CS4501: Introduction to Computer Vision Frequency, Edges, and Corners

Various slides from previous courses by:
D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA).

Last Class

- Google Colaboratory
- Recap on Convolutional Operations
- Image Gradients: The Sobel Operator
- Frequency Domain

Today's Class

- Frequency Domain
- Filtering in Frequency
- Edge Detection - Canny
- Corner Detection - Harris

From Time to Frequency

Example

Crucial Missing Step (Leap) from Last Class

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(i n \omega_{0} t\right)
$$

Discrete
Fourier
Transform

$$
F(u)=\sum_{x=0}^{N-1} f(x) \exp \left[-2 \pi i\left(\frac{x u}{N}\right)\right]
$$

Inverse Discrete
Fourier
Transform

$$
f(x)=\frac{1}{N} \sum_{u=0}^{N-1} F(u) \exp \left[2 \pi i\left(\frac{x u}{N}\right)\right]
$$

More generally for images (2D DFT and iDFT)

$$
\begin{aligned}
& F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp \left[-2 \pi i\left(\frac{x u}{M}+\frac{y v}{N}\right)\right] \\
& f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) \exp \left[2 \pi i\left(\frac{x u}{M}+\frac{y v}{N}\right)\right]
\end{aligned}
$$

Keep in mind Euler's Equation

$$
e^{i x}=\cos x+i \sin x
$$

We can compute the real and the imaginary part of the complex number.

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
- Magnitude encodes how much signal there is at a particular frequency
- Phase encodes spatial information (indirectly)
- For mathematical convenience, this is often notated in terms of real and complex numbers

$$
\text { Amplitude: } \quad A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}} \quad \text { Phase: } \phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}
$$

Discrete Fourier Transform - Visualization

$$
f(x, y)
$$

- |f(u,v)| generally decreases with higher spatial frequencies
- phase appears less informative

Image Filtering in the Frequency Domain

The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$
g^{*} h=\mathrm{F}^{-1}[\mathrm{~F}[g] \mathrm{F}[h]]
$$

Blurring in the Time vs Frequency Domain

Gaussian scale=3 pixels

Blurring in the Time vs Frequency Domain

Gaussian scale=3 pixels

Fourier transform

$|F(u, v)|$

Blurring in the Time vs Frequency Domain

Why Frequency domain?

- Because the Discrete Fourier Transform can be computed fast using the Fast Fourier Transform FFT algorithm.
- Because the running time does not depend on the size of the kernel matrix.
- However rarely used these days because most filters used in Computer vision are $3 \times 3,5 \times 5$, e.g. relatively small.

Final Thoughts - JPEG Image Compression

- Small amount of information can recover almost the original image with some loss in resolution.
- Images are dominated by low frequency information. e.g. no need to store repeated pixels.
- In practice JPEG uses a simpler transformation called Discrete Cosine Transform DCT.

Edge Detection

Edge Detection

- Goal: Identify sudden changes (discontinuities) in an image
- Intuitively, most semantic and shape information from the image can be encoded in the edges
- More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Why do we care about edges?

- Extract information, recognize objects

- Recover geometry and viewpoint

Origin of Edges

- Edges are caused by a variety of factors

Edge Detection

- Back to Sobel

But Ideally we want an output where: $g(x, y)=1$ if edge $g(x, y)=0$ if background

Edge Detection

- Sobel + Thresholding

$$
g(x, y)= \begin{cases}1, & f(x, y) \geq \tau \\ 0, & f(x, y)<\tau\end{cases}
$$

- Sobel + Thresholding

$$
g(x, y)= \begin{cases}1, & f(x, y) \geq \tau \\ 0, & f(x, y)<\tau\end{cases}
$$

Problems:

- Edges are too wide: We want 1-pixel wide edges if possible.
- Lots of disconnected edges: We want to respect continuity or connectivity.

Solution: Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction $\}$

Similar to Sobel:
Blurring + Gradients

- Non-Maximum Suppression
- Hysteresis and connectivity analysis

Example

- original image

Derivative of Gaussian filter

Compute gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get orientation at each pixel

Compute gradients (DoG)

Gradient Magnitude

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
- Assures minimal response

Non-maximum suppression

- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Only eight angle directions possible
- Suppress all pixels in each direction which are not maxima
- Do this in each marked pixel neighborhood

Remove spurious gradients

$|\nabla G|(x, y)$ is the gradient at pixel (x, y)

Non-maximum suppression

- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Only eight angle directions possible
- Suppress all pixels in each direction which are not maxima
- Do this in each marked pixel neighborhood

Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Non-max Suppression

Before

After

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
- Assures minimal response
- Use hysteresis and connectivity analysis to detect edges

Hysteresis thresholding

- Avoid streaking near threshold value
- Define two thresholds: Low and High
- If less than Low, not an edge
- If greater than High, strong edge
- If between Low and High, weak edge

Hysteresis thresholding

If the gradient at a pixel is

- above High, declare it as an 'strong edge pixel'
- below Low, declare it as a "non-edge-pixel"
- between Low and High
- Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'strong edge pixel' directly or via pixels between Low and High

Hysteresis thresholding

Source: S. Seitz

Final Canny Edges

Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

- Thin multi-pixel wide "ridges" down to single pixel width

4. Thresholding and linking (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

Canny Edge Detector

- Classic algorithm in Computer Vision / Image Analysis
- Commonly implemented in most libraries
- e.g. in Python you can find it in the skimage package. OpenCV also has an implementation with python bindings.

Corners (and Interest Points)

- How to find corners? What is a corner?

Questions?

