COMP 322: Fundamentals of
Parallel Programming

Lecture 1:
The What and Why of Parallel Programming:
Task Creation & Termination (async, finish)
Vivek Sarkar

Department of Computer Science, Rice University

vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 1 12 January 2015 2@

mailto:vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Acknowledgments

—CS 194 course on “Parallel Programming for Multicore” taught
by Prof. Kathy Yelick, UC Berkeley, Fall 2007

- http://lwww.cs.berkeley.edu/~yelick/cs194f07/

—“Principles of Parallel Programming”, Calvin Lin & Lawrence
Snyder, Addison-Wesley 2009

—COMP 322 Module 1 handout, Sections 0.1, 0.2, 1.1
—edX lecture and demonstration videos for Module 1, topic 1.1

2 COMP 322, Spring 2015 (V.Sarkar) %}

http://www.cs.berkeley.edu/~yelick/cs194f07/

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)

RAM

L3 Cache

[
< Front side bus
[[|

L

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1+ | L1-p| L1+t [L1-D | L1+t [Li-0] Li-t Jui-p || L1+t [L1-p| L1+t [|| L1+ [L1-D| L1+t L1-D
Processor | Processor Processor | Processor Processor | Processor Processor | Processor Source: Figur‘e 15 Of Lin & Snyder'
PO P1 P2 P3 P4 P5 P6 F7 book, Addison-Wesley, 2009

COMP 322, Spring 2015 (V.Sarkar)

All Computers are Parallel Computers ---
Why?

Computer Air Handling Unit (CRAC)
+Up To 30 Ton Scasible Copaciy Per Uit
« Air Discharge Can Be Upflow Or Downflow Configuration
«Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Pleaum With Floor Supply Diffusers

B]

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28"W x 36"D x 84°H)
+ Typical Capacities OF 1750 To 3750 Wats Per Cabinet

Power Distribution Unit (PDU)
« Typical Capacities Up To 225 kVA Per Uni
+ Redundancy Through Dual PDU's With |

Integral Staic Trassfer Switch (STS)

Emergency Diesel Generators
|« Toul Generator C: Total Electrical Load To Building
« Multiple Generators Can Be Electrically Combined With
Paralieling Gear
« Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Atienuating Enclosures

. f Fuel Oil Storage Tanks
« Tank Capacity Dependant On Length
OF Generator Operation

«Can Be Located Undergroand Or At
Grade Or Indoors

Colocation Suites

« Modular Configuration For
Flexible Suite Sq.Ft. Arcas.

« Suites Consist OF Multipie Cabincts With
Sccured Partitions (Cages, Walks, Etc.)

UPS System

« Uninterruptible Power Supply Modules.

+Up To 1000 kVA Per Module

« Cabinets And Battery Strings Or Rotary Flywheels

« Multiple Redundancy Configurations Can Be Designed

Electrical Primary Switchgear
« Includes Incoming Service And Distribution
 Diret Distribation To Mechanical Equipment
« Distribation To Sccondary Electrical Equipment Via UPS

Heat Rejection Dy 7 T!
et il « Used To Pump Condenser/Chilled Water Between Diycoolers And CRAC Units

« Drycoolers, Air Cooled Chillers, Et

. L’;’T‘;“.;';,; cf;'if'., Parlis W%’ (7 « Additioral Equipment Includes Expansion Tank, Glyzol Feed System

+ Mounted At Grade Or On Roof ':.‘)) * N#1 Design (Standby Pump)

+N+1 Design

amageakinde

sene b
whain i drponad,

= B an>20I>

fsus

iPhone — — \. () 2

4 COMP 322, Spring 2015 (V.Sarkar) D

Moore’s Law and Dennard Scaling

1975 1980 1985 1990 1995

r
oM Micro 500
(transistors) ‘ 2000 (mips)
™ Pentium” 25
. __ Processor
80486
100K ‘ L“JJ BE 10
‘ 80286
BO80
v 0.01

4004

Gordon Moore (co-founder of Intel) predicted .
in 1965 that the transistor density of Dennard Scalmg States

semiconductor chips would double roughly every that clock frequency can

1-2 years (Moore's Law) be increased as
= area of transistor halves every 1-2 years transistor size

= feature size reduces by /2 every 1-2 years decreases

5 Slide source: Jack Dongarra cOMP 322, Spring 2015 (V.Sarkar) S

Current Technology Trends —
Moore’s Law continues, but Dennard Scaling ends

Chip density is
continuing to
increase ~2x
every 2 years

— Clock
speed is
not!

— Number of
processors
is doubling
instead

Parallelism
must be
managed by
software

35 YEARS OF MICROPROCESSOR TREND DATA

10’

10°

10°

10°

. Transistors
. (thousands)

Single-thread
: ~ Performance
; (SpeclNT)

Frequency
T (MHz)

- Typical Power
S (Watts)

* Number of
o Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

COMP 322, Spring 2015 (V.Sarkar) %}\l

Parallelism Saves Power
(Simplified Analvsis)

Nowadays, Power ~ (Capacitance) * (Voltage)? * (Frequency)
and maximum Frequency is capped by Voltage

=» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less power ...
provided software can be decomposed to run in parallel!

7 COMP 322, Spring 2015 (V.Sarkar)

A Real World Example

« Fermivs. Kepler GPU chips from NVIDIA’s GeForce 600 Series

—Source: http://www.theregister.co.uk/2012/05/15/

nvidia kepler tesla gpu revealed/

Fermi chip (released
in 2010)

Kepler chip (released
in l5012) P

Number of cores 512 1,536
Clock frequency 1.3 GHz 1.0 GHz
Power 250 Watts 195 Watts

Peak double rrecision
floating poin
performance

665 Gigaflops

1310 Gigaflops
(1.31 Teraflops)

8

COMP 322, Spring 2015 (V.Sarkar)

http://www.theregister.co.uk/2012/05/15/nvidia_kepler_tesla_gpu_revealed/

What is Parallel Programming?

« Specification of operations that can

be executed in parallel Task A Task B

» A parallel program is decomposed
into sequential subcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
interaction

\ /]
R S R FRl Sl S W S St &

Schematic of a dual-core
Processor

9 COMP 322, Spring 2015 (V.Sarkar) &,

Example of a Sequential Program:
Computing the sum of arrav elements

Algorithm 1: Sequential ArraySum

Computation Graph
Input: Array of numbers, X. i i

Output: sum = sum of elements in array X.
sum <— 0; O X[O]
for 1 < 0 to X.length — 1 do l

L sum < sum + X[i];

X[1]

return sum;

Observations: X[Z]

* The decision to sum up the elements from left /
to right was arbitrary

« The computation graph shows that all
operations must be executed sequentially

10 COMP 322, Spring 2015 (V.Sarkar)

Parallelization Strategy for two cores
(Two-wav Parallel Arrav Sum)

Task O: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
®

l

Compute total sum

Basic idea:
« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern

11 COMP 322, Spring 2015 (V.Sarkar) G

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

* Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)

STMTO ;
finish { //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

12 COMP 322, Spring 2014 (V.Sarkar) G

Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)
suml < 0; sum2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[il;
¥
async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum?2 < sum?2 + X[il;

};
};

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum2;

return sum;

13 COMP 322, Spring 2015 (V.Sarkar) %}J

14

Course Syllabus

Fundamentals of Parallel Programming taught in three modules
1. Parallelism
2. Concurrency
3. Locality & Distribution

Each module is subdivided into units, and each unit into topics

Lecture and lecture handouts will introduce concepts using algorithmic and pseudocode
notations

Labs and programming assignments will be in Java 8

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a pure Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads, and
are also expected in future parallel programming models

—Later, we will learn parallel programming in standard Java

COMP 322, Spring 2015 (V.Sarkar)

Grade Policies

Course Rubric
« Homeworks (6) 40% (written + programming components)
o Exams (2) 40% (take-home midterm + scheduled final)
* Quizzes & Labs 10% (quizzes on edX, labs graded as in COMP 215))
« Class Participation 10% (classroom Q&A, Piazza discussions,
in-class worksheets)

Grading curve (we reserve the right to give higher grades than indicated below!)
>=90% = AorA+

>=80% = B, B+, or A-

>=70% = C, C+ or B-

others = C- or below

15 COMP 322, Spring 2015 (V.Sarkar)

16

Next Steps

IMPORTANT:

—Send email to comp322-staff@mailman.rice.edu if you did NOT
receive a welcome email from us

—Bring your laptop to this week’s lab at 7pm on Wednesday
(Section A01: DH 1064, Section A02: DH 1070)

—Wiatch videos for topics 1.2 & 1.3 for next lecture on Wednesday

Complete each week’s assigned quizzes on edX by 11:59pm that
Friday. This week, you should submit quizzes for lecture &
demonstration videos for topics 1.1, 1.2, 1.3, 1.4

HW1 will be assigned on Jan 16th and be due on Jan 28th

See course web site for work assignments and due dates
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322, Spring 2015 (V.Sarkar) %}

mailto:comp322-staff@mailman.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

