
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 1:

The What and Why of Parallel Programming;
Task Creation & Termination (async, finish)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 1 12 January 2015

mailto:vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322, Spring 2015 (V.Sarkar)

Acknowledgments
—CS 194 course on “Parallel Programming for Multicore” taught

by Prof. Kathy Yelick, UC Berkeley, Fall 2007
– http://www.cs.berkeley.edu/~yelick/cs194f07/

—“Principles of Parallel Programming”, Calvin Lin & Lawrence
Snyder, Addison-Wesley 2009

—COMP 322 Module 1 handout, Sections 0.1, 0.2, 1.1
—edX lecture and demonstration videos for Module 1, topic 1.1

2

http://www.cs.berkeley.edu/~yelick/cs194f07/

COMP 322, Spring 2015 (V.Sarkar)

What is Parallel Computing?
• Parallel computing: using multiple processors in parallel to solve

problems more quickly than with a single processor and/or with less
energy

• Example of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-

core chip microprocessors (CMPs)

3

Source: Figure 1.5 of Lin & Snyder
book, Addison-Wesley, 2009

CMP-0 CMP-1 CMP-2 CMP-3

COMP 322, Spring 2015 (V.Sarkar)

All Computers are Parallel Computers ---
Why?

4

COMP 322, Spring 2015 (V.Sarkar)

Moore’s Law and Dennard Scaling

5

Dennard Scaling states
that clock frequency can
be increased as
transistor size
decreases

Gordon Moore (co-founder of Intel) predicted
in 1965 that the transistor density of
semiconductor chips would double roughly every
1-2 years (Moore’s Law)
⇒ area of transistor halves every 1-2 years

⇒ feature size reduces by √2 every 1-2 years

Slide source: Jack Dongarra

COMP 322, Spring 2015 (V.Sarkar)

Current Technology Trends —!
Moore’s Law continues, but Dennard Scaling ends

• Chip density is
continuing to
increase ~2x
every 2 years
—Clock

speed is
not!

—Number of
processors
is doubling
instead

• Parallelism
must be
managed by
software

6

COMP 322, Spring 2015 (V.Sarkar)

Parallelism Saves Power
(Simplified Analysis)

Nowadays, Power ~ (Capacitance) * (Voltage)2 * (Frequency)
and maximum Frequency is capped by Voltage

è Power is proportional to (Frequency)3
!
Baseline example: single 1GHz core with power P
!
Option A: Increase clock frequency to 2GHz è Power = 8P
!
Option B: Use 2 cores at 1 GHz each è Power = 2P
!
• Option B delivers same performance as Option A with 4x less power …

provided software can be decomposed to run in parallel!

7

COMP 322, Spring 2015 (V.Sarkar)

A Real World Example

• Fermi vs. Kepler GPU chips from NVIDIA’s GeForce 600 Series
—Source: http://www.theregister.co.uk/2012/05/15/

nvidia_kepler_tesla_gpu_revealed/

8

Fermi chip (released
in 2010)

Kepler chip (released
in 2012)

Number of cores 512 1,536

Clock frequency 1.3 GHz 1.0 GHz

Power 250 Watts 195 Watts

Peak double precision
floating point
performance

665 Gigaflops 1310 Gigaflops
(1.31 Teraflops)

http://www.theregister.co.uk/2012/05/15/nvidia_kepler_tesla_gpu_revealed/

COMP 322, Spring 2015 (V.Sarkar)

What is Parallel Programming?

• Specification of operations that can
be executed in parallel

• A parallel program is decomposed
into sequential subcomputations
called tasks

• Parallel programming constructs
define task creation, termination, and
interaction

9

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

Task A Task B

COMP 322, Spring 2015 (V.Sarkar)

Example of a Sequential Program: 
Computing the sum of array elements

Observations:

• The decision to sum up the elements from left
to right was arbitrary

• The computation graph shows that all
operations must be executed sequentially

10

Computation Graph

COMP 322
Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
sum 0;
for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1These lecture notes include citation such as [6] as references for optional further reading.
2These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

COMP 322, Spring 2015 (V.Sarkar)

Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Basic idea:

• Decompose problem into two tasks for partial sums

• Combine results to obtain final answer

• Parallel divide-and-conquer pattern

11

+"

Task 0: Compute sum of
lower half of array

Task 1: Compute sum of
upper half of array

Compute total sum

COMP 322, Spring 2014 (V.Sarkar)12

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S!

• Creates a new child task that
executes statement S

finish S !
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2015 (V.Sarkar)

Two-way Parallel Array Sum
using async & finish constructs

13

COMP 322
Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)

sum1 0; sum2 0;
// Compute sum1 (lower half) and sum2 (upper half) in parallel.

finish{
async{

// Task T2

for i 0 to X.length/2� 1 do
sum1 sum1 +X[i];

};
async{

// Task T3

for i X.length/2 to X.length� 1 do
sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete

// Continuation of Task T1

sum sum1 + sum2;
return sum;

3 of 13

COMP 322, Spring 2015 (V.Sarkar)

Course Syllabus
• Fundamentals of Parallel Programming taught in three modules

1. Parallelism
2. Concurrency
3. Locality & Distribution

• Each module is subdivided into units, and each unit into topics

• Lecture and lecture handouts will introduce concepts using algorithmic and pseudocode
notations

• Labs and programming assignments will be in Java 8
—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic

parallel programming model
– HJ-lib is a pure Java 8 library (no special compiler support needed)
– HJ-lib contains many features that are easier to use than standard Java threads, and

are also expected in future parallel programming models
—Later, we will learn parallel programming in standard Java

14

COMP 322, Spring 2015 (V.Sarkar)

Grade Policies
Course Rubric
• Homeworks (6) 40% (written + programming components)
• Exams (2) 40% (take-home midterm + scheduled final)
• Quizzes & Labs 10% (quizzes on edX, labs graded as in COMP 215))
• Class Participation 10% (classroom Q&A, Piazza discussions,
 in-class worksheets)
!
Grading curve (we reserve the right to give higher grades than indicated below!)
>= 90% ⇒ A or A+

>= 80% ⇒ B, B+, or A-

>= 70% ⇒ C, C+ or B-

others ⇒ C- or below

15

COMP 322, Spring 2015 (V.Sarkar)

Next Steps

• IMPORTANT:
—Send email to comp322-staff@mailman.rice.edu if you did NOT

receive a welcome email from us
—Bring your laptop to this week’s lab at 7pm on Wednesday

(Section A01: DH 1064, Section A02: DH 1070)
—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

• Complete each week’s assigned quizzes on edX by 11:59pm that
Friday. This week, you should submit quizzes for lecture &
demonstration videos for topics 1.1, 1.2, 1.3, 1.4

• HW1 will be assigned on Jan 16th and be due on Jan 28th

• See course web site for work assignments and due dates
• https://wiki.rice.edu/confluence/display/PARPROG/COMP322

16

mailto:comp322-staff@mailman.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

