ake-node<#41888#>
            <#41889#>(make-node<#41889#> <#41890#>empty<#41890#> 
                       <#41891#>(make-node<#41891#> <#41892#>empty<#41892#> <#41893#>empty))<#41893#> 
            <#41894#>empty))<#41894#> 
<#41902#>=<#41902#> <#41903#>(height-a<#41903#> <#41904#>(m<#41904#><#41905#>ake-node<#41905#>
              <#41906#>(make-node<#41906#> <#41907#>empty<#41907#> 
                         <#41908#>(make-node<#41908#> <#41909#>empty<#41909#> <#41910#>empty))<#41910#> 
              <#41911#>empty)<#41911#> 
            <#41912#>0)<#41912#> 
<#41920#>=<#41920#> <#41921#>(max<#41921#> <#41922#>(h<#41922#><#41923#>eight-a<#41923#>
         <#41924#>(make-node<#41924#> <#41925#>empty<#41925#> 
                    <#41926#>(make-node<#41926#> <#41927#>empty<#41927#> <#41928#>empty))<#41928#> 
         <#41929#>1)<#41929#> 
       <#41930#>(height-a<#41930#> <#41931#>empty<#41931#> <#41932#>1))<#41932#> 
<#41940#>=<#41940#> <#41941#>(max<#41941#> <#41942#>(m<#41942#><#41943#>ax<#41943#> 
         <#41944#>(height-a<#41944#> <#41945#>empty<#41945#> <#41946#>2)<#41946#> 
         <#41947#>(height-a<#41947#> <#41948#>(make-node<#41948#> <#41949#>empty<#41949#> <#41950#>empty)<#41950#> <#41951#>2))<#41951#> 
       <#41952#>(height-a<#41952#> <#41953#>empty<#41953#> <#41954#>1))<#41954#> 
<#41962#>=<#41962#> <#41963#>(max<#41963#> <#41964#>(m<#41964#><#41965#>ax<#41965#> 
         <#41966#>(height-a<#41966#> <#41967#>empty<#41967#> <#41968#>2)<#41968#> 
         <#41969#>(max<#41969#> <#41970#>(height-a<#41970#> <#41971#>empty<#41971#> <#41972#>3)<#41972#> <#41973#>(height-a<#41973#> <#41974#>empty<#41974#> <#41975#>3)))<#41975#> 
       <#41976#>(height-a<#41976#> <#41977#>empty<#41977#> <#41978#>1))<#41978#> 
<#41986#>=<#41986#> <#41987#>(max<#41987#> <#41988#>(m<#41988#><#41989#>ax<#41989#> 
         <#41990#>2<#41990#> 
         <#41991#>(max<#41991#> <#41992#>3<#41992#> <#41993#>3))<#41993#> 
       <#41994#>1)<#41994#> 
<#41995#>=<#41995#> <#41996#>3<#41996#> 
It shows how <#67695#><#42000#>height-a<#42000#><#67695#> increments the accumulator at each step and that the accumulator at the top of a path represents the number of lines traversed. The hand-evaluation also shows that the results of the various branches are combined at each branching point.
<#42003#>Exercise 31.3.3<#42003#> Develop an accumulator-style version of <#67696#><#42005#>product<#42005#><#67696#>, the function that computes the product of a list of numbers. Show the stage that explains what the accumulator represents.~ external Solution<#67697#><#67697#> <#42011#>Exercise 31.3.4<#42011#> Develop an accumulator-style version of <#67698#><#42013#>how-many<#42013#><#67698#>, the function that determines the number of items on a list. Show the stage that explains what the accumulator represents.~ external Solution<#67699#><#67699#> <#42019#>Exercise 31.3.5<#42019#> Develop an accumulator-style version of <#67700#><#42021#>add-to-pi<#42021#><#67700#>, the function that adds a natural number to <#67701#><#42022#>pi<#42022#><#67701#> without using <#67702#><#42023#>+<#42023#><#67702#> (see section~#secnatnumnature#42024>). Show the stage that explains what the accumulator represents. Generalize the function so that it adds two numbers, the first one a natural number, without using <#67703#><#42025#>+<#42025#><#67703#>.~ external Solution<#67704#><#67704#> <#42031#>Exercise 31.3.6<#42031#> Develop the function <#67705#><#42033#>make-palindrome<#42033#><#67705#>, which accepts a non-empty list and constructs a palindrome by mirroring the list around the last item. Thus, if we were to represent the word ``abc'' and apply <#67706#><#42034#>make-palindrome<#42034#><#67706#>, we would get back the representation of ``abcba''.~ external Solution<#67707#><#67707#> <#42040#>Exercise 31.3.7<#42040#> Develop <#67708#><#42042#>to10<#42042#><#67708#>. It consumes a list of digits and produces the corresponding number. The first item on the list is the <#42043#>most significant<#42043#> digit. Examples:
  <#42048#>(to10<#42048#> <#42049#>(list<#42049#> <#42050#>1<#42050#> <#42051#>0<#42051#> <#42052#>2))<#42052#> 
<#42053#>=<#42053#> <#42054#>102<#42054#> 
  <#42055#>(to10<#42055#> <#42056#>(list<#42056#> <#42057#>2<#42057#> <#42058#>1))<#42058#> 
<#42059#>=<#42059#> <#42060#>21<#42060#> 
Now generalize the function so that it consumes a base b and a list of b-digits. The conversion produces the decimal (10-based) value of the list. The base is between <#67709#><#42064#>2<#42064#><#67709#> and <#67710#><#42065#>10<#42065#><#67710#>. A b-digit is a number between <#42066#>0<#42066#> and b-1. Examples:
  <#42071#>(to10-general<#42071#> <#42072#>10<#42072#> <#42073#>(list<#42073#> <#42074#>1<#42074#> <#42075#>0<#42075#> <#42076#>2))<#42076#> 
<#42077#>=<#42077#> <#42078#>102<#42078#> 
  <#42079#>(to10-general<#42079#> <#42080#>08<#42080#> <#42081#>(list<#42081#> <#42082#>1<#42082#> <#42083#>0<#42083#> <#42084#>2))<#42084#> 
<#42085#>=<#42085#> <#42086#>66<#42086#> 
<#42090#>Hint:<#42090#> \ In the first example, the result is determine by

#displaymath73994#

the second one is

#displaymath73996#

That is, the exponent represents the number of digits that follow.~ external Solution<#67711#><#67711#> <#42096#>Exercise 31.3.8<#42096#> Develop the function <#67712#><#42098#>is-prime?<#42098#><#67712#>, which consumes a natural number and returns <#67713#><#42099#>true<#42099#><#67713#> if it is prime and <#67714#><#42100#>false<#42100#><#67714#> otherwise. A number n is prime if it not divisible by any number between 2 and n-1. <#42101#>Hints:<#42101#> \ (1) The design recipe for <#67715#><#42102#>N<#42102#><#42103#>[<#42103#><#42104#>;SPMgt;=1]<#42104#><#67715#> suggests the following template:

<#71660#>;; <#67716#><#42109#>is-prime?<#42109#> <#42110#>:<#42110#> <#42111#>N<#42111#><#42112#>[<#42112#><#42113#>;SPMgt;=1]<#42113#> <#42114#><#42114#><#42115#>-;SPMgt;<#42115#><#42116#><#42116#> <#42117#>boolean<#42117#><#67716#><#71660#>
<#71661#>;; to determine whether <#67717#><#42118#>n<#42118#><#67717#> is a prime number<#71661#> 
<#42119#>(d<#42119#><#42120#>efine<#42120#> <#42121#>(is-prime?<#42121#> <#42122#>n)<#42122#> 
  <#42123#>(c<#42123#><#42124#>ond<#42124#> 
    <#42125#>[<#42125#><#42126#>(=<#42126#> <#42127#>n<#42127#> <#42128#>1)<#42128#> <#42129#>...]<#42129#> 
    <#42130#>[<#42130#><#42131#>else<#42131#> <#42132#>...<#42132#> <#42133#>(is-prime?<#42133#> <#42134#>(sub1<#42134#> <#42135#>n))<#42135#> <#42136#>...]<#42136#><#42137#>))<#42137#> 
From this outline, we can immediately conclude that the function forgets <#67718#><#42141#>n<#42141#><#67718#>, its initial argument as it recurs. Since <#67719#><#42142#>n<#42142#><#67719#> is clearly needed to determine whether <#67720#><#42143#>n<#42143#><#67720#> is divisible by 2 ... n-1, this suggests that we design an accumulator-style local function that remembers <#67721#><#42144#>n<#42144#><#67721#> as it recurs.~ external Solution<#67722#><#67722#>

<#42152#>Pitfalls<#42152#>:\ external ~<#42154#>PLAN: need to dig out the bad exam solution and work it in
quick-sort or merge-sort misunderstood -- and we get a bad version of insertion sort back
<#42154#> People who encounter accumulator-style programming for the first time often get the impression that they are always faster or easier to understand (design) than their recursive counterparts. Both parts are plain wrong. While it is impossible to deal with the full scope of the mistake, let us take a look at a small counterexample. Consider the following table:

#tabular42156#

It represents the results for exercise~#extimefactorial#42162>. Specifically, the left column shows the number of seconds for 1000 evaluations of <#67723#><#42163#>(!<#42163#>\ <#42164#>20)<#42164#><#67723#> with the plain factorial function; the right column shows what the same experiment yields when we use the factorial function with an accumulator parameter. The last row shows the averages for the two columns. The table shows that the performance of the accumulator-style version of factorial is always worse than that of the original factorial function.~<#67724#><#67724#>