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Abstract. In this paper we describe ti®rSpec Temporal Logi=TL), the new
temporal property-specification logic &brSpec¢ Intel’s new formal specifica-
tion language. The key features of FTL are as follows: it isna@dr temporal
logic, based on Pnueli's LTL, it is based on a rich set of lagand arithmeti-
cal operations on bit vectors to describe state propeitiesables the user to
define temporal connectives over time windows, it enablesigter to define reg-
ular events, which are regular sequences of Boolean evamisthen relate such
events via special connectives, it enables the user to expreperties about the
past, and it includes constructs that enable the user to Imualéple clock and
reset signals, which is useful in the verification of hardevdesign.

1 Introduction

One of the most significant recent developments in the aréaofal verification is the
discovery of algorithmic methods, calledodel checkingfor verifying temporal-logic
properties ofinite-statesystems. Model-checking tools have enjoyed a substamiibl a
growing use over the last few years, showing ability to disecsubtle flaws that re-
sult from extremely improbable events. While until recgrttiese tools were viewed
as of academic interest only, they are now routinely useddustrial applications.
Several model-checking tools are widely used in the sendigotor industry: SMV,
a tool from Carnegie Mellon University [McM93], with manydastrial incarnations
(e.g., IBM's RuleBase [BBL98]); VIS, a tool developed at theiversity of California,
Berkeley [BHSV"96]; FormalCheck, a tool developed at Bell Labs [HHK96] arar-m
keted by Cadence; and Forecast, a tool developed in Intekamskd for property and
equivalence formal verification [CF1].

A key issue in the design of a model-checking tool is the aloicthe formal spec-
ification language used to specify properties, as this laggus one of thgrimary
interfaces to the tool [Kur97]. (The other primary intergis the modeling language,
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which is typically the hardware description language usethk designers). In design-
ing a formal specification language one has to balance dex@mrgeting needs:

— Expressiveness: The language has to be expressive enough to cover mostrprope
ties likely to be used by verification engineers. This shantdude not only prop-
erties of the unit under verification but also relevant prtipe of the unit's envi-
ronment.

— Usability: The language should be easy to understand and to use fficaton en-
gineers. This rules out expressive languages such asthadulus [Koz83], where
alternation of fixpoints is notoriously difficult to undeasid. At the same time, it
is important that the language has a rigorous formal semstdi ensure correct
compilation and optimization and enable formal reasoning.

— Compositionality: The language should enable the expression of complex prope
ties from simpler one. This enables maintaining librariggroperties and property
templates. Thus, we believe that the language should beclosderall of its
logical connectives, both Boolean and temporal, enablioggrty reuse. The lan-
guage should also enable modular reasoning, since cueemtsnductor designs
are exceedingly complex and are amenable only to modulapappes.

— Implementability: The design of the language needs to go hand-in-hand with the

design of the model-checking tool. In considering varicurgguage features, one
should balance their importance against the difficulty afuging that the imple-
mentation can handle these features.

— Dynamic Validation: Once a property is specified, it should be used by both the
formal verification capabilities and by the dynamic validat i.e., simulation, ca-
pabilities. Thus, a property must have the same semantiear{(ing) in both dy-
namic and formal validation and should also be efficient fathb

In spite of the importance of the formal specification larggiathe literature on
the topic is typically limited to expressiveness issue® @scussion below). In this
paper we describe FTL, the temporal logic underlyfogSpeé, which is Intel’'s formal
specification language. The key features of FTL are as fallow

— FTL is alinear temporal logic, based on Pnueli's LTL [Pnu77],

— it is based on a rich set of logical and arithmetical operation bit vectors to
describe state properties (since this feature is orthddortlae temporal features of
the logic, which are the main focus of this paper, it will netdiscussed here),

— it enables the user to define temporal connectives over timdows,

— it enables the user to define regular events, which are regedpiences of Boolean
events, and then relate such events via special connectives

— it enables the user to refer to the history of the computaiging past connectives,
and

— it includes constructs that enable the users to model neiltiocks and reset sig-
nals, which is useful in the verification of hardware design.

— it has a rigorous formal semantics for model verification airdulation, and the
complexity of model checking and reasoning is well undergto

! ForSpec includes also a modeling language. It also incluaiésus linguistic features, such as
parameterized templatewhich faciliates the construction of standard propetbydries.



The design of FTL was started in 1997. FTL 1.0, with its assed tools, was
released to Intel users in 2000. FTL 2.0 is currently undsigie in collaboration with
language design teams from Co-Design Automation, Synopsys Verisity Design,
and is expected to be realesed in 200Phe language described in this paper is close
to FTL 2.0, though some syntactical and semantical detagdlg anange by the final
release. The goal of this paper is not to provide a full docuat&on of FTL, but rather
to describe its major features, as well as explain the ratefor the various design
choices. Our hope is that the publication of this paper, ooitant with the release of
the language to users, would result in a dialog on the subjgatoperty-specification
logic between the research community, language develpgeddanguage users.

2 Expressiveness and Usability

2.1 The Nature of Time

Two possible views regarding the nature of time induce twzesyof temporal logics
[Lam80,Pnu85a]. Iinear temporal logics, time is treated as if each moment in time
has a unique possible future. Thus, linear temporal formatea interpreted over linear
sequences, and we regard them as describing the behavigindla computation of
a system. Irbranchingtemporal logics, each moment in time may split into various
possible futures. Accordingly, the structures over whichanghing temporal formulae
are interpreted can be viewed as infiritenputation treeeach describing the behavior
of the possible computations of a nondeterministic system.

In the linear temporal logic LTL [Pnu77], formulae are corspd from the set of
propositional constants using the usual Boolean conretas well as the temporal
operatorsd (“always”), F' (“eventually”), X (“next”), andU (“until”). In the branch-
ing temporal logic CTL [CE81], every temporal operator ie@eded by theniversal
path quantifierd or theexistentialpath quantifierE. Most incarnations of SMV (see
[BBL98] and [CCGRO00]), as well as VIS, use CTL, or extensioh#, as their prop-
erty specification logic. In contrast, Cadence SM)Mes LTL, while FormalCheck uses
a set of property templates that collectively has the exgiregpower ofw-automata
(also a linear-time formalism) as its property specificatianguage [Kur98]. ESL, a
language for executable protocol specification, is closelgted to LTL [CGLT00].
Temporale, a property-specification language used in simulationlsis a linear-time
formalism [Mor99]. Our first decision in designing a propespecification logic for
the next generation Intel model-checking tool was the ahbietween the linear- and
branching-time approaches.

We chose the linear-time approach after concluding thabthaching-time frame-
work suffers from several inherent deficiencies as a franmkeviar property specifica-
tion logics (for a more thorough discussion of these isseeq¥ar01]):

2 Synopsys plans to incorporate ForSpec into OpenVera, an-sparce hardware verification
language. Verisity Design plans to incorporate FTL intoekerification language. Co-Design
Automation plans to merge FTL into the SUPERLOG design anifiegtion language. See
pressrelease &ttt p: / / bi z. yahoo. conf bw/ 011105/ 50371_1. htnl .
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— Verification engineers find branching time unintuitive. |IB\xperience with Rule-
Base has been that “nontrivial CTL equations are hard to nstaied and prone to
error” [SBF97].

— The branching-time framework was designed for reasonimgiatiosedsystems.
Bran-ching-time modular reasoning is exceedingly hard §igV

— Combining formal and dynamic validation (i.e., simulajitechniques for branching-
time model checking is possible only in a very limited fashias dynamic valida-
tion is inherently linear.

LTL includes several connectives that handle unbounded.tiror example, the
formula eventually p asserts that will hold at some point in the future. There’s, how-
ever, only one connective in LTL to handle bounded time. Beeshatp will hold at
time 5, one has to writenext next next next next p. Asserting thap will hold
between time 10 and time 15, is even more cumbersome. By tisiiegvindowd=TL
provides users with bounded-time temporal connectivesu(@ed temporal connec-
tives are typically studied in the context of real-time kegyicf. [AH92]). For example,
to express in FTL thap will hold between time 10 and time 15, one simply writes
eventually [10, 15] p.

2.2 w-Regularity

Since the proposal by Pnueli [Pnu77] to apply LTL to the sfieation and verifica-
tion of concurrent programs, the adequacy of LTL has beerhyistudied. One of the
conclusions of this research is that LTL is not expressivaugh for the task. The first
to complain about the expressive power of LTL was Wolper [@8blwho observed
that LTL cannot express certainregular events (in fact, LTL expresses precisely the
star-freew-regular events [Tho81]).

The weakness in expressiveness is not just a theoretioal iEyen when attempting
to verify simple properties, users often need to expresvagit properties, which can be
rather complex, of the environment of the unit under verifara These properties are
theassumptionsf the Assume-Guarantee paradigm (cf. [Pnu85b]). Assunseemtee
reasoning is a key requirement at Intel, due to the high ceriiyl of the designs under
verification. Thus, the logic has to be able to express assangthat are strong enough
to imply the assertion under verification. In other wordsegi models\/ andE and a
propertyy that E|M = ¢ (we use| to denoteparallel compositiol, the logic should
be able to express a propeftysuch thattl = ¢ andM = ¢ — . As was shown
later [LPZ85], this makes LTL inadequate fmodularverification, since LTL is not ex-
pressive enough to express strong enough assumptionstabartvironment. It is now
recognized that a linear temporal property logic has to Ipgessive enough to specify
all w-regular properties [Pnu85b]. Several extensions to LTeHaeen proposed with
the goal of obtaining fullv-regularity: (a) Vardi and Wolper proposed ETL, the exten-
sion of LTL with temporal connectives that correspondtautomata [Wol83,VW94]),
(b) Baniegbal and Barringer proposed extending LTL with dixp operators [BB87]
(see also [Var88]), yielding a linearcalculus (cf. [Koz83]), and (c) Sistla, Vardi, and
Wolper proposed QPTL, the extension of LTL with quantifioatiover propositional
variables [SVW87].



As fixpoint calculi are notoriously difficult for users, wedded against the fixpoint
approach. Keeping the goal of implementability in mind, ésmalecided against a full
implementation of ETL and QPTL, as full QPTL has a nonelemsrtime complexity
[SVW8T7], while implementing full ETL, which explicily inagorates Biichi automata,
requires a complementation construction for Blichi aut@aintill a topic under active
research [Fin01,KVO01b]. Instead, FTL borrows from ETL, adlvas PDL [FL79], by
extending LTL with regular evertsAs we show later, this extension provides us with
full w-regularity.

2.3 The Past

Another problem with LTL is the lack of temporal connectitesiescribe past events.
While such connectives are present in works on temporatlbgiphilosophers, they
have originally been purged by computer scientists matatl a strive for minimality,
following the observation in [GPSS80] that in applicatievith infinite future but finite
past, past connectives do not add expressive power. Laiaever, arguments were
made for the restoration of the past in temporal logic. That irgument is that while
past temporal connectives do not add any expressive pdweeprice for eliminating
them can be high. Many natural statements in program spaitificare much easier to
express using past connectives [RK83]. In fact, the beswvkrrocedure to eliminate
past connectives may cause an exponential blow-up of th&dened formulas [CS01].

A more important motivation for the restoration of the pasagain the use of tem-
poral logic in modular verification. In global verificatiome uses temporal formulas
that refer to locations in the program text [MP83]. This isalutelyverbotenn modu-
lar verification, since in specifying a module one can refdy do its external behavior.
Since we cannot now refer to program location we have insteaefer to the history
of the computation, and we can do that very easily with pasheotives [BK85]. This
lead to the study of extensions of LTL with past connectivé*485,Var88, KMMP93].
These extensions allow arbitrary mixing of future and pastnectives, enabling one to
say, for example, “eventually, sometimes in the pasiplds untilg holds”.

For the same motivation, FTL also includes past connectiyakke the aforemen-
tioned extensions of LTL with past connectives, the usageef connectives is circum-
scribed. We found little practical motivation to allow atriairy mixing of future and past
connectives, and such mixing has a nonnegligible impleatimt cost. In fact, since
the motivation of adding the past is to enable referring ®hfstory of the computa-
tion, FTL's past connectives allow only references to suistolny. Thus, FTL allows
references to past values of Boolean expressions and regagjaences of Boolean ex-
pressions. FTL does not allow, however, references to [@éisés of temporal formulas.
Thus, past connectives in FTL are viewed as Boolean rathartdmporal connectives.

4 For other extensions of LTL with regular events see [ET9RBITThese works propose adding
regular events to theuntil operator. We prefer to have explicit connectives for regalents,
in the style of the “box” and “diamond” modalities of PDL.

51t requires using two-way alternating automata, rathentbee-way alternating automata
[KPVO1].



2.4 Hardware Features

While the limited mechanisms for automata connectives arahtification over propo-
sitional variables are sufficient to guarantee fudtegularity, we decided to also offer
direct support to two specification modes often used by watifon engineers at Intel:
clocksandresets Both clocks and resets are features that are needed tossdthe
fact that modern semiconductor designs consists of iniegparallel modules. As we
shall see, while clocks and resets have a simple underlpingtion, explained below,
defining their semantics formally is rather nontrivial.

Today’s semiconductor design technology is still domidditg synchronous design
methodology. In synchronous circuits, clocks signals hyogize the sequential logic,
providing the designer with a simple operational model. Wlthe asynchronous ap-
proach holds the promise of greater speed ([KvB99]), désggasynchronous circuits
is significantly harder than designing synchronous ciecu@urrent design methodol-
ogy attempt to strike a compromise between the two appr@abiieusing multiple
clocks. This methodology results in architectures thagésbally asynchronous but lo-
cally synchronous. The temporal-logic literature mosgjgiares the issue of explicitly
supporting clocks (clocks, however, are typically studiedhe context of modelling
languages, see [CLM98]). Liu and Orgun [LO99] proposed goemal framework with
multiple clocks. Their framework, however, supports clegia a clock calculus, which
is separate from the temporal logic. Emerson and Trefler [ P®oposed an exten-
sion of LTL in which temporal connectives can be indexed withltiple independent
clocks.

In contrast, the way clocks are being used in FTL is viadheent clock Specifi-
cally, FTL has the construathange_on c¢ ¢, which states that the temporal formyla
is to be evaluated with respect to the clegkhat is, the formulg is to be evaluated in
the trace defined by the high phases of the clackhe key feature of clocks in FTL is
that each subformula may advance according to a differenkcl

Another aspect of the fact that modern designs consist efacting parallel mod-
ules is the fact that a process running on one module can k¢ bigsa signal com-
ing from another module. As noted in [Sum99], reset contad long been a critical
aspect of embedded control design. FTL directly suppodstrsignals. The formula
accept_on a ¢ states that the property should be checked only until the arrival of
the reset signal, at which point the check is considered to haueceededn contrast,

reject_on r y states that the propergyshould be checked only until the arrival of the
reset signat, at which point the check is considered to hdaied. The key feature
of resets in FTL is that each subformula may be reset (pedjtior negatively) by a
different reset signal.

3 Basic Features

3.1 CoreFTL

Formulae of FTL are built from a s&rop of propositional constants. (Actually, FTL
provides a rich set of logical and arithmetical operation$i vectors to describe state
properties. All vector expressions, however, are compiiemiBoolean expressions over



Prop, so in this paper we suppress that aspect of the language)sklosed under the
application of Boolean connectives (we Us§, and&&, implies, iff for negation,
disjunction, and conjunction, implication, and equivaenrespectively). FTL also en-
ables us to refer to future and past values of Boolean exipress-or a Boolean ex-
pressiorb, we refer to the value dfin the next phaseby future (b); this is essentially
the “primed” version ofb in the Temporal Logic of Actions [Lam94]. For a Boolean
expressiorb, FTL usespast (b, n), wheren is a positive integer, to refer to the value
of b, n phases in the past. Note thaast and future are Boolean connectives, so,
for example, ack implies past (send, 10)” is also a Boolean expression. Note also
that the future connective is more limited than thgast connective; one cannot write
future (b, 2). The rationale for that is thafuture is a somewhat nonstandard Boolean
connective, since the value dfiture (p) is indeterminate at a given point in time. The
role of future is mostly to defindransitions e.qg.,(!b)&& future (b) holds at points
at whichb is about to rise. FTL is also closed under the temporal camnrescnext,
wnext, eventually, globally , until and wuntil .

FTL is interpreted ovecomputationsA computatioris a functionr : N — 2P,
which assigns truth values to the element®adp at each time instant (natural num-
ber). The semantics of FTL's temporal connectives is wethin. For example, for a
computationr and a point € w, we have that:

— m,i |=pforp e Propiff p € n(3).

m, i |= future (b) iff 7, + 1 = b.

w4 |= past(b,1)iff i > 0andnr,i — 1 = b.

7,4 |= past (b,n)iff i > 0andr,i —1 = past (b,n — 1).

Note that thepast operator cannot go “before 0”. Thus,0 & past (b,1). In

other words, the default past value is 0.

— m,i = e until ¢ iff for somej > i, we haver, j |= ¢ and forall k,i < k < j, we
haver, k |= .

We say that a computatiensatisfiesa formulayp, denotedr |= ¢, if 7,0 = . We use
models(p) to denote the set of computations satisfyjng

Time windows modify the temporal connectives by specifyimigrvals in which
certain events are expected to occur. The aim is to enablexjfression of assertions
such asglobally (req — next[10] ack). The syntax of temporal connectives with
intervals is as follows:

1. next[m] ¢, wherel < m < oo
2. eventually [m,n]p, globally [m,n]e, ¢ until [m, n]y, andy wuntil [m, nJy where
0 <m <n < oo (butm =n = co is not allowed)

The semantics of temporal connectives with time windowsefingéd by induction
on the window lower bound. For example,

—milEnext[l]eifmi+lEe
— m,i = next[m] g, form > 1,if mi+ 1= next[m—1] ¢

% Note that the notion of next phase is independent from themaf the next clock tick, which
is discussed later in the paper.



— m,i |= ¢ until [0,n] ¢ if for somek, n > k > 0, we have that, i + k |= ¢ and for
allj,0 < j < k,we have thatr,i + j = .
—7,i = euntl [m,n]yif m,i+1FE@untl[m—1,n—1]¢

Clearly, time windows do not add to the expressive power df,Since formulae
with time windows can be translated to formulae without vawd. Since the lower and
upper bounds of these windows are specified using decimabarsneliminating time
windows may involve an exponential blow-up. (See discusbelow of computational
complexity.)

The practical implication of this result is that users sldooié careful with time win-
dows. The formulanext [m] p could force the compiler to introduee BDD variables,
so large windows could result in “state explosion”.

3.2 Regular Events

Regular eventdescribe regular sequence$afolean eventsvhere Boolean events are
simply Boolean expressions in terms of propositional camst For example, the reg-
ular expressiorisend, (lack)*, send) (comma denotes concatenation) describes a se-
quence inwhich there is n@k event between tweend events. Thusglobally !(send, (lack)*, send)
forbids the occurrence of such sequences. Regular evemttoamed from Boolean
events (denoted here with, b;, etc.) using the follwing constructs(a) ,: concatena-
tion, (b)\: glue @; ...ap\b1 ... by iS a1 ... apn&&d; ... by), (€)||: union, (d)ax: zero

or more, (e+: one or more, and (§{m,n}: betweenn andn occurrences of. With

each regular evertwe associate, in the standard way [HU79], a langua@ of finite
words over the Boolean events. (It is important to note thiatsemantics refers only to
L(e) and not to the syntax af. Thus, adding further regular operators can be accom-
plished without any need to adapt the semantics. (The For&mapiler only requires

a translation of regular expression to finite-state autamat this respect FTL differs
from other property-specification languages, such as SIBRBIDET01] or Temporal

e [Mor99], where the syntax of regular events is intertwineithvihe semantics of the
logic.) We do not allow regular events whose language costie empty word (this is
checked by the compiler).

We define the semantics of regular events in termighit satisfactionn,i = e
if for somej > i we haver,i,jl|= e. The intuition of tight satisfaction is that the
evente holdsbetweerthe pointsi andj. Formally,,, jE e if there is a wordw =
boby ...b, € L(e),n =j —isuchthatr,i + k = b forall k, 0 < k < n.

We can also use regular events to refer to the pastidfa regular expression, then
ended (e) is a Boolean expression saying that the regular eydms just “ended”.
Formallyr,i |= ended (e) if there is somg < i such thatr, j, i e. Note thatj need
notto unique. For examplesnded (true, (true, true)x) holds at all evend, 2, . . .) time
points.

Since we have defined, i = e, we can now combine regular events with all other
connectives. Thusglobally !(req, (lack)*, ack) says that the computation cannot con-
tain a sequence of states that mately, (lack)*, ack) and globally (p iff ended (req, (lack)*, ack)

" FTL 2.0 will include some additional regular constructs.



says thap holds precisely at the end of sequences of states that aigh{!ack)*, ack).
FTL has two additional temporal connectives to faciliatgesisons about regular events.
The formulae follows_by ¢, wheree is a regular event and is a formula, asserts that
somee sequence is followed by. The formulae triggers ¢, wheree is a regular event
and ¢ is a formula, asserts that all sequence are followed by. The follows_by
and triggers connectives are essentially the “diamond” and “box” mddsdiof PDL
[FL79]. Formally:

— 7,1 |= e follows_by ¢ if for somej > i w,i,jE eandr, j |= .
— 7,1 |= e triggers ¢ if for all j > i such thatr, i, j& e we haver, j |= ¢.

For example, the formula
globally ((req, (lack)*, ack) triggers (true™, grant, (Irel)*, rel))

asserts that a request followed by an acknowledgement neufsillowed by a grant
followed by a release. Note thédllows_by and triggers are dual to each other.

Lemmal. 7,i =!(e follows_by ) iff 7,i |= e triggers (lp).

4 Hardware Features

FTL offers direct support to two specification modes ofteediby verification en-
gineers at Intelclocksandresets While these features do not add to the expressive
power of FTL, expressing them in terms of the other featufeh® language would
be too cumbersome to be useful. While these features hawaaiotuitive semantics,
capturing it rigorously is quite nontrivial, as we show iretrest of this section. Our
semantics, however, is defined in a modular fashion, so ugesdo not use these ad-
vanced features can continue to use the semantics of S&ctivefining the semantics
in a modular fashion was necessary to achieve a proper lmb@ieieen expressiveness
and usabilty, ensuring that users do not need to understangdlex semantic aspects in
order to use the basic features of the language. (The Fol$geoGuide describes the
language at an intuitive level, while the ForSpec Referdnarual provides the formal
semantics in a modular fashion.)

4.1 Clocks

FTL allows formulae of the formchange_on ¢ ¢, which asserts that the temporal
formula is to be evaluated with respect to the clagkhat is, the formulg is to be
evaluated in the trace defined by the high phases of the eldekery Boolean expres-
sion can serve as a clock. Note that the computation is sahapline high phases of
rather than at the points whegechanges. Focusing on the high phases is simpler and
more general. For example, as we saw earlier the high phaffesBoolean expression
(16)&& future (b) are the points at whichis about to rise.

As soon as we attempt to formalize further this intuition, realize that there is
a difficulty. How does one guarantee that the clecictually “ticks”, i.e., has high
phases? We could have required that all clocks are guatagéek infinitely often,



but then this would have to be checked. Since we wanted tougiges the ability to use
arbitrary Boolean events as clocks, we decided not to reghat a clock be guaran-
teed to tick. Instead, we introduced two operators. The fdanchange_on c p asserts
thatc doestick andy holds with respect te, while change_if ¢ ¢ asserts thaf cticks
thenyp holds with respect te. Since the concept of “next tick” is now not always de-
fined, we need to introduce a weak dwahext to the next connective;next requires
the existence of a next tick, whileenext does not (see formal semantics below).

What should be the formal meaning of “holds with respect t® 8uppose for sim-
plicity that ¢ has infinitely many high phases. It seems intuitive to talkeptiojection
w[c] of a computationr to be the sequence of value§y), 7(i1), 7 (i2), . . . of 7 at the
pointsiy, i1, 2, . . . at whiche holds. We then can say thasatisfieschange_on c ¢ if
w[c] satisfiesp. The implication of such a definition however, would be to malocks
cumulative That is, if change_on d 1 is a subformula of, theniy needs to be evalu-
ated with respect to a projectiaric] . . . [d]. This went against the intuition of our users,
who want to make assertions about clogkthoutlosing access to faster clocks. For
example, the subformulahange_on d « could be a library property, describing an
environment that is not governed by the cleckRecall that multiple clocks are needed
to capture local synchrony in a globally asynchronous deyithis led to the decision
to define the semantics of clocks in a non-cumulative fashibis is done by defining
the semantics as a four-way relation, between computatiamsts, clocks, and formu-
lae, instead of a three-way relation as before. That is, erld@fi-hand-side of= we
have a tripler, i, ¢, wherec is aclock expressioifsee below), which is theontextin
which the formula is evaluatétiBefore we issue anghange_on ¢ or change.if ¢,
the default clock expressionisue. Thatis,r,i |= ¢ if 7,1, true |= .

The semantics of propositional constants is insensitivedoks:

- mi,cEpifriEDp.

FTL , however, has a special propositional constaluick that enables users to refer
explicitly to clock ticks. To avoid circularity, howeverlork expressions are Boolean
expressions that do not refer wock . Given a clock expressionand a Boolean ex-
pressioni, we denote byc — d] the result of substitutingfor clock in d. For example
if ¢isp&& future (p) andd is clock &&gq, then[c — d] is (Ip&& future (p))&&yq.
Note thatc — d] is a clock expression, since it does not referctock . The semantics
of clock is defined as follow:

— m,i,c = clock if m,i = c.

In this case we say thatticksat point: of 7, or, equivalently, that is atick pointof ¢
on 7. When we refer to tick points < ... < i; at or afteri, we assume that no other
point betweeni andji; is a tick point.

We start defining the four-way sematics by defining satigfaabdf the future and
past connectives. Recall that the role dfiture is to define transition constraints.
Consequently, its semantics is insensitive to clocks.

81t is quite common in logic to define satisfaction of a formutith respect to a structuture
and a context. For example, for 1st-order formulas with fragables the context provides an
assignment of domain elements to the free variables.



— m,i,c = future (b) if m,i + 1= 0.

In contrast, thepast operator is extended to allow reference to clocks. For a &l
expressiorb, FTL usespast (b, n, d), wheren is a positive integer and is a Boolean
expression, to refer to the value bfin the phase of the cloc, n ticks in the past.
Formally,

— m,i,c |= past (b,1,d)if m,j,[c — d] = b, wherej is the the largest integer less
thani such thatr, j, [c — d] |= d.

- m,i,c E past(b,n,c)if 7,j,[c = d] E past(b,n — 1,d) wherej is the the
largest integer less tharsuch thatr, j, [c — d] |= d.

Note that if there is ng < i such thatr, j, [c — d] = d, thenr, i, c = past (b, n,c).
We continue defining the four-way sematics by defining sattébn of regular events.

Recall that satisfaction of regular events is defined in savfiight satisfactionr, i, ¢ =

e if forsomej > i we haver, i, j, cg e. Tight satisfaction, which is a five-way relation,

is defined as followsr, i, j, cE e if

— there aren > 0 tick pointsi; < ... < i, of ¢ afteri such that = iy < ¢; and
ip = j!
— thereisawordB = byb; ...b,, € L(e) such thatr,i,,, c = b, for0 < m < n.
Note that eveluation of regular events always starts atithgemt point, just as a Boolean
event is aways evaluated at the present point. Once we h&neddight satisfaction
with clocks, the semantics oénded is as beforerr,i = ended (e) if there is some
Jj < isuch thatr, j,iE e.
FTL has a special regular evetitk , which is an abbreviation for the regular event
((* clock )*, clock ). Thus,r,, jE tick if j is the first tick point of at or afteri.
We can now define the semantics of the temporal connectisegxample:

— m,i,¢c E nexty if for somej > i + 1 we have thatr,i + 1, j,¢c|= tick and
T J,c .

— m,i,c = wnext p if for some allj > i + 1 we have that ifr,i + 1, j, cE tick,,
then, j, ¢ |= .

— 7,i,c = @ until ¢ if for somej > i we have thatr, j = c andx, j, ¢ E ¢, and
forall k,i < k < j such thatr, k |= ¢, we haver, k, c = ¢. (Note that only tick
points ofc are taken into consideration here.)

— m,i,c = etriggers pifforall I > k > j > i such thatr,i, j, ¢ tick, m, 4, k, cg
eandr, k,l, cE tick, we have that, [, c = ¢. (Note that the evaluation efstarts
at the first tick point at or after, and the evaluation of starts at the first tick point
at or after the end of.)

We now define the semantics change_on and change_on :

— m,i,c¢ = change_ond f if there exists somg > i, such thatr,i,j,[c — d]=
tick andw, j,[c — d] E f.

— m,i,c = change.if d f if wheneverj > i is such thatr, i, j, [c — d]E tick, then
T, j,[c = d],a,r = f.



Both change_on and change_if force the evaluation of the formula at the nearest
tick point, but only change_on requires such a tick point to exist. As one expects, we
get duality betweemext and wnext and betweerchange_on and change._if .

Lemma 2.

— m,i,c El(next ) iff i, c = wnext lo.
— m,i,c [E!( change_on cy) iff m,i,c |= change_if ¢ (l).

As an example, the formulahange_on c1 ( globally ( change.if ¢2 p)) asserts that
the clockel ticks andp also holds at the first tick, if any, @R at or after a tick of:1.

4.2 Resets

FTL allows formulae of the formaccept.on a ¢, which asserts that the propergty
should be checked only until the arrival of a reset signait which point the check is
considered to haveucceededand reject_on r ¢, which asserts that the property
should be checked only until the arrival of a reset signalt which point the check is
considered to haviailed. In reset control-design methodology, a local reset signak
not replace a global reset signal. Thus, while our semafaigaultiple clocks was non-
cumulative, our semantics for resets is cumulative. Anotimportant feature of our
semantics is that reset signals asynchronoughat is, they are not required to occur
at tick points; rather, they are allowed to occur at any polot capturesynchronous
resetsthe users can writeccept_on (a&& clock ) ¢ or reject.on (r&& clock ) ¢.
As we shall see, we pay a price for the added expressivenessynthronous resets
with additional complexity of the semantics, as we have twaat for resets between
tick points.

As we saw earlier, we capture the semantics of clocks by gddinlock to the
context in which formulae are evaluated, resulting in a feay semantical relation.
To capture the semantics of resets, we have to add both teetsgignal and the reject
signal to the context, resulting in a six-way semanticahtieh. That is, on the left-
hand-side of= we have a quintuple, i, c, a, r, wherer, i, c are as before, andandr
aredisjoint Boolean events defining the accept and reject signals, cteply. Before
we issue anyaccept.on a or reject.on r, the default reset signals are bdtise,
respectively. That isy, i |= ¢ if 7,1, true, false, false = .

The semantics oficcept_on and reject_on is defined by:

- m,i,c,a,r = acceptonbif i, c | a||(b&&!r) orm,i,c, a||(b&&!r),r = ¢
- m,i,¢,a,r |= rejectonboif m, i, c |~ r||(b&&'a) andr, i, ¢, a, r||(b&&!la) = ¢

Note how the cumulative semantics ensures that the accepépatt signals are always
disjoint. Also, outer resets have preference over innesone

The presence of reset signals requires us to redefine thebasig semantics of
propositions and Boolean connectives. An important issweia the meaning of nega-
tion in the reset-control design methodology. Since negatwitches success and fail-
ure, it should also switch accept and reject signals. Weethez define



- m,i,¢c,a,r = p, forp € Prop if eitherr,i,¢ = a orm,i,c = pandn,i,c |=
Ir (That is, the accept “signal” always makes a propositior,tmhile the reject
“signal” always makes it false. It may seem that we are gitimgaccept signal a
preference over the reject signal, but as the accept anct ®gnals can never be
true simultaneously, their roles are actually symmetric.)

—mi,ca,r Elpif mi,c,ra lE .

We now define satisfaction of regular events. Recall agaitdhtisfaction of regular
events is defined in terms of tight satisfactiani, c, a, r |= e if for somej > i we have
T, 1, J, c, a, rE e. Tight satisfaction, which is a seven-way relation, is dedias follows:
7,1, j,¢ a,rE eif

- mk,c Ela&&!rfori <k < j,
— there are precisely > 0 tick pointsi; < ... < ¢; of ¢ such that = iy < ¢; and
1 < J,
— there is a wordB = bgby ...b, € L(e), n > [ such thatr,i,,,c = by, for
0 <m < [, and either
e 7, j,cl=aandi; =j,or
e 7T,j,¢=aandm, iy, c = b, or
e | =n, andi, = j, andr, j, ¢ = by,, andnr, j, ¢ [=!r.

Note that in the first case, only the preliyb; ... b, is checked, in the second case,
only the prefixbgb; . ..b; is checked, and in the third case the wdeds checked in
full.) As we remarked earlier, the complexity of the semesiis the result of the need
to account for resets between tick points. In the first tweesathe checking oB is
terminated due to an accept signal. We denote this,byj, ¢, a, rig, e.

Let 7 be a computation, a point,c a clock expression, angd andr reset expre-
sions. Thentick(n,i,c,a,r) is the leastj such thatj > ¢ andm, i, j,c,a,r|= tick
(note that there is at most one sughNote thattick(n, 1, ¢, a,r) need not be defined,
since we may have that i, j,c,a,r f£ tick forall j > . If it is defined, we write
tick(m,i,c,a,r) J. Note thatr, i, j, ¢, a, 7E tick can hold in two (nonexclusive) ways:

— 7,j [ ¢, in which case we writeick(r,i,c,a,r) ., Or
— m,j, ¢ = a, in which case we writéick(r, i, ¢, a,r) |q.

We write “j = tick(m,i,c,a,r)" as an abbreviation fortick(r,i,c,a,r) | andj =
tick(m,i,c,a,r).”

We now illustrate the semantics of temporal connectivesimgitlering thetriggers
connective:

— m,i,c,a,r |= e triggers ¢ if j = tick(w,i,c,r,a) entails that
e tick(m,i,c,r a) ], does not hold and
e forall £ > j such thatr, j, k, ¢, r, ag e we have that
x 7,J,k,c,r, afE, edoes not hold and
- | = tick(m, k, c,r, a) entails thatick(r, k, c,r, a) |, does not hold
- mlca,r = f.



Note that the definition is a direct extension of the defimitsd triggers in Section 4.1.
The impact of resets is through the various conditions ofigfanition. The eventdick ,
e, and againtick function as antecedents of an implication, and thus havativeg
polarity, which explains why the roles afandr are reversed in the antecedents.

As a sanity check of the not-immediately-obvious semarntfagsets we state an-
other duality lemma.

Lemma 3.
m,i,c,a,r El(accept.on d ) iff m,i,c,a,r |= reject.on d (lp).

As an example, the formulahange_on ¢ (accept.on a (p until ¢)) declares: to be
a strong clock and to be an accept signal, relative to whigholds untilg holds.

5 Expressiveness and Complexity

The addition of regular events and the new connectivelows_by and triggers ) has
both a theoretical motivation and a pragmatic motivatioegiar events were shown
to be useful in the context of hardware verification, cf. [BI®,Mor99]. More funda-
mentally, as noted earlier, it was observed in [Wol83] thEk Icannot express certain
w-regular events, and it was shown in [LPZ85] that this makKésihadequate for mod-
ular verification. Letregular LTL be the extension of LTL with regular events and the
connectivesfollows_by and triggers . Regular LTL, which is strictly more expressive
than LTL, is expressive enough to capturgegularity.

Theorem 4. Let L be anw-regular set of computations. Then there is a formgjaof
regular LTL such thatnodels(¢) = L.

Proof Sketch: By [Cho74], everyw-regular language can be expressed as a finite union
of terms of the formL; - Ly, whereL; is a regular language (of finite words) ahd is
a language of infinite words defined by a deterministic Bisehomaton. Thus, we can
expressL as a disjunction of formulae of the form follows_by ¢, provided we can
express languages of deterministic Buchi automata. Sarofpulages can be expressed
by disjunctions of formulae of the formy &&(e; triggers e2), where bothe; andes
are regular events. O

A consequence of this theorem is that FTilly supportsassume-guarantee reason-
ing, in the following sense. On one hand, we have that, fomatlels) and E and
for all FTL formulasy, ¢, if E |= ¢ andM |= ¢ — ¢ thenE|M |= . On the other
hand, for all models\/ and E and for every FTL formula) such thatE|M = o,
there is an FTL formula such thatE = ¢ andM = ¢ — . Furthermore, ev-
ery FTL formula can serve both as an assumption and as artiaegguarantee), and
as assume-guarantee reasoning is performed via modelingetke complexity of
such reasoning is the same as that of model checking. (Noteg\ter, that full sup-
port of assume-guarantee reasoning is not guaranteed lmgetesinclusion of regular
events. Sugar adds regular events to CTL, resulting in adrirear-branching seman-
tics [BBDE"01], in the style of CTI [EH85], which makes it rather difficult to fully
support assume-guarantee reasoning [Var01]. In Temgpthe main focus is on de-
scribing finite sequences using regular expressions. titislear whether the language



has full w-regularity [Mor99], which is required for full support osaume-guarantee
reasoning.)

Reasoning and verification for FTL formulas is carried oattyie automata-theoretic
approach [Var96]: to check satisfiability of a formyaone constructs a nondeterminis-
tic Buchi automaton acceptingodels(p) and check its emptiness, and to model check
a formula one constructs a nondeterministic Biichi automé&br the complementary
formula, intersects it with the model and check emptinegxase of the richness of
FTL, the construction of the automaton is quite non-trivéadd will be described in full
in a future paper. The ForSpec compiler actually generasgsdolic representation of
the automaton; the size of this representation is lineanénéngth of the formula and
in the size of the time windows. Since the lower and upper dewf these windows
are specified using decimal numbers, time windows may ivatvexponential blow-
up, as the formulanext [2"] p is of lengthO(n). (It was noted in [AH90] that such
succinctness cause an exponential increase in the cornypdéxemporal reasoning.)

Theorem 5. The satisfiability problem fdfTL without time windows is PSPACE-complete.
The satisfiability problem fofFTL is EXPSPACE-complete.

While reasoning in FTL is exponential in terms of the formsilze and time windows’
size in the worst case, aggressive optimization by the clemensures that the worst
case almost never arises in practice; the computationdehetk of model checking
is due to the large nummber of design states. (In fact, iregdithe increased expres-
siveness of the language, the FTL model checker is much nfficgert that Intel’s
1st-generation model checker.)

The linear-time framework enable us to subject FTL progstrtid validation by both
formal verification (model checking) and dynamic validatig@imulation). The seman-
tics of FTL is overinfinite traces. This semantics induces a 3-valued semantics over
finite traces, which are produced by simulation engines: “pagall’;’and “ongoing”.

A formulap passegresp. fails) a finite tracer if 7 is aninformative prefiXor ¢ (resp.,
—p) [KVO01a]. If it neither passes not fails, it is “ongoing”. Fexample,eventually !p
passes on the finite tragep, p,p and is ongoing on the trage p, p, p. The formula
globally p fails on the trace, p, p, p. The fact that simulation semantics is induced by
the standard semantics means that the language requisea sinigle compiler, ensur-
ing consistency between formal and dynamic validation.

6 Discussion

This paper describes FTL, the temporal property-specifindbgic of ForSpec, Intel’s
formal specification language, which is being used by séf@naal-verification teams
at Intel. FTL is an industrial property-specification laage that supports hardware-
oriented constructs as well as uniform semantics for foramal dynamic validation,
while at the same time it has a well understood expressigeares computational com-
plexity, and it fully supports modular reasoning.

The design effort strove to find an acceptable compromigib, tnade-offs clarified
by theory, between conflicting demands, such as expressgensabilty, and imple-
mentability. Clocks and resets, both important to hardvesigners, have a clear in-
tuitive semantics, but formalizing this semantics is niwidt. The rigorous semantics,



however, not only enabled mechanical verification of metatbms, such as Lemma 2,
usingThmTac, a high-order logic theorem-proving system [AJS99], babalerves as
a reference document for the compiler implementors.
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