CS4501: Introduction to Computer Vision Local Feature Descriptors SIFT

Various slides from previous courses by:

D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA).

Last Class

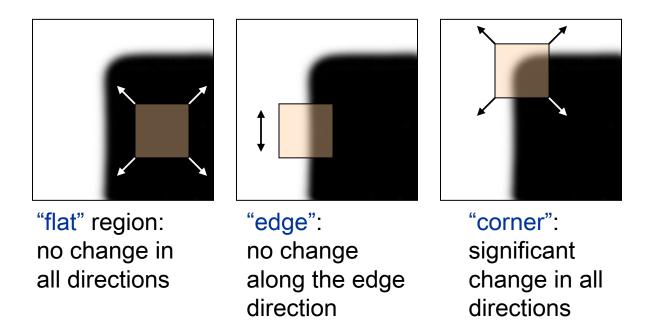
- Corner Detection Harris
- Interest Points
- Blob Detection

Today's Class

- Interest Points (DoG extrema operator)
- SIFT Feature descriptor
- Feature matching

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



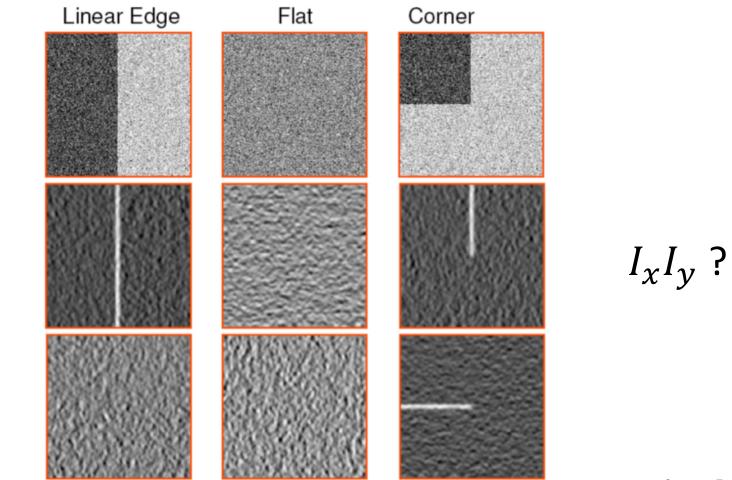
Harris Corner Detection

• Compute the following matrix of squared gradients for every pixel.

$$M = \sum_{patch} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix}$$

 I_x and I_y are gradients computed using Sobel or some other approximation.

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad M = \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} \qquad M = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \qquad M = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$



Ι

 I_{χ}

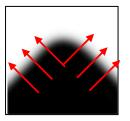
 I_y

Harris Corner Detection

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad M = \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} \qquad M = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \qquad M = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

• If both a, and b are large then this is a corner, otherwise it is not. Set a threshold and this should detect corners.

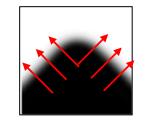
Problem: Doesn't work for these corners:





Harris Corner Detection

$$M = \sum_{patch} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$$



Under a rotation M can be diagonalized

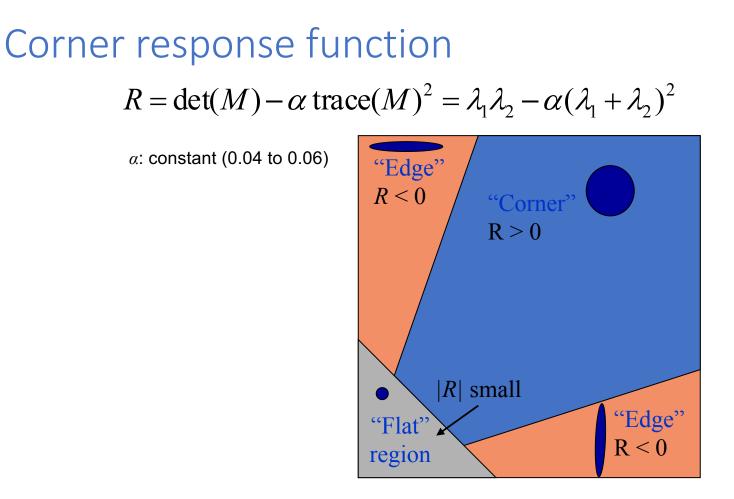
$$M = R_m^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R_m$$

 λ_1 and λ_2 are the eigenvalues of M

From your linear algebra class finding them requires solving $det(M - \lambda I) = 0$

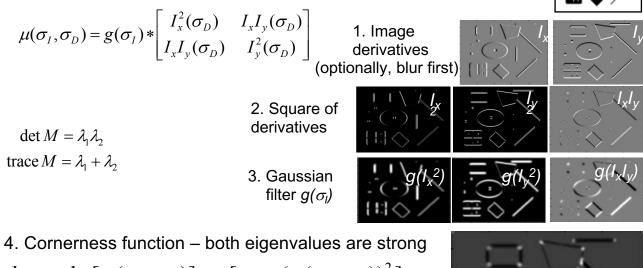
However no need to solve det(M-lambda I)=0

 $\det M = \lambda_1 \lambda_2$ trace $M = \lambda_1 + \lambda_2$



Harris Detector Summary [Harris88]

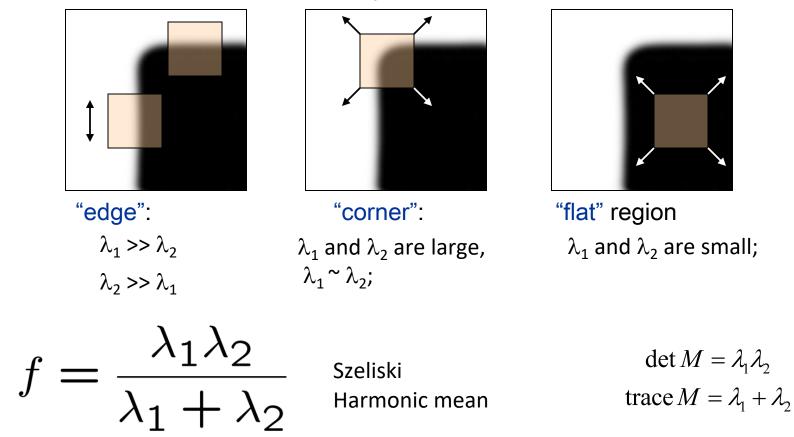
• Second moment matrix



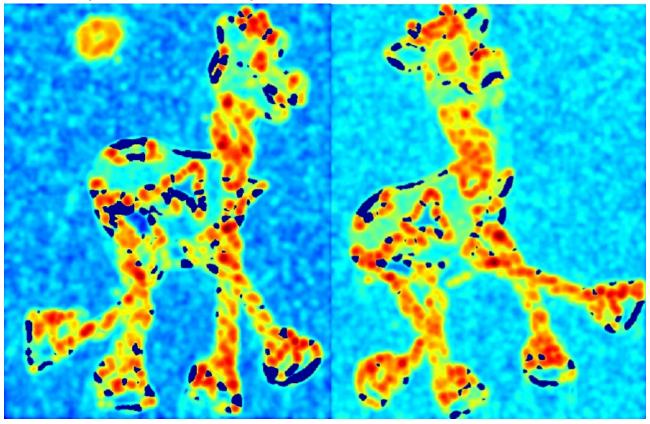
- $har = \det[\mu(\sigma_{I}, \sigma_{D})] \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) [g(I_{x}I_{y})]^{2} \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$
- 5. Non-maxima suppression

har

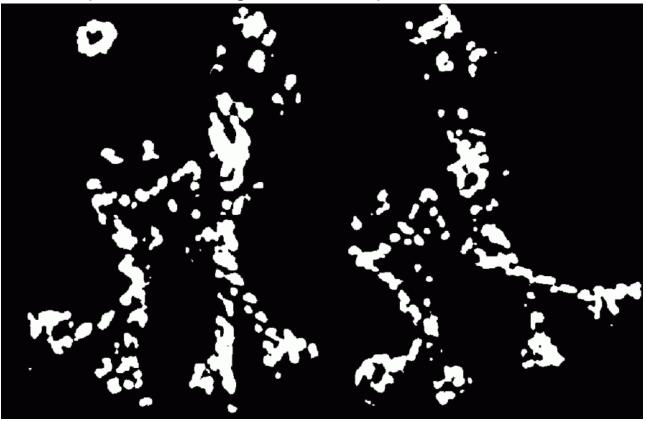
Alternative Corner response function



Compute corner response R



Find points with large corner response: *R*>threshold



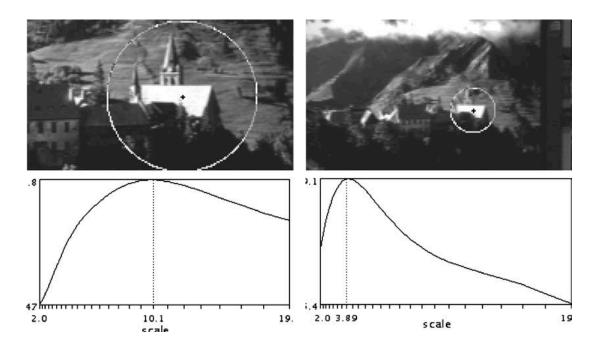
Take only the points of local maxima of R

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

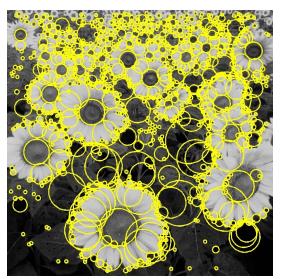
Keypoint detection with scale selection

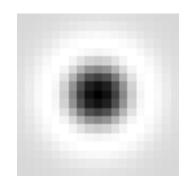
• We want to extract keypoints with characteristic scale that is *covariant* with the image transformation



Basic idea

• Convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting *scale space*

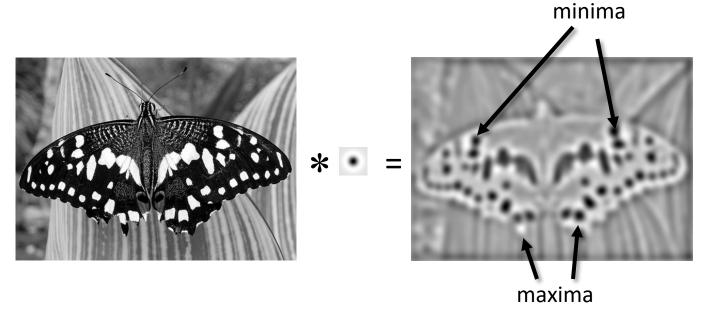




T. Lindeberg. Feature detection with automatic scale selection. *IJCV* 30(2), pp 77-116, 1998.

Slide by Svetlana Lazebnik

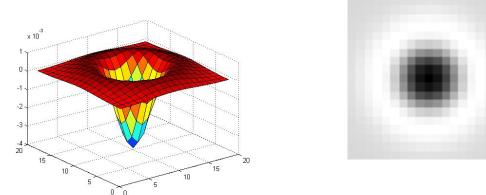
Blob detection

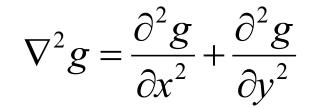


• Find maxima *and minima* of blob filter response in space *and scale*

Blob filter

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D





Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

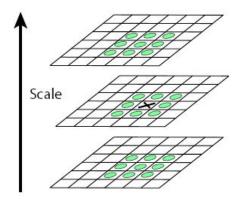
Scale-space blob detector: Example

Scale-space blob detector: Example

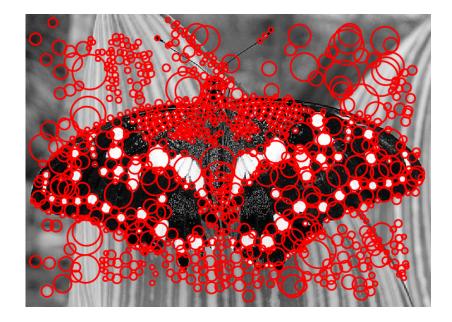
sigma = 11.9912

Scale-space blob detector

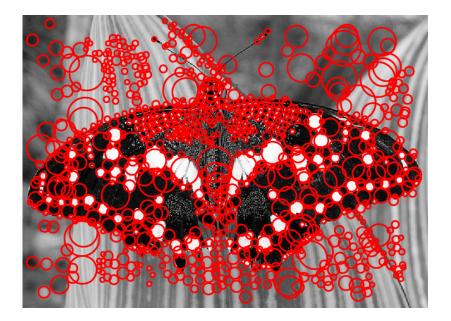
- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



Scale-space blob detector: Example



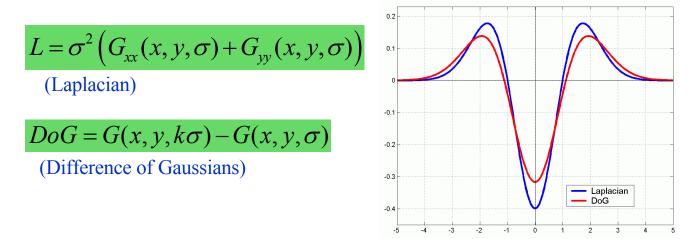
Eliminating edge responses



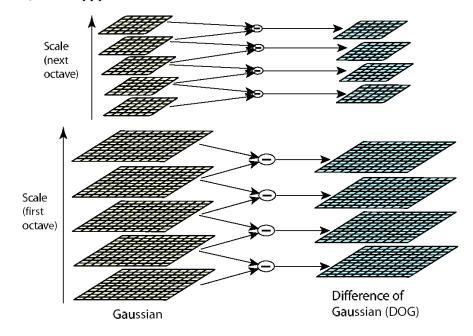
• Laplacian has strong response along edge

Efficient implementation

• Approximating the Laplacian with a difference of Gaussians:



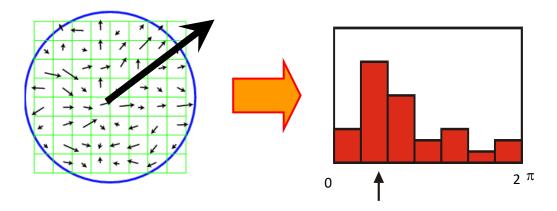
Efficient implementation



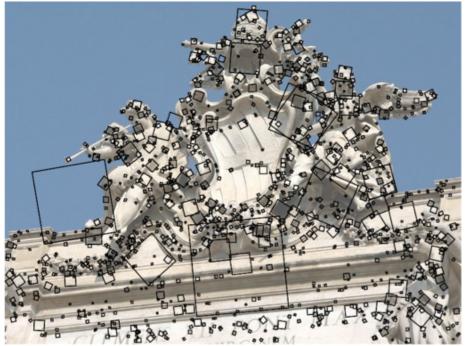
David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

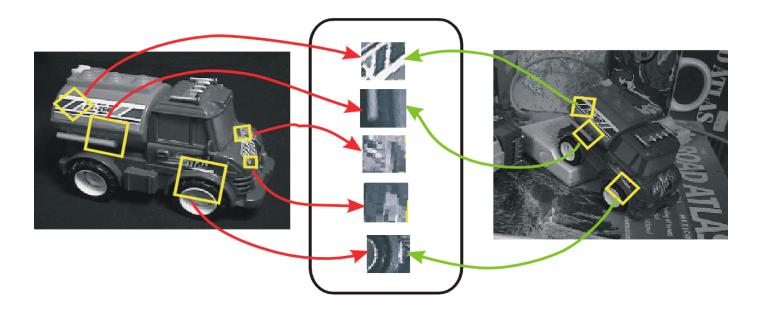


SIFT keypoint detection



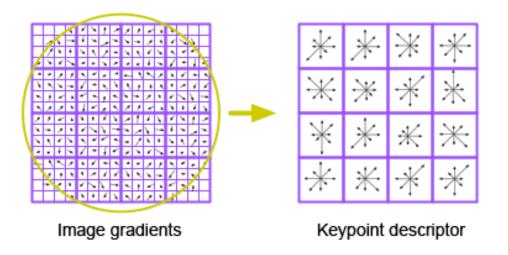
D. Lowe, Distinctive image features from scale-invariant keypoints, *IJCV* 60 (2), pp. 91-110, 2004.

From keypoint detection to keypoint representation (feature descriptors)



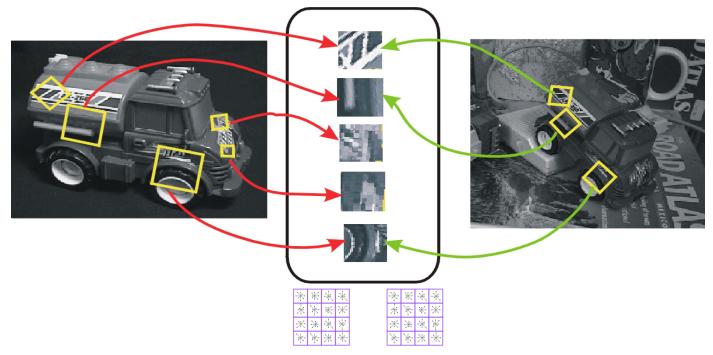
SIFT descriptors

• Inspiration: complex neurons in the primary visual cortex



D. Lowe. Distinctive image features from scale-invariant keypoints. *IJCV* 60 (2), pp. 91-110, 2004.

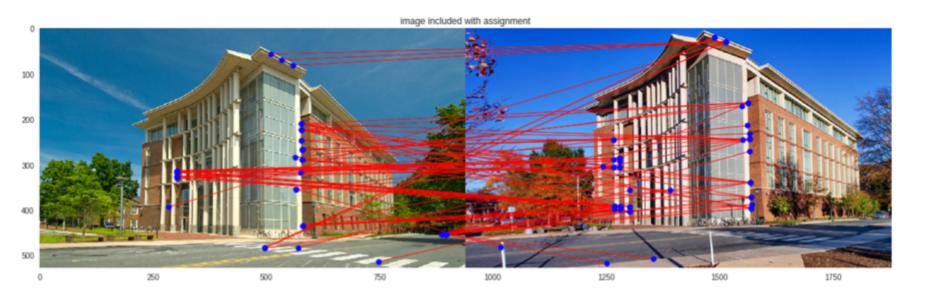
From keypoint detection to keypoint representation (feature descriptors)



Compare SIFT feature vectors instead

Figure by Svetlana Lazebnik

SIFT Feature Matching

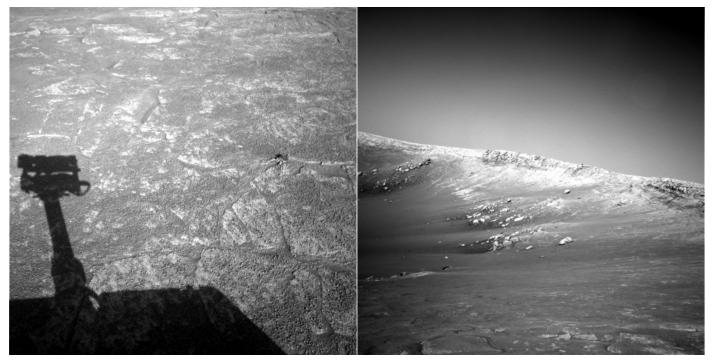


Rice Hall at UVA



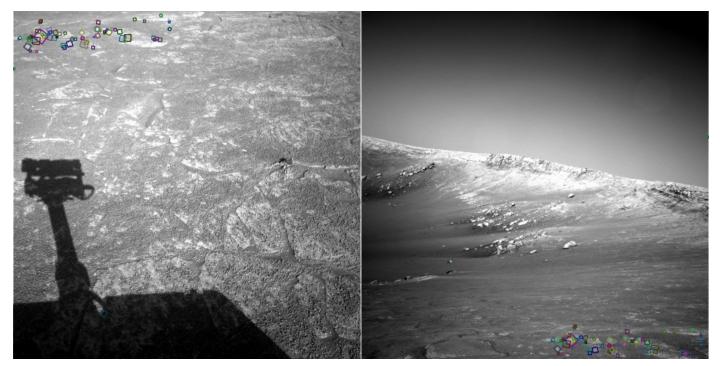
<u>JiaWang Bian</u>, Wen-Yan Lin, <u>Yasuyuki Matsushita</u>, <u>Sai-Kit Yeung</u>, Tan Dat Nguyen, <u>Ming-Ming Cheng</u> **GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence IEEE CVPR, 2017** The method has been integrated into OpenCV library (see xfeatures2d in <u>opencv_contrib</u>).

A hard keypoint matching problem



NASA Mars Rover images

Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Feature Descriptors Zoo

- SIFT (under a patent) Proposed around 1999
- SURF (under a patent too I think)
- BRIEF
- ORB (seems free as it is OpenCV's preferred)
- BRISK
- FREAK
- FAST
- KAZE
- LIFT (Most recently proposed at ECCV 2016)

David Lowe

Senior Research Scientist, <u>Google</u> Verified email at google.com - <u>Homepage</u> Computer Vision <u>Object Recognition</u>

TITLECITED BYYEARDistinctive image features from scale-invariant keypoints
DG Lowe
International journal of computer vision 60 (2), 91-110454962004Object recognition from local scale-invariant features
DG Lowe148171999

International Conference on Computer Vision, 1999, 1150-1157

Questions?