CS4501: Introduction to Computer Vision

Max-Margin Classifier, Regularization, Generalization,
Momentum, Regression, Multi-label Classification /

Tagging

Previous Class

 Softmax Classifier
* Inference vs Training
* Gradient Descent (GD)
* Stochastic Gradient Descent (SGD)
* mini-batch Stochastic Gradient Descent (SGD)

Previous Class

 Softmax Classifier
* Inference vs Training
* Gradient Descent (GD)
* Stochastic Gradient Descent (SGD)
* mini-batch Stochastic Gradient Descent (SGD)

* Generalization
* Regularization / Momentum

* Max-Margin Classifier
* Regression / Tagging

(mini-batch) Stochastic Gradient Descent (SGD)

1=0.01 10w, b) =)" ~10g f; abet (W, b)

iEB

Initialize w and b randomly For Softmax Classifier

for e =0, num_epochs do

for b =0, num_batches do
Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —Adl(w,b)/dw

Updateb: b=b —Adl(w,b)/db

Print: I(w,b) //Useful to see if this is becoming smaller or not.

end
end

Supervised Learning —Softmax Classifier

yi= e fa ol

‘ Extract features

Xi = [xi1 Xiz Xiz3 Xial
; Run features through classifier
Jc = We1Xi1 + WeaXip + WesXiz + WeaXig + b

Ja = Wa1Xi1 + WgaXiz + Wa3Xi3 + WaaXis + by
gp = Wp1Xjg + WpoXiz + Wp3Xi3 + WpaXyy + by Get
predictions
fC — egc/(egc+egd + egb)
fd — egd/(egc+egd 4+ egb)

fb — egb/(egc+egd + egb)

\ 4

Linear Max Margin-Classifier

Training Data

inputs

X1 = [x11 X12
Xo = [X21 X2

X3 = [x31 X3

Xn = [Xn1 Xn2

X13

X23

X33

X14]
X24]

X34]

Xna)

targets /

labels / predictions

ground truth

y1 = [1 0 0] ¥, = [43 -13 1.1]
y2= [0 1 0] $, = [0.5 5.6 -4.2]
yz3 = [1 0 0] Y3 = [3.3 35 1.1]
Yn= [0 0 1] Yo = [1.1 -5.3 -9.4]

Linear — Max Margin Classifier - Inference

Xi = [Xi1 X2 Xiz3 Xi4] yi= [1 0 0] yi= Uec fa o]

fe = WeiXip + WeaXip + WeaXiz + WeaXig + b
fa = Wa1Xi1 + WaaXin + WgzXijz + WgaXis + by

fo = Wp1Xi1 + WpaXip + Wy3Xiz + WpaXis + by

Training: How do we find a good w and b?

Xi = |xi1 Xz Xig Xu] yi= [1 0 0] yi= lUew,b) faw,b) fp(w,b)]

We need to find w, and b that minimize the following:

n

L(w,b) = z Z max(0, ¥;; — Viiaper + A)

i=1 j*label

Why this might be good compared to softmax?

Regression vs Classification

Regression

Labels are continuous
variables — e.g. distance.
Losses: Distance-based
losses, e.g. sum of distances
to true values.

Evaluation: Mean distances,
correlation coefficients, etc.

Classification

Labels are discrete variables (1
out of K categories)

Losses: Cross-entropy loss,
margin losses, logistic regression
(binary cross entropy)
Evaluation: Classification
accuracy, etc.

Linear Regression — 1 output, 1 input

y
4 (xg,Ysg)

(o)
(X6, Vo) (x7,¥7)

(X4, Ya) O
O o (X5,Y5)

(X2,¥2)
o o(x3' YS)

o

(X1, Y1)

Linear Regression — 1 output, 1 input

y
4 (xg,Ysg)

(o)
(X6, Vo) (x7,¥7)

(X4, Ya) O

O o (X5,Y5)

(X2,¥2)
(@) o(x3')’3)

O (X1, Y1)

Model: Yy =wx+b

Linear Regression — 1 output, 1 input

Linear Regression — 1 output, 1 input

> X

Quadratic Regression

(xg,Ysg)
o
(X6, Ye) (x7,57)
(X4, Ya) O
O o (X5,Y5)
(x2,52)
(@) o(x3JJ’3)
O (X1, Y1)
X

>

i=8
Model: 9§ =w;x?+w,x+ b Loss: L(w,b) = E(yi — ¥i)?
i=1

n-polynomial Regression

y

(xg,Ysg)
o
(x6, V6 (x7,¥7)
(X4, Ya) O
O o (X5,Y5)
(x2,52)
(@) o(x3JJ’3)
O (X1, Y1)
X

i=8
Model: ¥y =w,x"+--4+w;x+b Loss: L(w,b) = E(yi —¥1)?
i=1

Overfitting

f is linear

Taken from Christopher Bishop’s Machine Learning and Pattern Recognition Book.

f is cubic

Loss(w) is high

Underfitting
High Bias

Loss(w) is low

f is a polynomial of
degree 9

Loss(w) is zero!

Overfitting
High Variance

Detecting Overfitting

* Look at the values of the weights in the polynomial

M=0 M=1 M=6 M=09
wi | 019 082 031 0.35
w} 127 7.99 232.37
w -25.43 -5321.83
w} 1737 48568.31
w} -231639.30
w? 640042.26
wy -1061800.52
w? 1042400.18
w? -557682.99
wy 125201.43

Recommended Reading

e http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%?20-
%20Pattern%20Recognition%20And%20Machine%20Learning%20-
%20Springer%20%202006.pdf

Print and Read Chapter 1
(at minimum)

http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf

More ...

*Regularization
* Momentum updates

Regularization

* Large weights lead to large variance. i.e. model fits to the training
data too strongly.

e Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize L(w,b) + Z |w;|*
i

Regularization

Large weights lead to large variance. i.e. model fits to the training

data too strongly.

Solution: Minimize the loss but also try to keep the weight values

small by doing the following:

minimize ~ L(w,b) Ha z lw;|? Regularizer term
i e.g. L2- regularizer

SGD with Regularization (L-2)

1 =001 [(w,b) = l(w,b) + a 3; |w;|?

Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —Adl(w,b)/dw|— Alaw

Updateb: b =b —Adl(w,b)/db|— Aaw

Print: I(w,b) //Useful to see if this is becoming smaller or not.

end
end

Revisiting Another Problem with SGD

A=0.01 [(w,b) = L(w,b) + a ¥, |w;|?
Initialize w and b randomly

for e =0, num_epochs do

for b =0, num_batches do These qre qnly
approximations to the

Updatew: w=w —Adl(w,b)/dw — Alaw respect to L(w, b)
Updateb: b =b —Adl(w,b)/db— Aaw

Print: I(w,b) //Useful to see if this is becoming smaller or not.
end
end

Revisiting Another Problem with SGD

A=0.01 [(w,b) = L(w,b) + a ¥, |w;|?
Initialize w and b randomly

for e =0, num_epochs do

for b =0, num_batches do This C.OU,l,d lead to “un-
learning” what has
Compute: |dl(w,b)/dw| and | dl(w,b)/db been learned in some
Updatew: w=w —Adl(w,b)/dw — Alaw previous steps of
training.
Updateb: b =b —Adl(w,b)/db — daw

Print: I(w,b) //Useful to see if this is becoming smaller or not.
end

end

Solution: Momentum Updates

4 =001 I(w,b) = l(w,b) + a ¥, |w;|?

Initialize w and b randomly

fore =0, num_epochs do Keep track of previous

for b =0, num_batches do gradients in an
Compute: | dl(w,b)/dw/| and | di(w,b)/db accumulator variable!

and use a weighted
average with current

Updateb: b =b —Adl(w,b)/db— Aaw gradient.

Print: I(w,b) //Useful to see if this is becoming smaller or not.

Updatew: w=w —Adl(w,b)/dw — Alaw

end
end

Solution: Momentum Updates
A1=001 7=09

Initialize w and b randomly l(w,b) = l(w,b) + a }; |w;|?
global v
fore =0, num_epochs do

for b =0, num_batches do Keep track of previous

. gradients in an
Compute: _ di(w,b)/dw accumulator variable!
Compute: v =1v+dl(w,b)/dw + aw and use a weighted

average with current
Updatew: w=w —Av gradient.

Print: I(w,b) // Useful to see if this is becoming smaller or not.

end
end

More on Momentum

Starting Point

We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it

® ® has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

Step-size a = 0.0050 Momentum B = 0.77

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Questions?

