CS4501: Introduction to Computer Vision Dense Stereo and Epipolar Geometry

D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA), Steve Seitz (UW).

Last Class

- Camera Calibration
- Stereo Vision

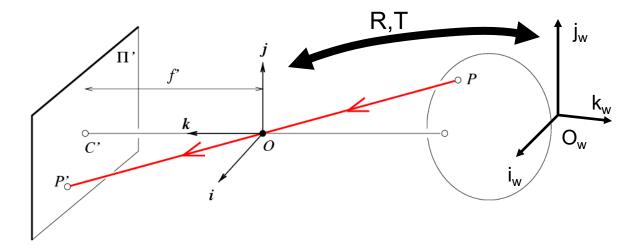
Today's Class

- Stereo Vision Dense Stereo
- More on Epipolar Geometry

Camera Calibration

• What does it mean?

Recall the Projection matrix



$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Recall the Projection matrix

$$x = K[R \ t]X$$

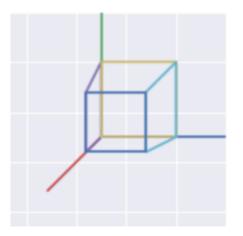
Intrinsic Camera Matrix.
f = 3.0 # focal length.

Recall the Projection matrix

$$x = K[R \ t]X$$

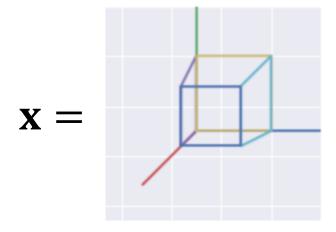
Intrinsic Camera Matrix.

Goal: Find x



Camera Calibration

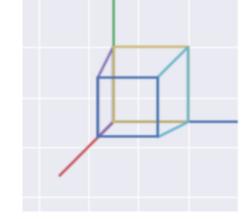
$$x = K[R \ t]X$$



Camera Calibration

$$x = K[R \ t]X$$

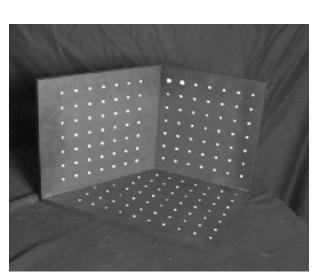
Goal: Find K[R t]

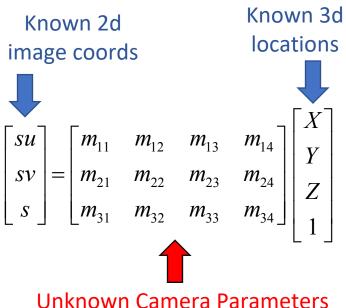


Calibrating the Camera

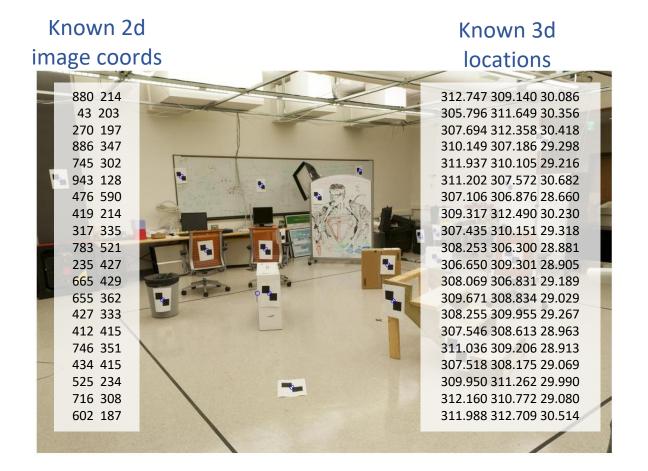
Use an scene with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)





How do we calibrate a camera?



Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations
$$su = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

 $sv = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$
$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

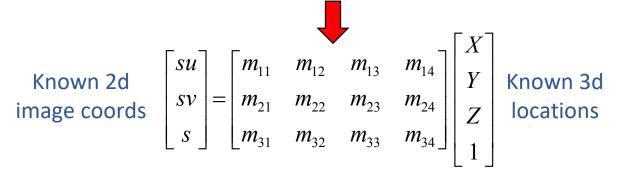
$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

 $m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

Unknown Camera Parameters



$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

 $m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

Unknown Camera Parameters

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

 m_{34}

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

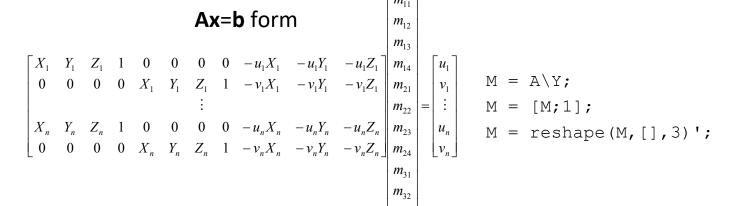
 Method 1 – homogeneous linear system. Solve for m's entries using

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & \vdots & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{13} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{31} \\ m_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ m_{24} \\ m_{31} \\ m_{32} \end{bmatrix}$$
 [U, S, V] = svd(A); M = V(:,end); M = reshape(M,[],3)';

Unknown Camera Parameters

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

 Method 2 – nonhomogeneous linear system. Solve for m's entries using linear least squares



 m_{33}

Can we factorize M back to K [R | T]?

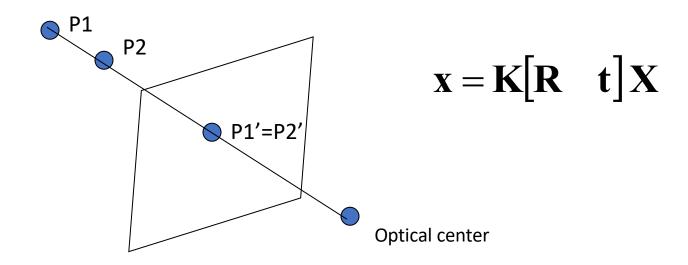
$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- Yes!
- You can use RQ factorization (note not the more familiar QR factorization). R (right diagonal) is K, and Q (orthogonal basis) is R. T, the last column of [R | T], is inv(K) * last column of M.
 - But you need to do a bit of post-processing to make sure that the matrices are valid. See http://ksimek.github.io/2012/08/14/decompose/



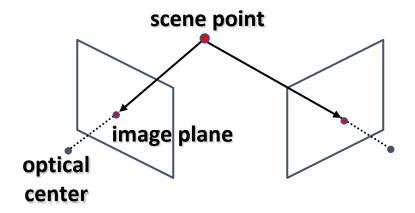
Why multiple views?

• Structure and depth are inherently ambiguous from single views.

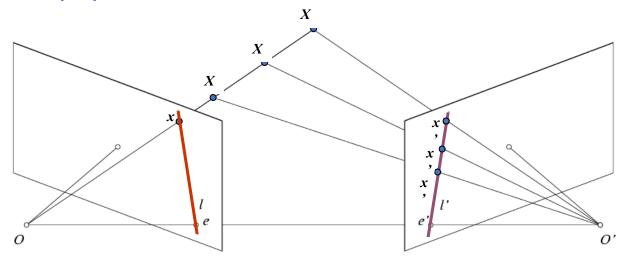


Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences



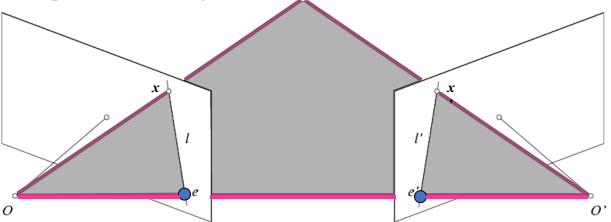
Key idea: Epipolar constraint



Potential matches for x have to lie on the corresponding line l'.

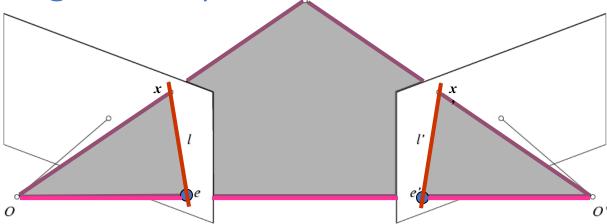
Potential matches for x' have to lie on the corresponding line I.

Epipolar geometry: not x tion



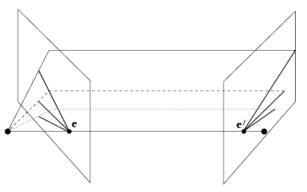
- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Plane** plane containing baseline (1D family)

Epipolar geometry: not x tion



- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Plane** plane containing baseline (1D family)
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

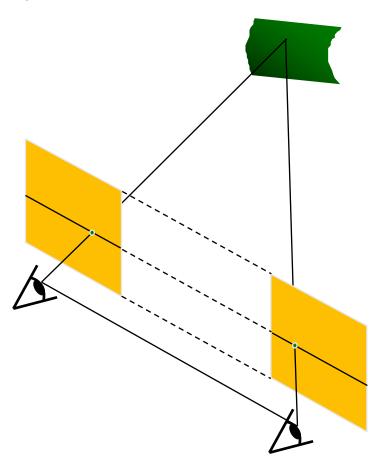
Example: Converging cameras



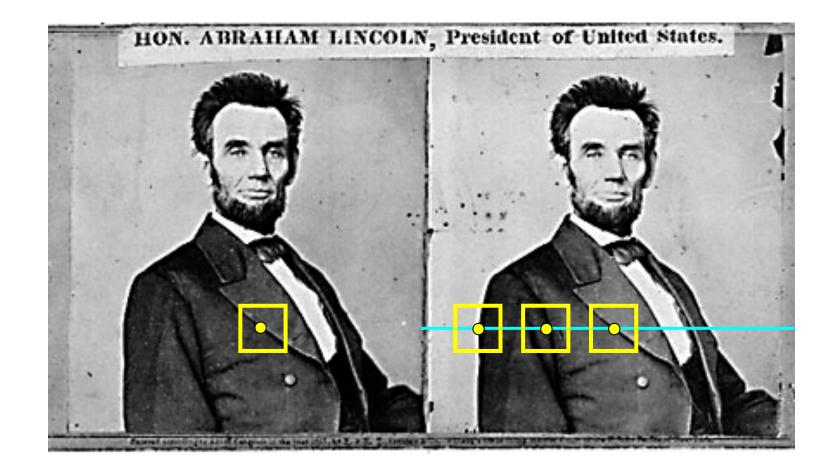
Geometry for a simple stereo system

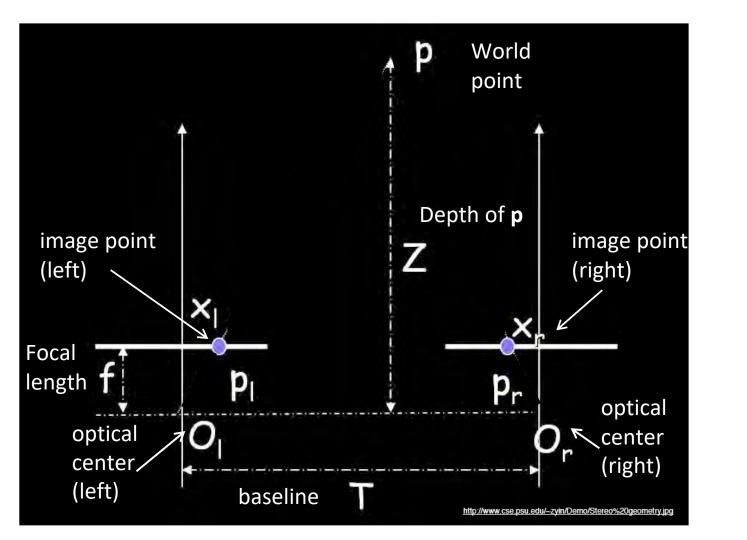
• First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Simplest Case: Parallel images



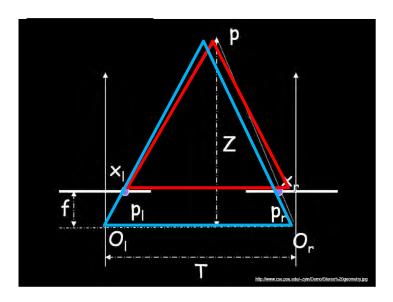
- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then epipolar lines fall along the horizontal scan lines of the images





Geometry for a simple stereo system

 Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?



Similar triangles (p_l, P, p_r) and (O_l, P, O_r) :

$$\frac{T + x_l - x_r}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_r - x_l}$$
disparity

Depth from disparity

image I(x,y)

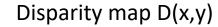
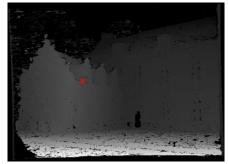


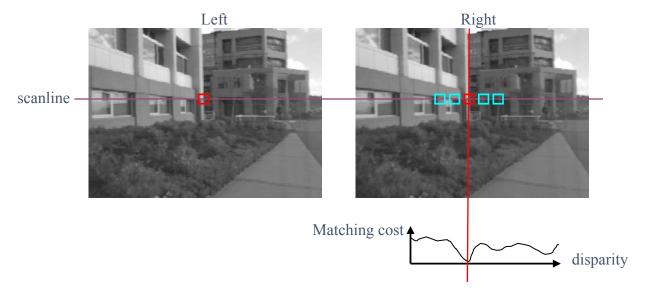
image I'(x',y')



$$(x',y')=(x+D(x,y), y)$$

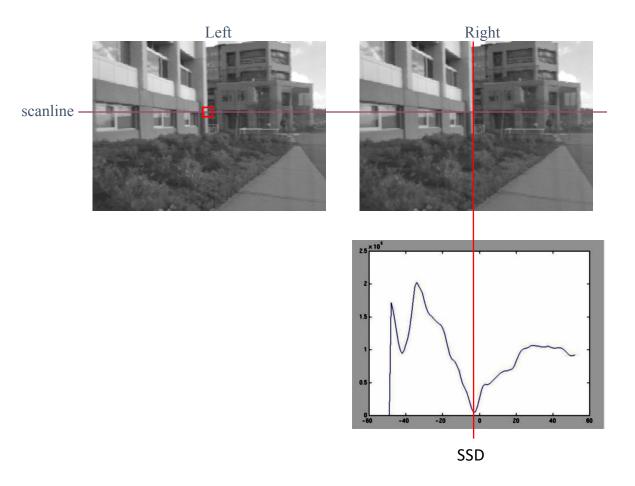
So if we could find the **corresponding points** in two images, we could **estimate relative depth**...

Correspondence search

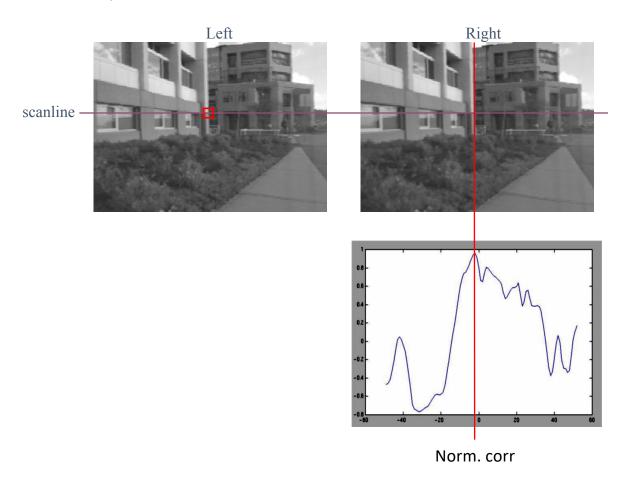


- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

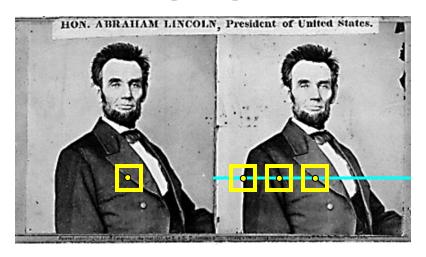
Correspondence search



Correspondence search

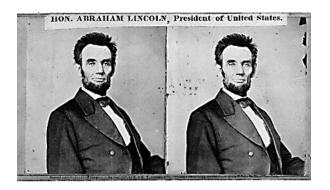


Basic stereo matching algorithm



- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = B*f/(x-x')

Failures of correspondence search



Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Effect of window size

$$W = 3$$

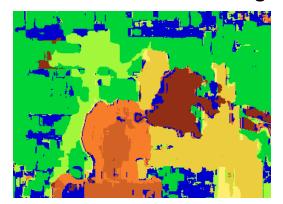
W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail

Results with window search

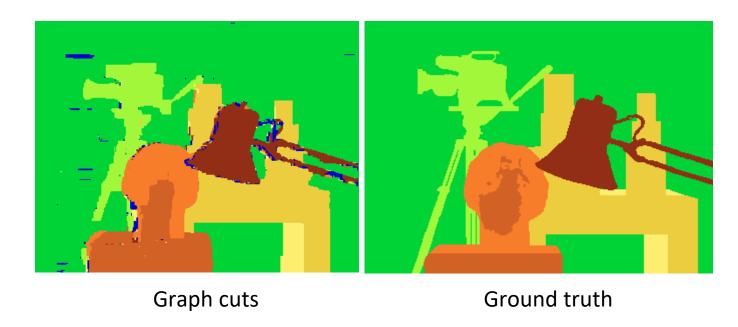
Data

Window-based matching



Ground truth

Better methods exist...



Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy</u> <u>Minimization via Graph Cuts</u>, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

When cameras are not aligned: Stereo image rectification Reproject image planes onto a common plane parallel to the line between optical centers Pixel motion is horizontal after this transformation • Two homographies (3x3 transform), one for each input image reprojection

•C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification example



Questions?