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Abstract. In this paper we describe theForSpec Temporal Logic(FTL), the new
temporal property-specification logic ofForSpec, Intel’s new formal specifica-
tion language. The key features of FTL are as follows: it is a linear temporal
logic, based on Pnueli’s LTL, it is based on a rich set of logical and arithmeti-
cal operations on bit vectors to describe state properties,it enables the user to
define temporal connectives over time windows, it enables the user to define reg-
ular events, which are regular sequences of Boolean events,and then relate such
events via special connectives, it enables the user to express properties about the
past, and it includes constructs that enable the user to model multiple clock and
reset signals, which is useful in the verification of hardware design.

1 Introduction

One of the most significant recent developments in the area offormal verification is the
discovery of algorithmic methods, calledmodel checking, for verifying temporal-logic
properties offinite-statesystems. Model-checking tools have enjoyed a substantial and
growing use over the last few years, showing ability to discover subtle flaws that re-
sult from extremely improbable events. While until recently these tools were viewed
as of academic interest only, they are now routinely used in industrial applications.
Several model-checking tools are widely used in the semiconductor industry: SMV,
a tool from Carnegie Mellon University [McM93], with many industrial incarnations
(e.g., IBM’s RuleBase [BBL98]); VIS, a tool developed at theUniversity of California,
Berkeley [BHSV+96]; FormalCheck, a tool developed at Bell Labs [HHK96] and mar-
keted by Cadence; and Forecast, a tool developed in Intel andis used for property and
equivalence formal verification [CFF+01].

A key issue in the design of a model-checking tool is the choice of the formal spec-
ification language used to specify properties, as this language is one of theprimary
interfaces to the tool [Kur97]. (The other primary interface is the modeling language,? A more detailed version of this paper can be found at
http://www.cs.rice.edu/�vardi/papers/?? Supported in part by NSF grants CCR-9700061, CCR-9988322, IIS-9908435, IIS-9978135,
and EIA-0086264, by BSF grant 9800096, and by a grant from theIntel Corporation.



which is typically the hardware description language used by the designers). In design-
ing a formal specification language one has to balance several competing needs:

– Expressiveness: The language has to be expressive enough to cover most proper-
ties likely to be used by verification engineers. This shouldinclude not only prop-
erties of the unit under verification but also relevant properties of the unit’s envi-
ronment.

– Usability: The language should be easy to understand and to use for verification en-
gineers. This rules out expressive languages such as the�-calculus [Koz83], where
alternation of fixpoints is notoriously difficult to understand. At the same time, it
is important that the language has a rigorous formal semantics to ensure correct
compilation and optimization and enable formal reasoning.

– Compositionality: The language should enable the expression of complex proper-
ties from simpler one. This enables maintaining libraries of properties and property
templates. Thus, we believe that the language should be closed underall of its
logical connectives, both Boolean and temporal, enabling property reuse. The lan-
guage should also enable modular reasoning, since current semiconductor designs
are exceedingly complex and are amenable only to modular approaches.

– Implementability: The design of the language needs to go hand-in-hand with the
design of the model-checking tool. In considering various language features, one
should balance their importance against the difficulty of ensuring that the imple-
mentation can handle these features.

– Dynamic Validation: Once a property is specified, it should be used by both the
formal verification capabilities and by the dynamic validation, i.e., simulation, ca-
pabilities. Thus, a property must have the same semantics (meaning) in both dy-
namic and formal validation and should also be efficient for both.

In spite of the importance of the formal specification language, the literature on
the topic is typically limited to expressiveness issues (see discussion below). In this
paper we describe FTL, the temporal logic underlyingForSpec1, which is Intel’s formal
specification language. The key features of FTL are as follows:

– FTL is a linear temporal logic, based on Pnueli’s LTL [Pnu77],
– it is based on a rich set of logical and arithmetical operations on bit vectors to

describe state properties (since this feature is orthogonal to the temporal features of
the logic, which are the main focus of this paper, it will not be discussed here),

– it enables the user to define temporal connectives over time windows,
– it enables the user to define regular events, which are regular sequences of Boolean

events, and then relate such events via special connectives,
– it enables the user to refer to the history of the computationusing past connectives,

and
– it includes constructs that enable the users to model multiple clocks and reset sig-

nals, which is useful in the verification of hardware design.
– it has a rigorous formal semantics for model verification andsimulation, and the

complexity of model checking and reasoning is well understood.
1 ForSpec includes also a modeling language. It also includesvarious linguistic features, such as

parameterized templates, which faciliates the construction of standard property libraries.



The design of FTL was started in 1997. FTL 1.0, with its associated tools, was
released to Intel users in 2000. FTL 2.0 is currently under design, in collaboration with
language design teams from Co-Design Automation, Synopsys, and Verisity Design,
and is expected to be realesed in 20022. The language described in this paper is close
to FTL 2.0, though some syntactical and semantical details may change by the final
release. The goal of this paper is not to provide a full documentation of FTL, but rather
to describe its major features, as well as explain the rationale for the various design
choices. Our hope is that the publication of this paper, concomitant with the release of
the language to users, would result in a dialog on the subjectof property-specification
logic between the research community, language developers, and language users.

2 Expressiveness and Usability

2.1 The Nature of Time

Two possible views regarding the nature of time induce two types of temporal logics
[Lam80,Pnu85a]. Inlinear temporal logics, time is treated as if each moment in time
has a unique possible future. Thus, linear temporal formulae are interpreted over linear
sequences, and we regard them as describing the behavior of asingle computation of
a system. Inbranchingtemporal logics, each moment in time may split into various
possible futures. Accordingly, the structures over which branching temporal formulae
are interpreted can be viewed as infinitecomputation trees, each describing the behavior
of the possible computations of a nondeterministic system.

In the linear temporal logic LTL [Pnu77], formulae are composed from the set of
propositional constants using the usual Boolean connectives as well as the temporal
operatorsG (“always”), F (“eventually”),X (“next”), andU (“until”). In the branch-
ing temporal logic CTL [CE81], every temporal operator is preceded by theuniversal
path quantifierA or theexistentialpath quantifierE. Most incarnations of SMV (see
[BBL98] and [CCGR00]), as well as VIS, use CTL, or extensionsof it, as their prop-
erty specification logic. In contrast, Cadence SMV3 uses LTL, while FormalCheck uses
a set of property templates that collectively has the expressive power of!-automata
(also a linear-time formalism) as its property specification language [Kur98]. ESL, a
language for executable protocol specification, is closelyrelated to LTL [CGL+00].
Temporale, a property-specification language used in simulation, is also a linear-time
formalism [Mor99]. Our first decision in designing a property-specification logic for
the next generation Intel model-checking tool was the choice between the linear- and
branching-time approaches.

We chose the linear-time approach after concluding that thebranching-time frame-
work suffers from several inherent deficiencies as a framework for property specifica-
tion logics (for a more thorough discussion of these issues see [Var01]):

2 Synopsys plans to incorporate ForSpec into OpenVera, an open-source hardware verification
language. Verisity Design plans to incorporate FTL into thee verification language. Co-Design
Automation plans to merge FTL into the SUPERLOG design and verification language. See
press release athttp://biz.yahoo.com/bw/011105/50371 1.html.

3 http://www-cad.eecs.berkeley.edu/�kenmcmil/smv/



– Verification engineers find branching time unintuitive. IBM’s experience with Rule-
Base has been that “nontrivial CTL equations are hard to understand and prone to
error” [SBF+97].

– The branching-time framework was designed for reasoning about closedsystems.
Bran-ching-time modular reasoning is exceedingly hard [KV98].

– Combining formal and dynamic validation (i.e., simulation) techniques for branching-
time model checking is possible only in a very limited fashion, as dynamic valida-
tion is inherently linear.

LTL includes several connectives that handle unbounded time. For example, the
formula eventually p asserts thatp will hold at some point in the future. There’s, how-
ever, only one connective in LTL to handle bounded time. To assert thatp will hold at
time 5, one has to writenext next next next next p. Asserting thatp will hold
between time 10 and time 15, is even more cumbersome. By usingtime windowsFTL
provides users with bounded-time temporal connectives. (Bounded temporal connec-
tives are typically studied in the context of real-time logics, cf. [AH92]). For example,
to express in FTL thatp will hold between time 10 and time 15, one simply writes
eventually [10; 15℄ p.
2.2 !-Regularity

Since the proposal by Pnueli [Pnu77] to apply LTL to the specification and verifica-
tion of concurrent programs, the adequacy of LTL has been widely studied. One of the
conclusions of this research is that LTL is not expressive enough for the task. The first
to complain about the expressive power of LTL was Wolper [Wol83] who observed
that LTL cannot express certain!-regular events (in fact, LTL expresses precisely the
star-free!-regular events [Tho81]).

The weakness in expressiveness is not just a theoretical issue. Even when attempting
to verify simple properties, users often need to express relevant properties, which can be
rather complex, of the environment of the unit under verification. These properties are
theassumptionsof the Assume-Guarantee paradigm (cf. [Pnu85b]). Assume-guarantee
reasoning is a key requirement at Intel, due to the high complexity of the designs under
verification. Thus, the logic has to be able to express assumptions that are strong enough
to imply the assertion under verification. In other words, given modelsM andE and a
property thatEjM j=  (we usej to denoteparallel composition), the logic should
be able to express a property such thatE j= ' andM j= ' !  . As was shown
later [LPZ85], this makes LTL inadequate formodularverification, since LTL is not ex-
pressive enough to express strong enough assumptions aboutthe environment. It is now
recognized that a linear temporal property logic has to be expressive enough to specify
all !-regular properties [Pnu85b]. Several extensions to LTL have been proposed with
the goal of obtaining full!-regularity: (a) Vardi and Wolper proposed ETL, the exten-
sion of LTL with temporal connectives that correspond to!-automata [Wol83,VW94]),
(b) Banieqbal and Barringer proposed extending LTL with fixpoint operators [BB87]
(see also [Var88]), yielding a linear�-calculus (cf. [Koz83]), and (c) Sistla, Vardi, and
Wolper proposed QPTL, the extension of LTL with quantification over propositional
variables [SVW87].



As fixpoint calculi are notoriously difficult for users, we decided against the fixpoint
approach. Keeping the goal of implementability in mind, we also decided against a full
implementation of ETL and QPTL, as full QPTL has a nonelementary time complexity
[SVW87], while implementing full ETL, which explicily incorporates Büchi automata,
requires a complementation construction for Büchi automata, still a topic under active
research [Fin01,KV01b]. Instead, FTL borrows from ETL, as well as PDL [FL79], by
extending LTL with regular events4. As we show later, this extension provides us with
full !-regularity.

2.3 The Past

Another problem with LTL is the lack of temporal connectivesto describe past events.
While such connectives are present in works on temporal logic by philosophers, they
have originally been purged by computer scientists motivated by a strive for minimality,
following the observation in [GPSS80] that in applicationswith infinite future but finite
past, past connectives do not add expressive power. Later, however, arguments were
made for the restoration of the past in temporal logic. The first argument is that while
past temporal connectives do not add any expressive power, the price for eliminating
them can be high. Many natural statements in program specification are much easier to
express using past connectives [RK83]. In fact, the best known procedure to eliminate
past connectives may cause an exponential blow-up of the considered formulas [CS01].

A more important motivation for the restoration of the past is again the use of tem-
poral logic in modular verification. In global verification one uses temporal formulas
that refer to locations in the program text [MP83]. This is absolutelyverbotenin modu-
lar verification, since in specifying a module one can refer only to its external behavior.
Since we cannot now refer to program location we have insteadto refer to the history
of the computation, and we can do that very easily with past connectives [BK85]. This
lead to the study of extensions of LTL with past connectives [LPZ85,Var88,KMMP93].
These extensions allow arbitrary mixing of future and past connectives, enabling one to
say, for example, “eventually, sometimes in the past,p holds untilq holds”.

For the same motivation, FTL also includes past connectives. Unlike the aforemen-
tioned extensions of LTL with past connectives, the usage ofpast connectives is circum-
scribed. We found little practical motivation to allow arbitrary mixing of future and past
connectives, and such mixing has a nonnegligible implementation cost5. In fact, since
the motivation of adding the past is to enable referring to the history of the computa-
tion, FTL’s past connectives allow only references to such history. Thus, FTL allows
references to past values of Boolean expressions and regular sequences of Boolean ex-
pressions. FTL does not allow, however, references to past values of temporal formulas.
Thus, past connectives in FTL are viewed as Boolean rather than temporal connectives.

4 For other extensions of LTL with regular events see [ET97,HT99]. These works propose adding
regular events to theuntil operator. We prefer to have explicit connectives for regular events,
in the style of the “box” and “diamond” modalities of PDL.

5 It requires using two-way alternating automata, rather then one-way alternating automata
[KPV01].



2.4 Hardware Features

While the limited mechanisms for automata connectives and quantification over propo-
sitional variables are sufficient to guarantee full!-regularity, we decided to also offer
direct support to two specification modes often used by verification engineers at Intel:
clocksand resets. Both clocks and resets are features that are needed to address the
fact that modern semiconductor designs consists of interacting parallel modules. As we
shall see, while clocks and resets have a simple underlying intuition, explained below,
defining their semantics formally is rather nontrivial.

Today’s semiconductor design technology is still dominated by synchronous design
methodology. In synchronous circuits, clocks signals synchronize the sequential logic,
providing the designer with a simple operational model. While the asynchronous ap-
proach holds the promise of greater speed ([KvB99]), designing asynchronous circuits
is significantly harder than designing synchronous circuits. Current design methodol-
ogy attempt to strike a compromise between the two approaches by using multiple
clocks. This methodology results in architectures that areglobally asynchronous but lo-
cally synchronous. The temporal-logic literature mostly ignores the issue of explicitly
supporting clocks (clocks, however, are typically studiedin the context of modelling
languages, see [CLM98]). Liu and Orgun [LO99] proposed a temporal framework with
multiple clocks. Their framework, however, supports clocks via a clock calculus, which
is separate from the temporal logic. Emerson and Trefler [ET97] proposed an exten-
sion of LTL in which temporal connectives can be indexed withmultiple independent
clocks.

In contrast, the way clocks are being used in FTL is via thecurrent clock. Specifi-
cally, FTL has the constructchange on 
 ', which states that the temporal formula'
is to be evaluated with respect to the clock
; that is, the formula' is to be evaluated in
the trace defined by the high phases of the clock
. The key feature of clocks in FTL is
that each subformula may advance according to a different clock.

Another aspect of the fact that modern designs consist of interacting parallel mod-
ules is the fact that a process running on one module can be reset by a signal com-
ing from another module. As noted in [Sum99], reset control has long been a critical
aspect of embedded control design. FTL directly supports reset signals. The formula
accept on a ' states that the property' should be checked only until the arrival of
the reset signala, at which point the check is considered to havesucceeded. In contrast,
reject on r ' states that the property' should be checked only until the arrival of the
reset signalr, at which point the check is considered to havefailed. The key feature
of resets in FTL is that each subformula may be reset (positively or negatively) by a
different reset signal.

3 Basic Features

3.1 CoreFTL

Formulae of FTL are built from a setProp of propositional constants. (Actually, FTL
provides a rich set of logical and arithmetical operations on bit vectors to describe state
properties. All vector expressions, however, are compiledinto Boolean expressions over



Prop, so in this paper we suppress that aspect of the language). FTL is closed under the
application of Boolean connectives (we use!, jj, and&&, implies , iff for negation,
disjunction, and conjunction, implication, and equivalence, respectively). FTL also en-
ables us to refer to future and past values of Boolean expressions. For a Boolean ex-
pressionb, we refer to the value ofb in the next phase6 by future (b); this is essentially
the “primed” version ofb in the Temporal Logic of Actions [Lam94]. For a Boolean
expressionb, FTL usespast (b; n), wheren is a positive integer, to refer to the value
of b, n phases in the past. Note thatpast and future are Boolean connectives, so,
for example, “a
k implies past (send; 10)” is also a Boolean expression. Note also
that the future connective is more limited than thepast connective; one cannot write
future (b; 2). The rationale for that is thatfuture is a somewhat nonstandard Boolean
connective, since the value offuture (p) is indeterminate at a given point in time. The
role of future is mostly to definetransitions, e.g.,(!b)&& future (b) holds at points
at whichb is about to rise. FTL is also closed under the temporal connectives next ,
wnext , eventually , globally , until and wuntil .

FTL is interpreted overcomputations. A computationis a function� : N ! 2Prop,
which assigns truth values to the elements ofProp at each time instant (natural num-
ber). The semantics of FTL’s temporal connectives is well known. For example, for a
computation� and a pointi 2 !, we have that:

– �; i j= p for p 2 Prop iff p 2 �(i).
– �; i j= future (b) iff �; i+ 1 j= b.
– �; i j= past (b; 1) iff i > 0 and�; i� 1 j= b.
– �; i j= past (b; n) iff i > 0 and�; i� 1 j= past (b; n� 1).

Note that thepast operator cannot go “before 0”. Thus,�; 0 6j= past (b; 1). In
other words, the default past value is 0.

– �; i j= ' until  iff for somej � i, we have�; j j=  and for all k,i � k < j, we
have�; k j= '.

We say that a computation� satisfiesa formula', denoted� j= ', if �; 0 j= '. We usemodels(') to denote the set of computations satisfying'.
Time windows modify the temporal connectives by specifyingintervals in which

certain events are expected to occur. The aim is to enable theexpression of assertions
such asglobally (req ! next [10℄ a
k). The syntax of temporal connectives with
intervals is as follows:

1. next [m℄ ', where1 � m <1
2. eventually [m;n℄', globally [m;n℄',' until [m;n℄ , and' wuntil [m;n℄ where0 � m � n �1 (butm = n =1 is not allowed)

The semantics of temporal connectives with time windows is defined by induction
on the window lower bound. For example,

– �; i j= next [1℄ ' if �; i+ 1 j= '
– �; i j= next [m℄ ', form > 1, if �; i+ 1 j= next [m� 1℄ '

6 Note that the notion of next phase is independent from the notion of the next clock tick, which
is discussed later in the paper.



– �; i j= ' until [0; n℄  if for somek, n � k � 0, we have that�; i+ k j=  and for
all j, 0 � j < k, we have that�; i+ j j= '.

– �; i j= ' until [m;n℄  if �; i+ 1 j= ' until [m� 1; n� 1℄  
Clearly, time windows do not add to the expressive power of FTL, since formulae

with time windows can be translated to formulae without windows. Since the lower and
upper bounds of these windows are specified using decimal numbers, eliminating time
windows may involve an exponential blow-up. (See discussion below of computational
complexity.)
The practical implication of this result is that users should be careful with time win-
dows. The formulanext [m℄ p could force the compiler to introducem BDD variables,
so large windows could result in “state explosion”.

3.2 Regular Events

Regular eventsdescribe regular sequences ofBoolean events, where Boolean events are
simply Boolean expressions in terms of propositional constants. For example, the reg-
ular expression(send; (!a
k)�; send) (comma denotes concatenation) describes a se-
quence in which there is noa
k event between twosend events. Thus,globally !(send; (!a
k)�; send)
forbids the occurrence of such sequences. Regular events are formed from Boolean
events (denoted here withai, bi, etc.) using the follwing constructs7: (a) ;: concatena-
tion, (b)n: glue (a1 : : : amnb1 : : : bn is a1 : : : am&&b1 : : : bn), (c) jj: union, (d)a�: zero
or more, (e)a+: one or more, and (f)efm;ng: betweenm andn occurrences ofe. With
each regular eventewe associate, in the standard way [HU79], a languageL(e) of finite
words over the Boolean events. (It is important to note that our semantics refers only toL(e) and not to the syntax ofe. Thus, adding further regular operators can be accom-
plished without any need to adapt the semantics. (The ForSpec compiler only requires
a translation of regular expression to finite-state automata.) In this respect FTL differs
from other property-specification languages, such as Sugar[BBDE+01] or Temporal
e [Mor99], where the syntax of regular events is intertwined with the semantics of the
logic.) We do not allow regular events whose language contains the empty word (this is
checked by the compiler).

We define the semantics of regular events in terms oftight satisfaction: �; i j= e
if for some j � i we have�; i; jj� e. The intuition of tight satisfaction is that the
evente holdsbetweenthe pointsi andj. Formally,�; i; jj� e if there is a wordw =b0b1 : : : bn 2 L(e), n = j � i such that�; i+ k j= bk for all k, 0 � k � n.

We can also use regular events to refer to the past. Ife is a regular expression, then
ended (e) is a Boolean expression saying that the regular evente has just “ended”.
Formally�; i j= ended (e) if there is somej < i such that�; j; ij� e. Note thatj need
not to unique. For example,ended (true; (true; true)�) holds at all even (0; 2; : : :) time
points.

Since we have defined�; i j= e, we can now combine regular events with all other
connectives. Thus,globally !(req; (!a
k)�; a
k) says that the computation cannot con-
tain a sequence of states that match(req; (!a
k)�; a
k) and globally (p iff ended (req; (!a
k)�; a
k)
7 FTL 2.0 will include some additional regular constructs.



says thatp holds precisely at the end of sequences of states that match(req; (!a
k)�; a
k).
FTL has two additional temporal connectives to faciliate assertions about regular events.
The formulae follows by ', wheree is a regular event and' is a formula, asserts that
somee sequence is followed by'. The formulae triggers ', wheree is a regular event
and' is a formula, asserts that alle sequence are followed by'. The follows by
and triggers connectives are essentially the “diamond” and “box” modalities of PDL
[FL79]. Formally:

– �; i j= e follows by ' if for somej � i �; i; jj� e and�; j j= '.
– �; i j= e triggers ' if for all j � i such that�; i; jj� e we have�; j j= '.

For example, the formula

globally ((req; (!a
k)�; a
k) triggers (true+; grant; (!rel)�; rel))
asserts that a request followed by an acknowledgement must be followed by a grant
followed by a release. Note thatfollows by and triggers are dual to each other.

Lemma 1. �; i j=!(e follows by ') iff �; i j= e triggers (!').
4 Hardware Features

FTL offers direct support to two specification modes often used by verification en-
gineers at Intel:clocksand resets. While these features do not add to the expressive
power of FTL, expressing them in terms of the other features of the language would
be too cumbersome to be useful. While these features have a clear intuitive semantics,
capturing it rigorously is quite nontrivial, as we show in the rest of this section. Our
semantics, however, is defined in a modular fashion, so userswho do not use these ad-
vanced features can continue to use the semantics of Section3. Defining the semantics
in a modular fashion was necessary to achieve a proper balance between expressiveness
and usabilty, ensuring that users do not need to understand complex semantic aspects in
order to use the basic features of the language. (The ForSpecUser Guide describes the
language at an intuitive level, while the ForSpec ReferenceManual provides the formal
semantics in a modular fashion.)

4.1 Clocks

FTL allows formulae of the formchange on 
 ', which asserts that the temporal
formula' is to be evaluated with respect to the clock
; that is, the formula' is to be
evaluated in the trace defined by the high phases of the clock
. Every Boolean expres-
sion can serve as a clock. Note that the computation is sampled at the high phases of

rather than at the points where
 changes. Focusing on the high phases is simpler and
more general. For example, as we saw earlier the high phases of the Boolean expression(!b)&& future (b) are the points at whichb is about to rise.

As soon as we attempt to formalize further this intuition, werealize that there is
a difficulty. How does one guarantee that the clock
 actually “ticks”, i.e., has high
phases? We could have required that all clocks are guaranteed to tick infinitely often,



but then this would have to be checked. Since we wanted to giveusers the ability to use
arbitrary Boolean events as clocks, we decided not to require that a clock be guaran-
teed to tick. Instead, we introduced two operators. The formula change on 
 ' asserts
that
 doestick and' holds with respect to
, while change if 
 ' asserts thatif 
 ticks
then' holds with respect to
. Since the concept of “next tick” is now not always de-
fined, we need to introduce a weak dualwnext to the next connective;next requires
the existence of a next tick, whilewnext does not (see formal semantics below).

What should be the formal meaning of “holds with respect to c”? Suppose for sim-
plicity that 
 has infinitely many high phases. It seems intuitive to take the projection�[
℄ of a computation� to be the sequence of values�(i0); �(i1); �(i2); : : : of � at the
pointsi0; i1; i2; : : : at which
 holds. We then can say that� satisfieschange on 
 ' if�[
℄ satisfies'. The implication of such a definition however, would be to make clocks
cumulative. That is, if change on d  is a subformula of', then needs to be evalu-
ated with respect to a projection�[
℄ : : : [d℄. This went against the intuition of our users,
who want to make assertions about clockswithout losing access to faster clocks. For
example, the subformulachange on d  could be a library property, describing an
environment that is not governed by the clock
. (Recall that multiple clocks are needed
to capture local synchrony in a globally asynchronous design.) This led to the decision
to define the semantics of clocks in a non-cumulative fashion. This is done by defining
the semantics as a four-way relation, between computations, points, clocks, and formu-
lae, instead of a three-way relation as before. That is, on the left-hand-side ofj= we
have a triple�; i; 
, where
 is aclock expression(see below), which is thecontextin
which the formula is evaluated.8 Before we issue anychange on 
 or change if 
,
the default clock expression istrue. That is,�; i j= ' if �; i; true j= '.

The semantics of propositional constants is insensitive toclocks:

– �; i; 
 j= p if �; i j= p.
FTL , however, has a special propositional constantclock that enables users to refer
explicitly to clock ticks. To avoid circularity, however, clock expressions are Boolean
expressions that do not refer toclock . Given a clock expression
 and a Boolean ex-
pressiond, we denote by[
 7! d℄ the result of substituting
 for clock in d. For example
if 
 is !p&& future (p) andd is clock &&q, then[
 7! d℄ is (!p&& future (p))&&q.
Note that[
 7! d℄ is a clock expression, since it does not refer toclock . The semantics
of clock is defined as follow:

– �; i; 
 j= clock if �; i j= 
.
In this case we say that
 ticksat pointi of �, or, equivalently, thati is a tick pointof 

on�. When we refer to tick pointsi1 < : : : < il at or afteri, we assume that no other
point betweeni andil is a tick point.

We start defining the four-way sematics by defining satisfaction of the future and
past connectives. Recall that the role offuture is to define transition constraints.
Consequently, its semantics is insensitive to clocks.
8 It is quite common in logic to define satisfaction of a formulawith respect to a structuture

and a context. For example, for 1st-order formulas with freevariables the context provides an
assignment of domain elements to the free variables.



– �; i; 
 j= future (b) if �; i+ 1 j= b.
In contrast, thepast operator is extended to allow reference to clocks. For a Boolean
expressionb, FTL usespast (b; n; d), wheren is a positive integer andd is a Boolean
expression, to refer to the value ofb in the phase of the clockd, n ticks in the past.
Formally,

– �; i; 
 j= past (b; 1; d) if �; j; [
 7! d℄ j= b, wherej is the the largest integer less
thani such that�; j; [
 7! d℄ j= d.

– �; i; 
 j= past (b; n; 
) if �; j; [
 7! d℄ j= past (b; n � 1; d) wherej is the the
largest integer less thani such that�; j; [
 7! d℄ j= d.

Note that if there is noj < i such that�; j; [
 7! d℄ j= d, then�; i; 
 6j= past (b; n; 
).
We continue defining the four-way sematics by defining satisfaction of regular events.

Recall that satisfaction of regular events is defined in terms of tight satisfaction:�; i; 
 j=e if for somej � i we have�; i; j; 
j� e. Tight satisfaction, which is a five-way relation,
is defined as follows:�; i; j; 
j� e if

– there aren � 0 tick pointsi1 < : : : < in of 
 after i such thati = i0 < i1 andin = j,
– there is a wordB = b0b1 : : : bn 2 L(e) such that�; im; 
 j= bm for 0 � m � n.

Note that eveluation of regular events always starts at the present point, just as a Boolean
event is aways evaluated at the present point. Once we have defined tight satisfaction
with clocks, the semantics ofended is as before:�; i j= ended (e) if there is somej < i such that�; j; ij� e.

FTL has a special regular eventtick , which is an abbreviation for the regular event((! clock )�; clock ). Thus,�; i; jj� tick if j is the first tick point of
 at or afteri.
We can now define the semantics of the temporal connectives. For example:

– �; i; 
 j= next ' if for some j � i + 1 we have that�; i + 1; j; 
j� tick and�; j; 
 j= '.
– �; i; 
 j= wnext ' if for some allj � i + 1 we have that if�; i + 1; j; 
j� tick ,

then�; j; 
 j= '.
– �; i; 
 j= ' until  if for somej � i we have that�; j j= 
 and�; j; 
 j=  , and

for all k, i � k < j such that�; k j= 
, we have�; k; 
 j= '. (Note that only tick
points of
 are taken into consideration here.)

– �; i; 
 j= e triggers ' if for all l � k � j � i such that�; i; j; 
j� tick , �; j; k; 
j�e and�; k; l; 
j� tick , we have that�; l; 
 j= '. (Note that the evaluation ofe starts
at the first tick point at or afteri, and the evaluation off starts at the first tick point
at or after the end ofe.)
We now define the semantics ofchange on and change on :

– �; i; 
 j= change on d f if there exists somej � i, such that�; i; j; [
 7! d℄j�
tick and�; j; [
 7! d℄ j= f .

– �; i; 
 j= change if d f if wheneverj � i is such that�; i; j; [
 7! d℄j� tick , then�; j; [
 7! d℄; a; r j= f .



Both change on and change if force the evaluation of the formula at the nearest
tick point, but only change on requires such a tick point to exist. As one expects, we
get duality betweennext and wnext and betweenchange on and change if .

Lemma 2.

– �; i; 
 j=!( next ') iff �; i; 
 j= wnext !'.
– �; i; 
 j=!( change on 
 ') iff �; i; 
 j= change if 
 (!').

As an example, the formulachange on 
1 ( globally ( change if 
2 p)) asserts that
the clock
1 ticks andp also holds at the first tick, if any, of
2 at or after a tick of
1.

4.2 Resets

FTL allows formulae of the formaccept on a ', which asserts that the property'
should be checked only until the arrival of a reset signala, at which point the check is
considered to havesucceeded, and reject on r ', which asserts that the property'
should be checked only until the arrival of a reset signalr, at which point the check is
considered to havefailed. In reset control-design methodology, a local reset signaldoes
not replace a global reset signal. Thus, while our semanticsfor multiple clocks was non-
cumulative, our semantics for resets is cumulative. Another important feature of our
semantics is that reset signals areasynchronous, that is, they are not required to occur
at tick points; rather, they are allowed to occur at any point. To capturesynchronous
resets, the users can writeaccept on (a&& clock ) ' or reject on (r&& clock ) '.
As we shall see, we pay a price for the added expressiveness ofasynchronous resets
with additional complexity of the semantics, as we have to account for resets between
tick points.

As we saw earlier, we capture the semantics of clocks by adding a clock to the
context in which formulae are evaluated, resulting in a four-way semantical relation.
To capture the semantics of resets, we have to add both the accept signal and the reject
signal to the context, resulting in a six-way semantical relation. That is, on the left-
hand-side ofj= we have a quintuple�; i; 
; a; r, where�; i; 
 are as before, anda andr
aredisjoint Boolean events defining the accept and reject signals, respectively. Before
we issue anyaccept on a or reject on r, the default reset signals are bothfalse,
respectively. That is,�; i j= ' if �; i; true; false; false j= '.

The semantics ofaccept on and reject on is defined by:

– �; i; 
; a; r j= accept on b ' if �; i; 
 j= ajj(b&&!r) or�; i; 
; ajj(b&&!r); r j= '
– �; i; 
; a; r j= reject on b ' if �; i; 
 6j= rjj(b&&!a) and�; i; 
; a; rjj(b&&!a) j= '

Note how the cumulative semantics ensures that the accept and reject signals are always
disjoint. Also, outer resets have preference over inner ones.

The presence of reset signals requires us to redefine the verybasic semantics of
propositions and Boolean connectives. An important issue now is the meaning of nega-
tion in the reset-control design methodology. Since negation switches success and fail-
ure, it should also switch accept and reject signals. We therefore define



– �; i; 
; a; r j= p, for p 2 Prop if either �; i; 
 j= a or �; i; 
 j= p and�; i; 
 j=!r (That is, the accept “signal” always makes a proposition true, while the reject
“signal” always makes it false. It may seem that we are givingthe accept signal a
preference over the reject signal, but as the accept and reject signals can never be
true simultaneously, their roles are actually symmetric.)

– �; i; 
; a; r j=!' if �; i; 
; r; a 6j= '.

We now define satisfaction of regular events. Recall again that satisfaction of regular
events is defined in terms of tight satisfaction:�; i; 
; a; r j= e if for somej � iwe have�; i; j; 
; a; rj� e. Tight satisfaction, which is a seven-way relation, is defined as follows:�; i; j; 
; a; rj� e if

– �; k; 
 j=!a&&!r for i � k < j,
– there are preciselyl � 0 tick pointsi1 < : : : < il of 
 such thati = i0 < i1 andil � j,
– there is a wordB = b0b1 : : : bn 2 L(e), n � l such that�; im; 
 j= bm for0 � m < l, and either� �; j; 
 j= a andil = j, or� �; j; 
 j= a and�; il; 
 j= bl, or� l = n, andin = j, and�; j; 
 j= bn, and�; j; 
 j=!r.

Note that in the first case, only the prefixb0b1 : : : bl�1 is checked, in the second case,
only the prefixb0b1 : : : bl is checked, and in the third case the wordB is checked in
full.) As we remarked earlier, the complexity of the semantics is the result of the need
to account for resets between tick points. In the first two cases, the checking ofB is
terminated due to an accept signal. We denote this by�; i; j; 
; a; rj�a e.

Let � be a computation,i a point,
 a clock expression, anda andr reset expre-
sions. Thenti
k(�; i; 
; a; r) is the leastj such thatj � i and�; i; j; 
; a; rj� tick
(note that there is at most one suchj). Note thatti
k(�; i; 
; a; r) need not be defined,
since we may have that�; i; j; 
; a; r 6 j� tick for all j � i. If it is defined, we writeti
k(�; i; 
; a; r) #. Note that�; i; j; 
; a; rj� tick can hold in two (nonexclusive) ways:

– �; j j= 
, in which case we writeti
k(�; i; 
; a; r) #
, or
– �; j; 
 j= a, in which case we writeti
k(�; i; 
; a; r) #a.

We write “j = ti
k(�; i; 
; a; r)” as an abbreviation for “ti
k(�; i; 
; a; r) # andj =ti
k(�; i; 
; a; r).”
We now illustrate the semantics of temporal connectives by considering thetriggers

connective:

– �; i; 
; a; r j= e triggers ' if j = ti
k(�; i; 
; r; a) entails that� ti
k(�; i; 
; r; a) #r does not hold and� for all k � j such that�; j; k; 
; r; aj� e we have that� �; j; k; 
; r; aj�r e does not hold and� l = ti
k(�; k; 
; r; a) entails thatti
k(�; k; 
; r; a) #r does not hold� �; l; 
; a; r j= f .



Note that the definition is a direct extension of the definition of triggers in Section 4.1.
The impact of resets is through the various conditions of thedefinition. The eventstick ,e, and againtick function as antecedents of an implication, and thus have negative
polarity, which explains why the roles ofa andr are reversed in the antecedents.

As a sanity check of the not-immediately-obvious semanticsof resets we state an-
other duality lemma.

Lemma 3.�; i; 
; a; r j=!( accept on d ') iff �; i; 
; a; r j= reject on d (!').
As an example, the formulachange on 
 ( accept on a (p until q)) declares
 to be
a strong clock anda to be an accept signal, relative to whichp holds untilq holds.

5 Expressiveness and Complexity

The addition of regular events and the new connectives (follows by and triggers ) has
both a theoretical motivation and a pragmatic motivation. Regular events were shown
to be useful in the context of hardware verification, cf. [BBL98,Mor99]. More funda-
mentally, as noted earlier, it was observed in [Wol83] that LTL cannot express certain!-regular events, and it was shown in [LPZ85] that this makes LTL inadequate for mod-
ular verification. Letregular LTL be the extension of LTL with regular events and the
connectivesfollows by and triggers . Regular LTL, which is strictly more expressive
than LTL, is expressive enough to capture!-regularity.

Theorem 4. LetL be an!-regular set of computations. Then there is a formula'L of
regular LTL such thatmodels('L) = L.

Proof Sketch:By [Cho74], every!-regular language can be expressed as a finite union
of terms of the formL1 �L2, whereL1 is a regular language (of finite words) andL2 is
a language of infinite words defined by a deterministic Büchiautomaton. Thus, we can
expressL as a disjunction of formulae of the forme follows by ', provided we can
express languages of deterministic Büchi automata. Such languages can be expressed
by disjunctions of formulae of the forme1&&(e1 triggers e2), where bothe1 ande2
are regular events. ut

A consequence of this theorem is that FTLfully supportsassume-guarantee reason-
ing, in the following sense. On one hand, we have that, for allmodelsM andE and
for all FTL formulas';  , if E j= ' andM j= ' !  thenEjM j=  . On the other
hand, for all modelsM andE and for every FTL formula such thatEjM j=  ,
there is an FTL formula' such thatE j= ' andM j= ' !  . Furthermore, ev-
ery FTL formula can serve both as an assumption and as an assertion (guarantee), and
as assume-guarantee reasoning is performed via model checking, the complexity of
such reasoning is the same as that of model checking. (Note, however, that full sup-
port of assume-guarantee reasoning is not guaranteed by themere inclusion of regular
events. Sugar adds regular events to CTL, resulting in a mixed linear-branching seman-
tics [BBDE+01], in the style of CTL� [EH85], which makes it rather difficult to fully
support assume-guarantee reasoning [Var01]. In Temporale, the main focus is on de-
scribing finite sequences using regular expressions. It is not clear whether the language



has full!-regularity [Mor99], which is required for full support of assume-guarantee
reasoning.)

Reasoning and verification for FTL formulas is carried out via the automata-theoretic
approach [Var96]: to check satisfiability of a formula', one constructs a nondeterminis-
tic Büchi automaton acceptingmodels(') and check its emptiness, and to model check
a formula one constructs a nondeterministic Büchi automaton for the complementary
formula, intersects it with the model and check emptiness. Because of the richness of
FTL, the construction of the automaton is quite non-trivial, and will be described in full
in a future paper. The ForSpec compiler actually generates asymbolic representation of
the automaton; the size of this representation is linear in the length of the formula and
in the size of the time windows. Since the lower and upper bounds of these windows
are specified using decimal numbers, time windows may involve an exponential blow-
up, as the formulanext [2n℄ p is of lengthO(n). (It was noted in [AH90] that such
succinctness cause an exponential increase in the complexity of temporal reasoning.)

Theorem 5. The satisfiability problem forFTL without time windows is PSPACE-complete.
The satisfiability problem forFTL is EXPSPACE-complete.

While reasoning in FTL is exponential in terms of the formulasize and time windows’
size in the worst case, aggressive optimization by the compiler ensures that the worst
case almost never arises in practice; the computational bottleneck of model checking
is due to the large nummber of design states. (In fact, in spite of the increased expres-
siveness of the language, the FTL model checker is much more efficient that Intel’s
1st-generation model checker.)

The linear-time framework enable us to subject FTL properties to validation by both
formal verification (model checking) and dynamic validation (simulation). The seman-
tics of FTL is overinfinite traces. This semantics induces a 3-valued semantics over
finite traces, which are produced by simulation engines: “pass”, “fail”, and “ongoing”.
A formula' passes(resp.,fails) a finite trace� if � is aninformative prefixfor ' (resp.,:') [KV01a]. If it neither passes not fails, it is “ongoing”. For example,eventually !p
passes on the finite tracep; p; p; p and is ongoing on the tracep; p; p; p. The formula
globally p fails on the tracep; p; p; p. The fact that simulation semantics is induced by
the standard semantics means that the language requires only a single compiler, ensur-
ing consistency between formal and dynamic validation.

6 Discussion

This paper describes FTL, the temporal property-specification logic of ForSpec, Intel’s
formal specification language, which is being used by several formal-verification teams
at Intel. FTL is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formaland dynamic validation,
while at the same time it has a well understood expressiveness and computational com-
plexity, and it fully supports modular reasoning.

The design effort strove to find an acceptable compromise, with trade-offs clarified
by theory, between conflicting demands, such as expressiveness, usabilty, and imple-
mentability. Clocks and resets, both important to hardwaredesigners, have a clear in-
tuitive semantics, but formalizing this semantics is nontrivial. The rigorous semantics,



however, not only enabled mechanical verification of metatheorems, such as Lemma 2,
usingThmTac, a high-order logic theorem-proving system [AJS99], but also serves as
a reference document for the compiler implementors.
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