CS4501: Introduction to Computer Vision
Dense Stereo and
Eplpolar Geometry

Various slides from previous courses by:
D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown /
Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA), Steve Seitz (UW).

Last Class

e Camera Calibration
* Stereo Vision

Today’s Class

* Stereo Vision — Dense Stereo
* More on Epipolar Geometry

Camera Calibration

 What does it mean?

Slide Credit: Silvio Saverese

Recall the Projection matrix

. x: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)

R: Rotation (3x3)
t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Recall the Projection matrix

x=K[R t|X

Definition of the faces of the cube.
cube_pts = np.array(
)(—_— (cgo,o0,0}), o0,0,13, (0,1,13, (0,1,0), (0,0,0]1], # Face
- fco,o,0}), (0,1,0}), (1,1,0}), (1,0,0], [0O,0,0]], # Face
(ri,o0,0}), (1,0,1), (1,1,1), (1,1,0]), [1,0,0]], # Face
(co,o0,13, (0,1,1), (1,1,1), (1,0,1), [0,0,1]])) # Face

Intrinsic Camera Matrix.

£f = 3.0 # focal length.

K = np.array(((£f, 0, 0],
[o' fl oll
(0, 0, 1]1)

K R t # Extrinsic Camera Parameters.
Rt = np.array(((1, 0, O, 1),
(o, 1, 0, 1),

(o, 0, 1, 4]))

Camera matrix.
Camera_matrix = np.dot(K, Rt)

Recall the Projection matrix

x=K[R t|X

Definition of the faces of the cube.
cube_pts = np.array(
:’(: — (ceo,o0,0}1, (0,0,13, (0,1,11, (0,1,0}, [0,0,0]], # Face
- fco,o,0}), (0,1,031, (1,1,0}), (1,0,0], [0,0,0]], # Face
(g,o0,0), (1,0,13, (1,1,1), (1,1,0}], [1,0,0]], # Face
fco,o,1), (0,1,13), (1,1,1}), (1,0,1]), [0,0,1]]]) # Face

Intrinsic Camera Matrix.

£f = 3.0 # focal length.

K = np.array([([(£, 0, 0],
(o, £, 0),

o Goal: Find X
K R t — # Extrinsic Camera Parameters. *
Rt = np.array(((1, 0, 0, 1),
(o, 1, 0, 1),
(o, o, 1, 4]1)

Camera matrix.
Camera_matrix = np.dot(K, Rt)

Camera Calibration

x=K[R t|X

Definition of the faces of the cube.
cube_pts = np.array(
X — [[[ololo]l (o,0,11, o,1,13, (0,1,0), (0,0,0]1]1,
- (co,o,o0j}, (0,1,0}), (1,1,0}), (2,0,0}), [0,0,0]],
(ri,o0,0}), (1,0,1), (1,1,1), (1,1,0]), [1,0,0]],
(co,o0,1), (0,1,1), (1,1,1), (1,0,1]), [0,0,1]]])

Face
Face
Face
Face

W -
L I

\

Camera Calibration

x=K[R t|X

Definition of the faces of the cube.
cube_pts = np.array(
X —_ (cco,o,01, (0,0,13, (0,1,1}1, (0O,1,0), [0,0,0]],
- (co,o,0}, (0,1,0), (1,1,0), (1,0,0}), [0,0,0]],
(0,0}, (1,0,1), (1,1,1), (1,1,0}), [1,0,0]],
(co,o,1), (0,1,1), (1,1,1}), (1,0,1), [0O,0,1]]])

Goal: Find K]|R t] X =

Face
Face
Face
Face

=W -

-

Slide Credit: James Hays

Calibrating the Camera

Use an scene with known geometry
e Correspond image points to 3d points
* Get least squares solution (or non-linear solution)

Known 2d Known 3d
image coords locations
¢
v X
Su my my, m; my Y
SV |= My My My Ny, 7
| S My My My Mgy 1

Unknown Camera Parameters

How do we calibrate a camera?

Known 2d

image coords
-

880

214

43 203

270
886
745

' 943
476
419
317
783
235
665
655
427
412
746

B 434

B 525
716
602

197
347
302
128
590
214
335
521
427
429
362
333
415
351
415
234
308

187

Known 3d
Iocatlons

—
T

312.747 309.140 30.086
305.796 311.649 30.356
307.694 312.358 30.418
310.149 307.186 29.298
311.937 310.105 29.216
311.202 307.572 30.682
307.106 306.876 28.660
309.317 312.490 30.230
307.435 310.151 29.318
308.253 306.300 28.881
306.650 309.301 28.905
308.069 306.831 29.189
309.671 308.834 29.029
308.255 309.955 29.267
307.546 308.613 28.963
311.036 309.206 28.913
307.518 308.175 29.069
309.950 311.262 29.990
312.160 310.772 29.080
311.988 312.709 30.514

7

Slide Credit: James Hays

Known 2d
image coords

Unknown Camera Parameters

o Nd
SU m m m m
11 12 13 14
Y | Known 3d
sV i=|m m m m)
2l 2 s T 7| locations
S [My My Ny Ny 1

su=m X +m,Y +m ,Z+m,
sv=my X +m,,Y + my Z +m,,

s=my X +my,Y +my,Z +ms,

my X +m,Y +m,Z +m,,
my X +my,Y + my,Z +my,

u =

B my X +m,,Y + my,Z +m,,
my X +my,Y +my,Z +m,,

V

Slide Credit: James Hays

Unknown Camera Parameters

4

o Nd
SU m m m m
11 12 13 14
Known 2d Y
. sV |=|m m m m
image coords 2 T s T
S (M My Ny Ny | 1
m X +my,Y +myZ +m,,
u oy
my X +my,Y +my,Z +m,,
. m, X +m,,Y +myZ +m,,

my X +my,Y +my,Z +m,,

Slide Credit: James Hays

Known 3d
locations

(my X +my,Y +my,Z +my u=m X +m,Y +m,Z+m,

(my X +my,Y + my,Z +my)v=my X + m,,Y + my,Z +m,,

myuX +my,uY +myuZ + myu =m;, X +m,Y +m 2 +m,,

my VX +my,vY + myvZ +my,v=my, X +m,,Y +my,Z +m,,

Unknown Camera Parameters Slide Credit: James Hays

. X
Su m, m, m, m
11 12 13 14
Known 2d Y | Known 3d
. svi|=\m,, m, m, m .
image coords 2l 2 s T 7| locations
LS My My, My Mgy 1

myuX +my,uY +myuZ + myu =m; X +m,Y +m 2 +m,,

my VX +my,vY + myvZ +my,v=my, X +m,,Y +m,Z +m,,

O=m X +m,Y +m Z+m, —muX —my,uY —myuZ —m,,u

0=m, X +my,Y + myZ +m,, —myvX —my,,vY —m;;vZ —m,,v

0

Known 2d

image coords

 Method 1 — homogeneous linear

Unknown Camera Parameters

4

S

Su

sV |=

m,
m,,

ms,

my,

my,

ms;

m,

my,

ms, |

1

Slide Credit: James Hays

Known 3d
locations

O0=m X +m,Y +m Z+m, —myuX —myuY —myuZ —msu

0=m, X +m,Y + myZ +m,, —myvX —m,,vY —m;;vZ —m,,v

system. Solve for m’s entries using
linear least squares

0

(X, Y, Z 1 0

0 0 X,

0
Y

0 0 —-ulX,
Z, 1 -vJX
0 0 -ukX,
Zn 1 - vﬂXﬂ

—uY)
- V1Y1

—u,Y,
-v.7,

-uZ,
_vlzl

- unzn
- an}’l

=< =
I

S, V] = svd(A);
V(:,end);
reshape (M, [1,3) '

Known 2d

image coords

Su

Unknown Camera Parameters

4

m,

m,,

ms,

* Method 2 — nonhomogeneous
linear system. Solve for m’s entries
using linear least squares

Ax=b form

0 0 —-uX, -ul
Z 1 -vX, -l
0 0 _uan _un)/n
ZV! 1 _ann _v")]ﬂ

-uZ
-vZ

—u Z

n

—-v Z

n

1

n

1

n_l

my,
my,

ms;

Slide Credit: James Hays

X

my

m Y | Known 3d
1z locations
ms, |

Can we factorize M back to K [R | T]?

m,

m,,

ms,

* Yes!

m,,
m,,

My,

m,
My

My,

m,

m,

My,

= K[R t]

* You can use RQ factorization (note — not the more familiar QR
factorization). R (right diagonal) is K, and Q (orthogonal basis) is R. T,
the last column of [R | T], is inv(K) * last column of M.

* But you need to do a bit of post-processing to make sure that the matrices
are valid. See http://ksimek.github.io/2012/08/14/decompose/

Credit: James Hays

Stereo:
Epipolar geometry

Vicente Ordonez
University of Virginia

Slides by Kristen Grauman

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

P1
P2

x=K[R t|X

Optical center

Estimating depth with stereo

* Stereo: shape from “motion” between two views
* We'll need to consider:

* Info on camera pose (“calibration”)

* Image point correspondences

scene point

,.---"image plane
¢

optical

center

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line /’.

Potential matches for x” have to lie on the corresponding line /.

Epipolar geometry: not xtion

e Baseline — line connecting the two camera centers

e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

Epipolar geometry: not xtion

e Baseline — line connecting the two camera centers

e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

e Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

Example: Converging cameras

Geometry for a simple stereo system

* First, assuming parallel optical axes, known camera
parameters (i.e., calibrated cameras):

Simplest Case: Parallel images

e I[mage planes of cameras are
parallel to each other and to the
baseline

e Camera centers are at same height
e Focal lengths are the same

e Then epipolar lines fall along the
horizontal scan lines of the images

———gg ~ ————

= HON. ABRAIIAM 1. n'('()'l.r\ Preshlcnt of an-a states. —-’.—'5 -

image point

(left) \

Focal —F——T—0—

optical
center

™\

(left)

baseline

T

Depth of p

optical

N.center

rl

Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O|) Pr Or):

I'tx,—x, T

Z-f Z

T

L =f——
disparity

Depth from disparity

image I(x,y) Disparity map D(x,y) image I'(x",y’)

(x",y")=(x+D(x,y), y)

So if we could find the corresponding points in two images, we
could estimate relative depth...

Correspondence search

Left Right

scanline

Matching cost

» disparity

e Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

e Matching cost: SSD or normalized correlation

Correspondence search

Left Right

scanline

SSD

Correspondence search

Left Right

scanline

Norm. corr

Basic stereo matching algorithm

"=-5§ HON. Mm.m AM LINCOLN, lreshlcnt or Lnltul ‘States. 577-

: ’“WT .

e |f necessary, rectify the two stereo images to transform
epipolar lines into scanlines

e For each pixel x in the first image
* Find corresponding epipolar scanline in the right image
* Examine all pixels on the scanline and pick the best match x’
* Compute disparity x—x” and set depth(x) = B*f/(x—x")

Failures of correspondence search

=77 HON. ABRAIIAM LINCOLN, President of United States. 1 . o

AL -f'**i

=~

o S
S

c)
(e
77 WrZa 2
N
s

RS o o

Non-Lambertian surfaces, specularities

Effect of window size

* Smaller window
+ More detail
* More noise

e Larger window
+ Smoother disparity maps
* Less detail

Results with window search

Data

Window-based matching Ground truth

Better methods exist...

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy
Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

When cameras are not aligned:
Stereo image rectification

¢ Reproject image planes onto a common

plane parallel to the line between optical centers
Pixel motion is horizontal after this transformation

Two homographies (3x3 transform), one for each input image
reprojection

*C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE
Conf. Computer Visionand Pattern Recognition, 1999.

Rectification example

Questions?

