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1 IntroductionFinite automata on in�nite objects were �rst introduced in the 1960's. Motivated by decisionproblems in mathematical logic, B�uchi, McNaughton, and Rabin developed a framework forautomata on in�nite words and in�nite trees [B�uc62, McN66, Rab69]. The framework hasproven to be very powerful. Automata, and their tight relation to second-order monadiclogics were the key to the solution of several fundamental decision problems in mathematicallogic [Tho90]. Today, automata on in�nite objects are used for speci�cation and veri�cationof nonterminating programs. By translating speci�cations to automata, we reduce questionsabout programs and their speci�cations to questions about automata. More speci�cally,questions such as satis�ability of speci�cations and correctness of programs with respect totheir speci�cations are reduced to questions such as nonemptiness and language containment[VW86, Kur94, VW94]. The automata-theoretic approach separates the logical and the algo-rithmic aspects of reasoning about programs. The translation of speci�cations to automatahandles the logic and shifts all the algorithmic di�culties to automata-theoretic problems.Like automata on �nite words, automata on in�nite words either accept or reject an inputword. Since a run on an in�nite word does not have a �nal state, acceptance is determinedwith respect to the set of states visited in�nitely often during the run. There are variousways to classify an automaton on in�nite words. One is the type of its acceptance condition.For example, in B�uchi automata, some of the states are designated as accepting states, anda run is accepting i� it visits states from the accepting set in�nitely often [B�uc62]. Dually, inco-B�uchi automata, a run is accepting i� it visits states from the accepting set only �nitelyoften. More general are Muller, parity, and Rabin automata, whose acceptance conditionsinvolve several sets of states. For example, in parity automata [Mos84, EJ91], the acceptancecondition is a sequence fF1; F2; : : : ; Fkg of sets of states. A run is accepting i� the minimalindex i for which the set Fi is visited in�nitely often is even.Another way to classify an automaton on in�nite words is by the type of its branchingmode. In a deterministic automaton, the transition function � maps a pair of a state and aletter into a single state. The intuition is that when the automaton is in state q and it readsa letter �, then the automaton moves to state �(q; �), from which it should accept the su�xof the word. When the branching mode is existential or universal , � maps q and � into a setof states. In the existential mode, the automaton should accept the su�x of the word fromone of the states in the set, and in the universal mode, it should accept the su�x from all thestates in the set. In an alternating automaton [BL80, CKS81], both existential and universalmodes are allowed, and the transitions are given as Boolean formulas over the set of states.For example, �(q; �) = q1 _ (q2 ^ q3) means that the automaton should accept the su�x ofthe word either from state q1 or from both states q2 and q3.Since the combinatorial structure of alternating automata is rich, translating speci�cationsto alternating automata is much simpler than translating them to nondeterministic automata[Var94]. Alternating automata enable a complete partition between the logical and the al-



gorithmic aspects of reasoning about programs, and they give rise to cleaner and simplerveri�cation algorithms [Var96]. The rich structure of alternating automata also makes themmore succinct. For example, translating an alternating B�uchi automaton to a nondetermin-istic B�uchi automaton might involve an exponential blow up [DH94]. The succinctness ofalternating automata is crucial when we use automata for the veri�cation of branching-timespeci�cations. In this paradigm, each speci�cation describes a set of allowed computationtrees, which can be described by an automaton over in�nite trees. By translating branching-time speci�cations to alternating tree automata, we can reduce satis�ability to the nonempti-ness problem and reduce veri�cation to the membership problem [BVW94, Var97]. Solvingthe nonemptiness problem for an alternating tree automaton is done by translating the au-tomaton to a nondeterministic tree automaton. Deciding the membership of a program in alanguage of an alternating tree automaton is done by taking the product of the program andthe automaton. This product can be de�ned as an alternating word automaton over a single-ton alphabet, and the program is correct with respect to the speci�cation i� this automaton isnonempty. Thus, reasoning about branching-time speci�cations concerns two problems: thenonemptiness problem for nondeterministic tree automata and the nonemptiness problem foralternating word automata over a singleton alphabet. It is shown in [BVW94] that theseproblems are equivalent and that their complexities coincide. We refer to both problems asthe nonemptiness problem. The nonemptiness problem is important also for reasoning aboutlinear-time speci�cations of open systems, where the interaction between a correct systemand its environment can be formulated by a tree automaton [ALW89, PR89].In [MSS86], Muller et al. introduced weak automata. In a weak automaton, the automa-ton's set of states is partitioned into partially ordered sets. Each set is classi�ed as acceptingor rejecting. The transition function is restricted so that in each transition, the automatoneither stays at the same set or moves to a set smaller in the partial order. Thus, each run ofa weak automaton eventually gets trapped in some set in the partition. Acceptance is thendetermined according to the classi�cation of this set. Weak automata are a special case ofB�uchi automata. Indeed, the condition of getting trapped in an accepting set can be replacedby a condition of visiting states of accepting sets in�nitely often. The special structure ofweak automata is reected in their attractive computational properties. In particular, thenonemptiness problem for weak automata can be solved in linear time [BVW94]. As a com-parison, the best known upper bound for the nonemptiness problem for B�uchi automata isquadratic time.When de�ned on words, weak alternating automata are not less expressive than B�uchialternating automata, and they can recognize all the !-regular languages. To prove this,[MSS86, Lin88] suggest a linear translation of deterministic Muller automata to weak alter-nating automata. Using, however, the constructions in [MSS86, Lin88] in order translate anondeterministic automaton A into a weak alternating automaton, one has no choice but to�rst translate A into a deterministic Muller automaton. Such a determinization involves anexponential blow-up [Mic88, Saf88, Saf92]. Even worse, if A is an alternating automaton,



then its determinization involves a doubly-exponential blow-up [DH94], and hence, so doesthe translation to weak alternating automata. Can these blow-ups be avoided? In [KV97],we described a quadratic translation of B�uchi and co-B�uchi alternating word automata toweak alternating word automata, answering this question positively for the case A is either aB�uchi or a co-B�uchi automaton. In this paper we extend the ideas in [KV97] and describe ane�cient translation of stronger types of alternating automata to weak alternating automata.Since the nonemptiness problem for weak automata can be solved in linear time, this enablesus to improve the known upper bounds for the nonemptiness problem.We start with parity automata. It is shown in [EJ91] that formulas of the �-calculus [Koz83]can be linearly translated to alternating parity tree automata1. Since many properties of pro-grams are naturally speci�ed by means of �xed points, the �-calculus is an expressive andimportant speci�cation language [EL86]. Following [EJ91], the veri�cation problem for �-calculus can be linearly reduced to the nonemptiness problem for parity automata. Thismakes the nonemptiness problem for parity automata of particular interest; the veri�cationproblem for �-calculus is known to be in NP \ co-NP [EJS93] and its precise complexity is anopen problem. Given an alternating parity word automaton with n states and k sets, we con-struct an equivalent weak alternating word automaton with O(nk) states. The constructiongoes through a sequence of k intermediate automata. Each automaton in the sequence re�nesthe state space of its predecessor and has one less set in its parity acceptance condition.Parity automata can be viewed as a special case of Rabin automata. In Rabin automata, theacceptance condition is a set � = fhG1; B1i; hG2; B2i; : : : ; hGk; Bkig of pairs of sets of states.A run is accepting if there exists an index i for which the set Gi is visited in�nitely often andthe set Bi is visited only �nitely often. In [Rab69], Rabin describes a translation of formulasof monadic second order logic to Rabin tree automata. Today, Rabin automata are used inorder to reason about speci�cations of the full branching time logic CTL? [ES84, VS85], aswell as to model programs with fairness conditions. The nonemptiness problem for Rabinautomata plays a crucial role in solving various decision problems in logic. As a result, manye�orts have been put in developing simple algorithms for nonemptiness checking. In [Rab69],Rabin described a non-elementary procedure for checking the nonemptiness of a given Rabinautomaton and showed that the problem is decidable. In [HR72, Rab72], improved algorithmswere described, of complexity exponential in both n and k. Only in [EJ88, PR89], algorithmsthat are exponential in k and only polynomial in n have been describes. Both works describedalgorithms that run in time O((nk)3k). Given an alternating Rabin word automaton withn states and k pairs, we construct an equivalent weak alternating word automaton withO(n2k+1 � k!) states. Our constructions yield O(nk) and O(n2k+1 � k!) upper bounds for thenonemptiness problem for parity and Rabin automata, respectively, matching the knownbound for parity automata [EJS93] and improving the known O(nk)3k bound for Rabin1In fact, alternating parity tree automata are exactly as expressive as the �-calculus [Niw88, EJ91]. Onthe other hand, weak alternating tree automata are exactly as expressive as the alternation-free fragment of�-calculus [KV98].



automata.2 Alternating AutomataAlternation was studied in [CKS81] in the context of Turing machines and in [BL80, CKS81,MH84] for �nite automata. In particular, [MH84] studied alternating automata on in�nitewords. Alternation enables us to have both existential and universal branching choices. For agiven set X , let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean formulasbuilt from elements in X using ^ and _), where we also allow the formulas true and false.For Y � X , we say that Y satis�es a formula � 2 B+(X) i� the truth assignment that assignstrue to the members of Y and assigns false to the members of X nY satis�es �. For example,the sets fq1; q3g and fq1; q3g both satisfy the formula (q1_q2)^q3, while the set fq1; q2g doesnot satisfy this formula.Given an alphabet �, an in�nite word over � is an in�nite sequence w = �0 � �1 � �2 � � � ofletters in �. We denote by wl the su�x �l � �l+1 � �l+2 � � � of w. An alternating automaton onin�nite words is A = h�; Q; qin; �; �i, where � is the input alphabet, Q is a �nite set of states,� : Q��! B+(Q) is a transition function, qin 2 Q is an initial state, and � is an acceptancecondition. Intuitively, �(q; �) describes possible con�gurations that A can move into when itis in state q and it reads the letter �. For example, a transition �(q; �) = (q1 ^ q2)_ (q3 ^ q4)means that A accepts a su�x wl of w from state q, if it accepts wl+1 from both q1 and q2or from both q3 and q4. The acceptance condition � de�nes a subset of Q!. For a word� = q0 � q1 � � � in Q! , we de�ne the set Inf (�) of states that � visits in�nitely often, i.e.,Inf (�) = fq 2 Q : for in�nitely many l � 0;we have ql = qg:As Q is �nite, it is guaranteed that Inf (�) 6= ;. The way � refers to Inf (�) depends on itstype. In B�uchi automata, � � Q, and � satis�es � i� Inf (�) \ � 6= ;. Dually, in co-B�uchiautomata, � satis�es � i� Inf (�) \ � = ;.In order to de�ne a run of an alternating automaton, we �rst de�ne trees. A tree is a(�nite or in�nite) nonempty set T � IN� such that for all x � c 2 T , with x 2 IN� and c 2 IN,we have x 2 T . The elements of T are called nodes, and the empty word " is the root of T .For every x 2 T , the nodes x � c 2 T where c 2 IN are the children of x. A node with nochildren is a leaf . We refer to the length jxj of x as its level in the tree. A path � of a tree Tis a set � � T such that " 2 � and for every x 2 �, either x is a leaf, or there exists a uniquec 2 IN such that x � c 2 �. Given a �nite set �, a �-labeled tree is a pair hT; V i where T is atree and V : T ! � maps each node of T to a letter in �. A run of A on an in�nite wordw = �0 � �1 � � � is a Q-labeled tree hTr; ri such that the following hold:� r(") = qin.� Let x 2 Tr with r(x) = q and �(q; �jxj) = �. There is a (possibly empty) set S =fq1; : : : ; qkg such that S satis�es � and for all 1 � c � k, we have x � c 2 Tr and



r(x � c) = qc.For example, if �(qin; �0) = (q1 _ q2) ^ (q3 _ q4), then possible runs of A on w have a rootlabeled qin, have one node in level 1 labeled q1 or q2, and have another node in level 1 labeledq3 or q4. Note that if � = true, then x need not have children. This is the reason why Trmay have leaves. Also, since there exists no set S as required for � = false, we cannot havea run that takes a transition with � = false.A run hTr; ri is accepting i� all its in�nite paths, which are labeled by words in Q!, satisfythe acceptance condition. A word w is accepted i� there exists an accepting run on it. Notethat while conjunctions in the transition function of A are reected in branches of hTr; ri,disjunctions are reected in the fact we can have many runs on the same word. The languageof A, denoted L(A), is the set of in�nite words that A accepts. Thus, each word automatonde�nes a subset of �!. We denote by L(A) the complement language of A, that is the set ofall words in �! n L(A).In [MSS86], Muller et al. introduce weak alternating automata (WAAs). In a WAA, theacceptance condition is � � Q, and there exists a partition of Q into disjoint sets, Qi, suchthat for each set Qi, either Qi � �, in which case Qi is an accepting set, or Qi \ � = ;, inwhich case Qi is a rejecting set. In addition, there exists a partial order � on the collection ofthe Qi's such that for every q 2 Qi and q0 2 Qj for which q0 occurs in �(q; �), for some � 2 �,we have Qj � Qi. Thus, transitions from a state in Qi lead to states in either the same Qi ora lower one. It follows that every in�nite path of a run of a WAA ultimately gets \trapped"within some Qi. The path then satis�es the acceptance condition if and only if Qi is anaccepting set. Thus, we can view a WAA with an acceptance condition � as both a B�uchiautomaton with an acceptance condition �, and a co-B�uchi automaton with an acceptancecondition Q n �. Indeed, a run gets trapped in an accepting set i� it visits in�nitely manystates in �, which is true i� it visits only �nitely many states in Q n �.3 Observations on Runs of Alternating Co-B�uchi AutomataLet A = h�; Q; qin; �; �i a co-B�uchi alternating automaton. Consider an accepting run hTr; riof A on a word w. For two nodes x1 and x2 in Tr, we say that x1 and x2 are similari� jx1j = jx2j and r(x1) = r(x2). We say that the run hTr; ri is memoryless i� for allsimilar nodes x1 and x2, and for all y 2 IN�, we have that x1 � y 2 Tr i� x2 � y 2 Tr, andr(x1�y) = r(x2 �y). Intuitively, similar nodes correspond to two copies of A that have the same\mission": they should both accept the su�x wjx1j from the state r(x1). In a memorylessrun, subtrees of hTr; ri with similar roots coincide. Thus, same missions are ful�lled in thesame way. It turns out that when we consider runs of co-B�uchi automata, we can restrictourselves to memoryless runs. Formally, if a co-B�uchi automaton A accepts a word w, thenthere exists a memoryless accepting run of A on w [EJ91].Let jQj = n. It is easy to see that for every run hTr; ri, every set of more than n nodesof the same level contains at least two similar nodes. Therefore, in a memoryless run of A,



every level contains at most n nodes that are roots of di�erent subtrees. Accordingly, werepresent a memoryless run hTr; ri by an in�nite dag (directed acyclic graph) Gr = hV;Ei,where� V � Q� IN is such that hq; li 2 V i� there exists x 2 Tr with jxj = l and r(x) = q. Forexample, hqin; 0i is the only vertex of Gr in Q� f0g.� E � Sl�0(Q� flg)� (Q� fl+ 1g) is such that E(hq; li;hq0; l+1i) i� there exists x 2 Tr with jxj = l, r(x) = q, and r(x � c) = q0 for some c 2 IN.Thus, Gr is obtained from hTr; ri by merging similar nodes into a single vertex. We say thata vertex hq; li in Gr is an �-vertex i� q 2 �. It is easy to see that hTr; ri is accepting i� allpaths in Gr have only �nitely many �-vertices. Consider a (possibly �nite) dag G � Gr. Wesay that a vertex hq; li is eventually safe in G i� only �nitely many vertices in G are reachablefrom hq; li. We say that a vertex hq; ii is currently safe in G i� all the vertices in G that arereachable from hq; li are not �-vertices. Note that, in particular, hq; ii is not an �-vertex.Given a memoryless accepting run hTr; ri, we de�ne an in�nite sequence G0 � G1 � G2 �: : : of dags inductively as follows.� G0 = Gr.� G2i+1 = G2i n fhq; li j hq; li is eventually safe in G2ig.� G2i+2 = G2i+1 n fhq; li j hq; li is currently safe in G2i+1g.It is shown in [KV97] that every vertex hq; li in Gr has a unique index i � 0 such that hq; liis either eventually safe in G2i or currently safe in G2i+1. Given a vertex hq; li, we de�ne therank of hq; li, denoted rank(q; l), as follows.rank(q; l) = " 2i If hq; li is eventually safe in G2i.2i+ 1 If hq; li is currently safe in G2i+1.For m 2 IN, let [m] denote the set f0; 1; : : : ; mg, and let [m]even and [m]odd denote thesets of even and odd members of [m], respectively. In [KV97], we proved that the rank ofevery vertex in Gr is in [2n]. Recall that when hTr; ri is accepting, all the paths in Gr visitonly �nitely many �-vertices. Intuitively, rank(q; l) hints how di�cult it is to get convincedthat all the paths of Gr that visit the vertex hq; li visit only �nitely many �-vertices. Easiestto get convinced about are vertices that are eventually safe in G0. Accordingly, they getthe minimal rank 0. Then come vertices that are currently safe in the graph G1, which isobtained from G0 by throwing vertices with rank 0. These vertices get the rank 1. Theprocess repeats with respect to the graph G2, which is obtained from G1 by throwing verticeswith rank 1. As before, we start with the eventually safe vertices in G2, which get the rank2. We continue with the currently safe vertices in G3, which get the rank 3. The processrepeats until all vertices get some rank. Note that no �-vertex gets an odd rank.In the lemmas below, proven in [KV97], we make this intuition formal.



Lemma 3.1 For every two vertices hq; li and hq0; l0i in Gr, if hq0; l0i is reachable from hq; li,then rank(q0; l0) � rank(q; l).Lemma 3.2 In every in�nite path in Gr, there exists a vertex hq; li with an odd rank such thatall the vertices hq0; l0i in the path that are reachable from hq; li have rank(q0; l0) = rank(q; l).We have seen that if a co-Buchi alternating automaton has an accepting run on w, then italso has a very structured accepting run on w. In [KV97] we employed this structured runin order to translate co-B�uchi alternating automata to weak alternating automata:Theorem 3.3 [KV97] Let A be an alternating co-B�uchi automaton. There is a weak alter-nating automaton A0 such that L(A0) = L(A) and the number of states in A0 is quadratic inthat of A.We describe the automaton A0. Let A = h�; Q; qin; �; �i, and let n = jQj. The state spaceof the automaton A0 is Q � [2n]. Intuitively, when A0 is in state hq; ji as it reads the letter�l (the l'th letter in the input), it guesses that in a memoryless accepting run of A on w, therank of hq; li is j. Accordingly, when A0 is in state hq; ji and it reads a letter �, it followsthe transition �(q; �) allowing the successors to move to states annotated by ranks in [j]. If,however, q 2 � and j is odd, then, by the de�nition of ranks, the current guessed rank iswrong, and the run is rejecting. Each path in a run of A0 eventually gets trapped in a set ofthe form Q� fjg for some j 2 [2n]. The set is accepting i� j is odd.In the next section we extend the ideas in [KV97] in order to translate parity and Rabinalternating automata to weak alternating automata.4 From Parity to Weak Alternating AutomataA parity alternating automaton is A = h�; Q; qin; �; �i, where � = hF1; F2; : : : ; Fki withF1 � F2 � � � � � Fk = Q. We refer to k (the number of sets in �) as the degree of � (or A).A word � 2 Q! satis�es a parity condition � i� the minimal index i for which Inf (�)\Fi 6= ;is even. We also refer to co-parity acceptance conditions. A word � 2 Q! satis�es a co-paritycondition � i� the minimal index i for which Inf (�) \ Fi 6= ; is odd; that is, i� � does notsatisfy � when referred to as a parity condition. For a parity condition � = hF1; F2; : : : ; Fkiand a set Q, we use � �Q to denote the parity condition hF1 �Q;F2 � Q; : : :; Fk � Qi.Consider a parity automaton A = h�; Q; qin; �; �i with � = fF1; F2; : : : ; Fkg, and the co-B�uchi automaton Ac = h�; Q; qin; �; F1i. That is, Ac di�ers from A only in the acceptancecondition, which consists of the minimally indexed set in �. Clearly, every accepting runhTr; ri of A is also an accepting run of Ac. Indeed, all the paths of hTr; ri must visit F1 only�nitely often (otherwise, the minimal index i for which Fi is visited in�nitely often is 1, whichis odd). It follows that when we consider accepting runs of A, we can restrict ourselves tocandidates from the set of accepting runs of Ac.



In Theorem 3.3, we translated the co-B�uchi alternating automatonAc to a weak alternatingautomaton A0c. In the automaton A0c, each path of a run gets trapped in some set Q� fjg.When j is odd, no visits to F1 are possible. Therefore, a path � that gets trapped in a setQ � fjg, for an odd j, satis�es the parity condition � i� it satis�es the co-parity condition�0 = fF2; F3; : : : ; Fkg. Indeed, since sets with an even index in � have an odd index in �0,the path � satis�es �0 i� the minimal i in f2; : : : ; kg for which Inf (�) \ Fi 6= ; is even. Inaddition, as Inf (�) \ F1 = ;, it is guaranteed that i is actually minimal in f1; : : : ; kg.The above observation suggests an inductive scheme for translating a parity or a co-parityalternating automaton to a weak alternating automaton. Intuitively, the translation proceedsas follows. Let A be a parity automaton with � = fF1; : : : ; Fkg. Translating the co-B�uchiautomaton Ac to a weak alternating automaton A0c, the copies of A0c that get trapped in setsthat enable in�nitely many visits to F1 (that is, sets Q�fjg for an even j) are rejecting. Onthe other hand, copies that get trapped in sets that disable visits to F1 may satisfy �, andwe check them further, with respect to the co-parity condition �0 obtained from � by takingout the set F1. Checking these copies is done inductively, by referring to each set Q�fjg, foran odd j, as a co-parity automaton. Formally, the induction proceeds by re�ning the statespace of the parity automaton by means of weak-parity alternating automata, de�ned below.A weak-parity alternating automaton (WPAA, for short) is A = h�; S; P; qin; �; �; �i, whereS and P are disjoint sets of states (called simple and parity states, respectively), qin 2 S [Pis an initial state, � : (S [ P ) � � ! B+(S [ P ) is a transition function, � � S is a B�uchiacceptance condition, and � is a parity acceptance condition over P . We refer to the numberof sets in � as the degree of � (or A). There exists a partition of S [ P into disjoint sets,such that the following hold.� For each set Q in the partition, one of the following holds.1. Q � �, in which case Q is an accepting set,2. Q � S and Q \ � = ;, in which case Q is a rejecting set, or3. Q � P , in which case Q is a parity set.For a state q 2 S [ P , let [q] denote the set of states in q's set in the partition.� There exists a partial order � on the collection of the sets such that for every twostates q and q0 for which q0 occurs in �(q; �), for some � 2 �, we have [q0] � [q]. Thus,transitions from a state in a set Q lead to states in either the same set Q or a lower set.It follows that every in�nite path � of a run of a WPAA ultimately gets trapped within someset Q in the partition. The path � then satis�es the acceptance condition i� either Q is anaccepting set, or Q is a parity set and � satis�es �. Thus, a WPAA A is very similar to aWAA, only that in some of the sets in the partition, acceptance is determined according toa parity acceptance condition. In particular, if P = ;, then A is a WAA. On the other hand,every parity automaton can be viewed as a WPAA with S = ; (and a trivial partition with



a single set). If there exists � 2 IN such that the size of each set in the partition is exactly �,we say that A is a WPAA of width �.Consider a WPAA A of width � with � = fF1; F2; : : : ; Fkg. With each parity set Q of Aand state q 2 Q, we can associate a co-B�uchi automaton Aq = h�; Q; q; �Q; F1i, where �Q isobtained from � by replacing states not in Q by true. Each accepting run of A (in which qis participating) induces an accepting run Aq . Formally, if hTr; ri is an accepting run of A onsome word w, and x 2 Tr is such that r(x) = q, then the subtree of hTr; ri with root x andnodes x � y for which r(x � y) 2 Q, is an accepting run, embedded in hTr; ri, of Aq on wjxj.For every node z 2 Tr such that r(z) is a parity state, there exists a unique pre�x x suchthat r(x) 2 [r(z)] and either x = " or x = y � c with r(y) 62 [r(z)]; that is, x is the �rst nodelabeled with a state in [r(z)] that is visited along the path from the root to z. We say thatx is a seed . If we consider, among the many runs of co-B�uchi automata embedded in hTr; ri,only runs that start in seeds, then each node z for which r(z) is a parity state belongs toexactly one run. Since the size of all parity sets (and thus also the size of the state space ofthe co-B�uchi automata) is �, we can associate with each such node z with seed x a rank in[2�], corresponding to the rank of the vertex hr(z); jzj � jxji in the induced accepting run ofAr(x) on wjxj.Recall that we want to translate parity alternating automata to weak alternating automata.Thus, we want to start with a WPAA with S = ;, go through a chain of WPAA of decreasingdegrees, and end-up with a WPAA with P = ;. De�ning the intermediate automata, itis convenient to alternate between parity and co-parity acceptance conditions. A co-weak-parity alternating automaton (co-WPAA, for short) is A = h�; S; P; qin; �; �; �i, with the samestructure as a WPAA, only that an in�nite path � that gets trapped within a set Q satis�esthe acceptance condition i� either Q is an accepting set, or Q is a parity set and � satis�esthe co-parity condition �. Proceeding from a WPAA with degree k > 1 to its successor inthe chain is described in the theorem below.Theorem 4.1 Let A be a weak-parity alternating automaton of degree k > 1 and width �,with m simple states and n parity states. There is a co-weak-parity alternating automatonA0 of degree k � 1 and width �, such that L(A0) = L(A), the number of simple states in A0is m+ n(�+ 1), and the number of parity states in A0 is n�.Proof: Let A = h�; S; P; qin; �; �; �i, with � = fF1; : : : ; Fkg. We de�ne A0 = h�; S 0; P 0; q0in; �0; �0; �0i,where� S 0 = S [ (P � [2�]even). That is, the simple states of A0 are the simple states of A,with no annotation, and the parity states of A annotated with even ranks in [2�].� P 0 = P � [2�]odd. That is, the parity states of A0 are parity states of A annotated withodd ranks in [2�].� If qin 2 S, then q0in = qin. Otherwise, q0in = hqin; 2�i.



� We de�ne �0 by means of two functions (both parameterized with �).annotate� : B+(S [ P )! B+(S0 [ P 0)and release� : B+(S [ P ) � [2�]� 2P ! B+(S0 [ P 0):For a formula � 2 B+(S [P ), the formula annotate�(�) is obtained from � by replacingan atom q 2 P by the disjunction Wj2[2�]hq; ji. For example, if fp; p0g � P and s 2 S,then annotate4((s _ p) ^ p0) = (s _ _j2[8]hp; ji)^ _j2[8]hp0; ji:For a formula � 2 B+(S [ P ), a rank i 2 [2�], and a set Q � P , the formularelease�(�; i; Q) is obtained from � by replacing an atom q 2 Q by the disjunctionWj2[i]hq; ji, and replacing an atom q 2 P n Q by the disjunction Wj2[2�]hq; ji. Forexample, release4((s _ p) ^ p0; 2; fpg) = (s _ _j2[2]hp; ji)^ _j2[8]hp0; ji:Note that in annotate�(�) atoms in P can be annotated by any rank in [2�]. On theother hand, in release�(�; i; Q) some atoms in P (these in Q) can be annotated only byranks in [i]. Now, �0 : (S0 [ P 0)� �! B+(S0 [ P 0) is de�ned as follows.{ For a state q 2 S and � 2 �, we have �0(q; �) = annotate�(�(q; �)).{ For a state hq; ii 2 P � [2�] and � 2 �, we have�0(hq; ii; �) = " release�(�(q; �); i; [q]) If q 62 F1 or i is even.false If q 2 F1 and i is odd.That is, states that originate from A's simple states follow their transitions in A, allow-ing the run to move in its successors that belong to parity sets of A to any rank in [2�].On the other hand, states that originate from A's parity states follow the transitionsof the weak alternating automata that correspond to the co-B�uchi automata inducedby their parity sets. Intuitively, annotating a state q 2 P by a rank in [2�] correspondsto guessing its rank in an accepting run of the co-B�uchi alternating automaton withstate space [q]. The initial state and states that are reachable by a transition fromstates that originate from A's simple states label nodes that are seeds. Therefore, wecan annotate them with any rank in [2�] (the rank of a seed is independent of therank of its predecessor in the run). On the other hand, states that are reachable bya transition from states that originate from A's parity states label nodes that are notseeds. Therefore, the guessed rank of such a state is bounded by the rank of the statelabeling its predecessor.



� �0 = �. That is, getting trapped in a set Q of simple states, a path is accepting if Q isan accepting set of A, and is rejecting if Q is either a rejecting set of A or it correspondsto a copy of a parity set of A annotated with an even rank. Indeed, such sets enablein�nitely many visits to F1.� �0 = fF2� [2�]odd; F3� [2�]odd; : : : ; Fk� [2�]oddg. That is, getting trapped in a parityset of A0, a path should satisfy the co-parity condition obtained from � by taking outF1 and annotating the other sets by odd ranks in [2�].We �rst prove that A0 is a co-WPAA of width �. The partition of S0 [ P 0 into sets is asfollows. First, each accepting of rejecting set Q � S in A yields the set Q in A0. In addition,each parity set Q � P in A yields 2�+ 1 sets, Q � fjg for j 2 [2�], in A0. Clearly, in bothcases, the size of the sets in A0 is the same as their size in A, thus A0 is of width �. It is easyto see that each of the sets of A0 is either accepting, rejecting, or parity. The partial orderon the collection of sets in A0 is induced by the partial order in A. For two sets O and O0 inA0, we have O < O0 i� there exist sets Q and Q0 in A such that one of the following hold:� Q < Q0 and the following both hold:{ O = Q or O = Q � fjg for some j 2 [2�], and{ O0 = Q0 or O0 = Q0 � fj 0g for some j 0 2 [2�].� Q = Q0 and the following both hold:{ O = Q� fjg for some j 2 [2�],{ O0 = Q0 � fj 0g for some j0 2 [2�], and{ j < j0.It is easy to see that transitions from a state q in A0 leads to states q0 for which [q0] � [q],thus the structural conditions for a co-WPAA hold.We now prove the correctness of the construction. We �rst prove that L(A0) � L(A).Consider a word w accepted by A0. Let hTr; r0i be the accepting run of A0 on w. Considerthe (S [ P )-labeled tree hTr; ri where for all x 2 Tr with r0(x) = q or r0(x) = hq; ii, we haver(x) = q. Thus, hTr; ri projects the labels of hTr; r0i on their S [ P element. It is easy tosee that hTr; ri is a run of A on w. Indeed, the transitions of A0 only annotate transitionsof A by ranks (or replace them by false, which cannot be taken in an accepting run of A0).We show that hTr; ri is an accepting run. Consider an in�nite path � � Tr. Since A0 is aco-WPAA and hTr; r0i is accepting, there are two possible fates for � in hTr; r0i:1. It gets trapped in an accepting set. Then, as �0 = �, it must be that in hTr; ri, thepath � gets trapped in an accepting set as well.



2. It gets trapped in a parity set and satis�es the co-parity condition �0. Then, as theparity sets are P � fig for some odd i, it is guaranteed, by the de�nition of �0 (whereno run can visit a state hq; ii with an odd i and q 2 F1), that � actually gets trappedin the subset (P n F1) � fig of P � fig. Hence, it must be that in hTr; ri, the path �gets trapped in a parity set and satis�es �.It is left to prove that L(A) � L(A0). Consider a word w accepted by A. Let hTr; ri be amemoryless accepting run of A on w. Consider the (S0[P 0)-labeled tree hTr; r0i where wherefor every node x 2 Tr, we haver0(x) = 2664 r(x) If r(x) 2 S.hr(x); 2�i If r(x) 2 P and x = ".hr(x); rank(x)i If r(x) 2 P and x 6= ".We claim that hTr; r0i is an accepting run of A0. We �rst prove that it is a run. Sincer(") = qin and q0in is either qin, in the case qin 2 S, or hqin; 2�i, in the case qin 2 P , wehave that r0(") = q0in, thus the root of the tree hTr; r0i is labeled legally. We now considerthe �rst level of hTr; r0i. Consider the state q0in. Note that for every � 2 � and Q � P ,we have annotate�(�(qin; �)) = release�(�(qin; �); 2�;Q). Hence, by the de�nition of �0, wehave (independently of whether q0in = qin or q0in = hqin; 2�i) that �0(q0in; �0) is obtained from�(qin; �0) by replacing an atom q 2 P by the disjunction Wj2[2�]hq; ji. Let [k] be the set of"'s successors in Tr and let Q = hq0; : : : ; qki be the set of labels of "'s successors in hTr; ri.Thus, Q satis�es �(qin; �0). (We refer to Q as an ordered set, so it may contain repetitions.)Consider the set Q0 = hq00; : : : ; q0ki, where for all c 2 [k], we have q0c = qc in the case qc 2 S,and q0c = hqc; rank(c)i in the case qc 2 P . As 2� is the maximal rank that a node can get,each successor c of " in Tr has rank(c) � 2�. Therefore, the set Q0 satis�es �0(q0in; �0). Hence,the �rst level of hTr; r0i is also labeled legally.For the other levels, consider a node x 2 Tr such that x 6= ". Let [x � 0; : : : ; x � k] bethe set of x's successors in Tr and let Q = hq0; : : : ; qki be the set of labels of x's successorsin hTr; ri. Consider the set Q0 = hq00; : : : ; q0ki, where for all c 2 [k], we have q0c = qc inthe case qc 2 S, and q0c = hqc; rank(x � c)i in the case qc 2 P . We claim that Q0 satis�es�0(r0(x); �jxj). To prove this, we distinguish between two cases. Assume �rst that r0(x) = q 2S. Then, �0(r0(x); �jxj) = annotate�(�(q; �jxj)). As 2� is the maximal rank that a node canget, each successor x � c of x in Tr has rank(x � c) � 2�, and we are done. Assume now thatr0(x) = hq; ii 2 P � [2�]. Then, by the de�nition of r0, we have that i = rank(x). Since ris accepting, then, by the de�nition of ranks, it cannot be that q 2 F1 and i is odd. Hence,�0(r0(x); �jxj) = release�(�(q; �jxj); i; [q]). Since for each atom qc 2 [q], we have, by Lemma 3.1,that rank(x � c) � rank(x), and since for each atom qc 2 P n [q], we have rank(x � c) � 2�, theset Q0 satis�es release�(�(q; �jxj); i; [q]), and we are done. Hence, the tree hTr; r0i is a run ofA0 on w.Finally, to see that hTr; r0i is accepting, consider an in�nite path � � Tr. Since A is aWPAA and hTr; ri is accepting, there are two possible fates for � in hTr; ri:



1. It gets trapped in an accepting set. Then, for all x 2 � we have r(x) = r0(x) andtherefore, as �0 = �, it must be that in hTr; r0i, the path � gets trapped in an acceptingset as well.2. It gets trapped in a parity set and satis�es �. Then, it visits F1 only �nitely often,which implies, according to Lemma 3.2, that in hTr; r0i, the path � gets trapped in aparity set P � fig for some odd i. In addition, since � satis�es the parity condition �in hTr; ri, it satis�es the co-parity condition �0 as well.As discussed in [MS87], one can complement an alternating automaton by dualizing itstransition function and acceptance condition. Formally, given a transition function �, let ~�denote the dual function of �. That is, for every q and � with �(q; �) = �, we have ~�(q; �) = ~�,where ~� is obtained from � by switching _ and ^ and by switching true and false. If, forexample, � = q1 _ (true^ q2) then ~� = q1 ^ (false_ q2). The dual of an acceptance condition is a condition that accepts exactly all the words that are not accepted by . In particular,when we dualize a WPAA, we get a co-WPAA. Consider a co-WPAA A. Let ~A be its dualWPAA, and let ~A0 be the co-WPAA constructed from ~A in Theorem 4.1. By dualizing ~A0,we obtain a WPAA that is equivalent to A. Hence, the construction in Theorem 4.1 can beused also to go from a co-WPAA of degree k > 1 to a WPAA of degree k � 1.Recall that a parity automaton A with n states can be viewed as a WPAA with S =; and width n. By repeatedly employing the construction in Theorem 4.1 (and its dualconstruction), we can translate A to a WPAA or a co-WPAA A0 of degree 1. Such anautomaton, however, can be viewed as a WAA. Indeed, its parity sets are either rejecting,in the case A0 is a WPAA, or accepting, in the case A0 is a co-WPAA. We can thereforeconclude with the following theorem.Theorem 4.2 Let A be a parity alternating automaton with n states and degree k. There isa weak alternating automaton A0, such that L(A0) = L(A) and the number of states in A0 isO(nk).Proof: Given A, consider the chain A0; : : : ; Ak�1 of WPAA and co-WPAA, where A0 =A, and Ai+1 is obtained from Ai following the construction in Theorem 4.1 (or its dualconstruction). For i 2 [k], let mi and ni denote the number of simple and parity states in Ai,respectively. In particular, m0 = 0 and n0 = n. As the width � of all the automata in thechain is n, then for i 2 [k � 2], we have mi+1 = mi + ni � (n + 1), and ni+1 = ni � n. Hence,ni = ni+1. Accordingly, mi = n�(n+1)�(ni�1)n�1 . In particular, both nk�1 and mk�1 are O(nk).The automaton Ak�1 is of degree 1, and can therefore be viewed as a WAA with nk�1+mk�1states. Hence, we are done.



5 From Rabin to Weak Alternating AutomataA Rabin alternating automaton is A = h�; Q; qin; �; �i, where � = fhG1; B1i; : : : ; hGk; Bkig �2Q � 2Q. We refer to k (the number of pairs in �) as the degree of � (or A). A word� 2 Q! satis�es a Rabin condition � i� there exists an index i for which Inf (�) \ Gi 6= ;and Inf (�) \Bi 6= ;. Note that a parity condition � with either an even degree k or an odddegree k + 1 is equivalent to the Rabin condition fhF2; F1i; hF4; F3i; : : : ; hFk; Fk�1ig. Rabinautomata can be translated to parity automata with an exponential blow up [Tho97].We now show how the same ideas used for parity automata can be used in order totranslate alternating Rabin automata to weak alternating automata. As in the parity case,the construction goes through a sequence of intermediate automata. Each automaton in thesequence re�nes the state space of its predecessor and has one less pair in its Rabin acceptancecondition. Unlike the parity case, where the sets in the acceptance condition are ordered,here there is no order between the pairs in the acceptance condition. Therefore, while inthe parity case re�nement essentially requires n copies of each state, resulting in an O(nk)overall blow-up, here re�nement also requires a guess of the pair to be removed, resulting inan additional k! blow up.Before we describe the translation, we �rst need some notations and de�nitions. For twoRabin conditions �1 = fhG11; B11i; : : : ; hG1k; B1kig and �2 = fhG21; B21i; : : : ; hG2k; B2kig, of thesame degree k, let�1 � �2 = fhG11 [G21; B11 [ B21i; : : : ; hG1k [G2k; B1k [B2kigdenote the Rabin condition of degree k obtained by \merging" the pairs of �1 and �2. It iseasy to see that when �1 and �2 are de�ned over disjoint sets Q1 and Q2 of states, then aword � 2 Q!1 satis�es �1��2 i� � satis�es �1, and similarly for � 2 Q!2 and �2. We generalizethe operators � to an arbitrary number of conditions.A weak-Rabin alternating automaton of degree k (WRAA(k), for short) is A = h�; S; R; qin; �; �; �i,where S and R are sets of states (called simple and Rabin states, respectively), qin 2 S [ Ris an initial state, � : (S [ R) � � ! B+(S [ R) is a transition function, � � S is a B�uchiacceptance condition, and � = fhG1; B1i; : : : ; hGk; Bkig is a Rabin acceptance condition withk pairs over R. There exists a partition of S [ R into disjoint sets, such that the followinghold.� For each set Q in the partition, one of the following holds.1. Q � �, in which case Q is an accepting set,2. Q � S and Q \ � = ;, in which case Q is a rejecting set, or3. Q � R, in which case Q is a Rabin set.For a state q 2 S [R, let [q] denote the set of states in q's set in the partition.



� There exists a partial order � on the collection of the sets such that for every twostates q and q0 for which q0 occurs in �(q; �), for some � 2 �, we have [q0] � [q]. Thus,transitions from a state in a set Q lead to states in either the same set Q or a lower set.It follows that every in�nite path � of a run of a WRAA ultimately gets trapped within someset Q in the partition. The path � then satis�es the acceptance condition i� either Q is anaccepting set, or Q is a Rabin set and � satis�es �. Thus, a WRAA A is very similar toa WAA, only that in some of the sets in the partition, acceptance is determined accordingto a Rabin acceptance condition. In particular, if R = ;, then A is a WAA. On the otherhand, every Rabin automaton with k pairs can be viewed as a WRAA(k) with S = ; (and atrivial partition with a single set). If there exists � 2 IN such that the size of each set in thepartition is exactly �, we say that A is a WRAA of width �. (One could also de�ne the width� to be a bound on the size of the sets. The results in the paper hold also for this de�nition).A weak-Rabin-B�uchi alternating automaton of degree k (WRBAA(k), for short) is A =h�; S; R; qin; �; �; �; i, with the same structure as a WRAA, only that A now contains alsoan additional B�uchi condition  � R. An in�nite path � that gets trapped within a set Q ofa WRBAA satis�es the acceptance condition i� either Q is an accepting set, or Q is a Rabinset and � either satis�es the B�uchi condition  or satis�es the Rabin condition �.Theorem 5.1 Let A be a weak-Rabin alternating automaton of degree k > 0, and width �,with m simple states and n Rabin states. There is a weak-Rabin-Buchi alternating automatonA0 of degree k � 1 and width �, such that L(A0) = L(A), the number of simple states in A0is m+ n(�+ 1), and the number of Rabin states in A0 is n � � � k.Proof: Let A = h�; S; R; qin; �; �; �i, with � = fhG1; B1i; : : : ; hGk; Bkig. We de�ne A0 =h�; S 0; R0; q0in; �0; �0; �0; i, where� S 0 = S [ (R � [2�]even). That is, the simple states of A0 are the simple states of A,with no annotation, and the Rabin states of A annotated with even ranks in [2�]. Thepartition of the states in S into sets is as follows. Each simple set Q in A yields thesimple set Q in A0. Each Rabin set Q in A yields �+1 simple sets of the form Q�frgfor r 2 [2�]even.� R0 = R � [2�]odd � f1; : : : ; kg. That is, the Rabin states of A0 are Rabin states of Aannotated with odd ranks in [2�] and indices in f1; : : : ; kg. The partition of the statesin R into sets is as follows. Each Rabin set Q in A yields � � k Rabin sets of the formQ� frg � fig for r 2 [2�]odd and i 2 f1; : : : ; kg.� If qin 2 S, then q0in = qin. Otherwise, q0in = hqin; 2�i.� We de�ne �0 by means of three functions (parameterized with � and k).annotate�;k : B+(S [R)! B+(S 0 [ R0);



even release�;k : B+(S [R)� 2R � [2�]even ! B+(S0 [ P 0); andodd release�;k : B+(S [R)� 2R � [2�]odd � f1; : : : ; kg ! B+(S 0 [ P 0):Given a formula � 2 B+(S [ R), the formula annotate�;k(�) is obtained from � byreplacing an atom q 2 R by the disjunction Wj2[2�]evenhq; ji_Wj2[2�]odd;i2f1;:::;kghq; j; ii.For example, if s 2 S and fp; p0g � R, then annotate3;2((s _ r) ^ r0) is0BBB@s _ _j2f0;2;4;6ghp; ji _ _j2f1;3;5gi2f1;2;3ghp; j; ii1CCCA^ 0BBB@ _j2f0;2;4;6ghp0; ji _ _j2f1;3;5gi2f1;2;3ghp0; j; ii1CCCA :Given a formula � 2 B+(S [ R), a set O � R, and a rank r 2 [2�]even, the formulaeven release�;k(�; O; r) is obtained from � by replacing an atom q 2 O by the disjunctionWj2[r]evenhq; ji_Wj2[r]odd ;i2f1;:::;kghq; j; ii, and replacing an atom q 2 R nO by the dis-junction Wj2[2�]evenhq; ji_Wj2[2�]odd ;i2f1;:::;kghq; j; ii. For example, even release3;2((s_p) ^ p0; fpg; 2) is(s _ _hp; 0i _ hp; 2i _ hp; 1; 1i _ hp; 1; 2i)^0BBB@ _j2f0;2;4;6ghp0; ji _ _j2f1;3;5gi2f1;2g hp0; j; ii1CCCA :Given a formula � 2 B+(S [ R), a set O � R, a rank r 2 [2�]odd, and an index i 2f1; : : : ; kg, the formula odd release�;k(�; O; r; i) is obtained from � by replacing an atomq 2 O by the disjunction hq; r; ii_Wj2[r�1]evenhq; ji_Wj2[r�1]odd;i2f1;:::;kghq; j; ii, and re-placing an atom q 2 RnO by the disjunction Wj2[2�]evenhq; ji_Wj2[2�]odd;i2f1;:::;kghq; j; ii.For example, odd release3;2((s _ p) ^ p0; fpg; 3; 1) is(s _ hp; 3; 1i_ hp; 0i _ hp; 2i _ hp; 1; 1i_ hp; 1; 2i)^0BBB@ _j2f0;2;4;6ghp0; ji _ _j2f1;3;5gi2f1;2g hp0; j; ii1CCCA :Note that in annotate�;k(�) atoms in R can be annotated by any rank in [2�] andany index in f1; : : : ; kg. On the other hand, in even release�;k(�; O; r) some atoms in R(these in O) can be annotated only by ranks in [r]. Moreover, in odd release�;k(�; O; r; i),the atoms in O can either keep the rank r, in which case they also have to keep theindex i, or move to a smaller rank [r � 1], in which case they can move to any index.Now, �0 : (S0 [ R0)� �! B+(S0 [R0) is de�ned, for all � 2 �, as follows.{ For a state q 2 S, we have �0(q; �) = annotate�;k(�(q; �)).{ For a state hq; ri 2 R�[2�]even, we have �0(hq; ri; �) = even release�;k(�(q; �); [q]; r).



{ For a state hq; r; ii 2 R� [2�]odd � f1; : : : ; kg, we have�0(hq; r; ii; �) = " odd release�;k(�(q; �); [q]; r; i) If q 62 Bi.false If q 2 Bi.That is, states that originate from A's simple states follow their transitions in A,allowing the run to move in its successors that belong to Rabin sets of A to any rank in[2�] and any relevant index. On the other hand, states that originate from A's Rabinstates follow the transitions of the weak alternating automata that correspond to theco-B�uchi automata induced by Bi for some i 2 f1; : : : ; kg. Intuitively, annotating astate q 2 R by a rank in [2�] corresponds to guessing its rank in an accepting runof the co-B�uchi alternating automaton with state space [q] and accepting conditionBi, for some guessed index i 2 f1; : : : ; kg. When the guessed rank is even, A0 is notcommitted to a speci�c index i. However, whenever the rank is odd and A0 does notmove to a smaller rank, it also have to stay with the current guessed index. As withparity automata, the initial state and states that are reachable by a transition fromstates that originate from A's simple states label nodes that are seeds. Therefore, wecan annotate them with any rank in [2�] (the rank of a seed is independent of therank of its predecessor in the run) and, in the case the rank is odd, with any index inf1; : : : ; kg (as in the case of parity automata, the annotation of the initial state enablesthe automaton to move to any rank and index). On the other hand, states that arereachable by a transition from states that originate from A's Rabin states label nodesthat are not seeds. Therefore, the guessed rank of such a state is bounded by the rankof the state labeling its predecessor. In addition, when the rank is odd, the run shouldstick to the guessed index.� �0 = �. That is, getting trapped in a set Q of simple states, a path is accepting if Q isan accepting set of A, and is rejecting if Q is either a rejecting set of A or it correspondsto a copy of a Rabin set of A annotated with an even rank. Indeed, such sets enablein�nitely many visits to the sets Bi.� For each 1 � i � k, let �i be the Rabin condition obtained from � by eliminating thepath hGi; Bii. I.e., �i = fhG1; B1i; : : : ; hGi�1; Bi�1i; hGi+1; Bi+1i; : : : ; hGk; Bkig. Then,�0 = �1�i�kBi � [2�]odd � f1; : : : ; kg:Since the degree of the conditions �i is k � 1, so is the degree of �0.�  = S1�i�k Gi � [2�]odd � fig.We prove that A0 is a WRBAA of width �. The partition of S0 [ R0 into sets is as follows.First, each accepting of rejecting set Q � S in A yields the set Q in A0. In addition, eachRabin set Q � R in A yields �+1 sets, Q�frg for r 2 [2�]even, and � �k sets, Q�frg� fig



for r 2 [2�]odd and i 2 f1; : : : ; kg, in A0. Clearly, in both cases, the size of the sets in A0 isthe same as their size in A, thus A0 is of width �. It is easy to see that each of the sets ofA0 is either accepting, rejecting, or Rabin. The partial order on the collection of sets in A0is induced by the partial order in A. For two sets O and O0 in A0, we have O < O0 i� thereexist sets Q and Q0 in A such that one of the following hold:� Q < Q0 and the following both hold:{ O = Q, O = Q � frg for some r 2 [2�]even, or O = Q � frg � fig for somer 2 [2�]odd and i 2 f1; : : : ; kg, and{ O0 = Q0, O0 = Q0 � fr0g for some r0 2 [2�]even, or O0 = Q0 � fr0g � fi0g for somer0 2 [2�]odd and i0 2 f1; : : : ; kg, and� Q = Q0 and the following all hold:{ O = Q�frg for some r 2 [2�]even, or O = Q�frg�fig for some r 2 [2�]odd andi 2 f1; : : : ; kg, and{ O0 = Q0�fr0g for some r0 2 [2�]even, or O = Q�fr0g� fi0g for some r0 2 [2�]oddand i0 2 f1; : : : ; kg, and{ r < r0.Note that sets Q� frg � fig and Q0 � fr0g � fi0g for which Q = Q0 and r = r0 are notrelated by <. Intuitively, while transitions can only go to smaller guessed ranks, theycan switch between the guessed indices arbitrarily.It is easy to see that transitions from a state q in A0 leads to states q0 for which [q0] � [q],thus the structural conditions for a WRBAA hold.When we dualize a WRAA, we get a co-WRAA and when we dualize a WRBAA, we geta co-WRBAA.Theorem 5.2 Let A be a co-weak-Rabin-Buchi alternating automaton of degree k and width�, with m simple states and n Rabin states. There is a co-weak-Rabin alternating automatonA0 of degree k and width �, such that L(A0) = L(A), the number of simple states in A0 ism+ n(�+ 1), and the number of Rabin states in A0 is n�.Proof: The construction is very similar to the one in Theorem 4.1. Let A = h�; S; R; qin; �; �; �; i,with � = fhG1; B1i; : : : ; hGk; Bkig. We de�ne A0 = h�; S 0; R0; q0in; �0; �0; �0i, where� S 0 = S [ (R � [2�]even). That is, the simple states of A0 are the simple states of A,with no annotation, and the Rabin states of A annotated with even ranks in [2�].� R0 = R� [2�]odd. That is, the Rabin states of A0 are Rabin states of A annotated withodd ranks in [2�].



� If qin 2 S, then q0in = qin. Otherwise, q0in = hqin; 2�i.� We de�ne �0 by means of two functions (both parameterized with �).annotate� : B+(S [ R)! B+(S0 [ P 0)and release� : B+(S [R)� 2R � [2�]! B+(S0 [ R0):Given a formula � 2 B+(S[R), the formula annotate�(�) is obtained from � by replacingan atom q 2 R by the disjunction Wj2[2�]hq; ji. For example, if fp; p0g � R and s 2 S,then annotate4((s _ p) ^ p0) = (s _ _j2[8]hp; ji)^ _j2[8]hp0; ji:Given a formula � 2 B+(S [ R), a set O � P , and a rank r 2 [2�], the formularelease�(�; O; r) is obtained from � by replacing an atom q 2 O by the disjunctionWj2[r]hq; ji, and replacing an atom q 2 R n O by the disjunction Wj2[2�]hq; ji. Forexample, release4((s _ p) ^ p0; fpg; 2) = (s _ _j2[2]hp; ji)^ _j2[8]hp0; ji:Note that in annotate�(�) atoms in R can be annotated by any rank in [2�]. On theother hand, in release�(�; O; r) some atoms in R (these in O) can be annotated only byranks in [r]. Now, �0 : (S 0 [R0)� �! B+(S0 [ R0) is de�ned as follows.{ For a state q 2 S and � 2 �, we have �0(q; �) = annotate�(�(q; �)).{ For a state hq; ii 2 R� [2�] and � 2 �, we have�0(hq; ii; �) = " release�(�(q; �); [q]; r) If q 62 Gf(q)[2] or r is even.false If q 2 Gf(q)[2] and r is odd.That is, states that originate from A's simple states follow their transitions in A,allowing the run to move in its successors that belong to Rabin sets of A to any rankin [2�]. On the other hand, states that originate from A's h; ii-Rabin states follow thetransitions of the weak alternating automata that correspond to the co-B�uchi automatainduced by Gi. Intuitively, annotating a state q 2 R by a rank in [2�] correspondsto guessing its rank in an accepting run of the co-B�uchi alternating automaton withstate space [q] and acceptance condition f(q)[2]. The initial state and states that arereachable by a transition from states that originate from A's simple states label nodesthat are seeds. Therefore, we can annotate them with any rank in [2�] (the rank of aseed is independent of the rank of its predecessor in the run). On the other hand, statesthat are reachable by a transition from states that originate from A's Rabin states labelnodes that are not seeds. Therefore, the guessed rank of such a state is bounded by therank of the state labeling its predecessor.



� �0 = �. That is, getting trapped in a set Q of simple states, a path is accepting if Q isan accepting set of A, and is rejecting if Q is either a rejecting set of A or it correspondsto a copy of a Rabin h; ii-set of A annotated with an even rank. Indeed, such setsenable in�nitely many visits to Gi.� �0 = fhG1 � [2�]odd; B1 � [2�]oddi; : : : ; hGk � [2�]odd; Bk � [2�]oddig.Consider a co-WRBAA A. Let ~A be its dual WRBAA, and let ~A0 be the co-WRAAconstructed from ~A in Theorem 5.2. By dualizing ~A0, we obtain a WPAA that is equivalentto A. Hence the following theorem.Theorem 5.3 Let A be a weak-Rabin-B�uchi alternating automaton of degree k > 1, andwidth �, with m simple states and n parity states. There is a weak-Rabin alternating automa-ton A0 of degree k and width �, such that L(A0) = L(A), the number of simple states in A0is m+ n(�+ 1), and the number of parity states in A0 is n�.Recall that a Rabin automaton A of degree k with n states can be viewed as a WRAA(k)with S = ; and width n. By repeatedly employing Theorems 5.1 and 5.3, we can translateA to a WRAA of degree 0. A computation that gets trapped in a Rabin set in such anautomaton does not satisfy the acceptance condition. Hence, we can regard the Rabin setsas rejecting sets and we end up with a WAA.Theorems 5.1 and 5.3 therefore imply the following theorem.Theorem 5.4 Let A be a Rabin alternating automaton with n states and degree k. There isa weak alternating automaton A0, such that L(A0) = L(A) and the number of states in A0 isO(n2k+1 � k!).Proof: Given A, consider the chain A0;A01;A1; : : : ;A0k;Ak of WRAA and WRBAA, whereA0 = A is a WRAA, A0i+1 is the WRBAA obtained from Ai following the constructiondescribed in Theorem 5.1, and Ai is the WRAA obtained from A0i following the constructiondescribed in Theorem 5.3. For i 2 [k], let mi, ni, and di, and denote the number of simplestates, number of Rabin states, and degree of Ai, respectively, and similarly for m0i, n0i, andd0i and A0i. As the width � of all the automata in the chain is n, we have the following.� m0 = 0, n0 = n, and d0 = k.� For i 2 [k � 1], we have{ m0i+1 = mi + ni � (n+ 1), n0i+1 = ni � n � di, d0i+1 = di � 1.{ mi+1 = m0i+1 + n0i+1 � (n+ 1), ni+1 = n0i+1 � n, di+1 = d0i+1.Thus, di = k � i and



� mi+1 = mi + ni � (n+ 1) � (1 + n(k � i)).� ni+1 = ni � n2 � (k � i).It follows that� ni = n2i+1 �k!(k�i)!� mi = O(Pij=0 ni).Accordingly, both nk and mk are O(n2k+1 � k!).Note that while the degree of a parity condition � denotes the number of sets in �, thedegree of a Rabin condition � denotes the number of pairs, which is half the number of sets,in �. Thus, the blow ups in Theorems 4.2 and 5.4 indeed di�er only in k! (the explanationto the additional +1 factor in the blow up in Theorem 5.4 is the fact that a parity conditionof an odd degree 2k + 1 is equivalent to a Rabin condition with k pairs).6 The Nonemptiness ProblemIn this section we show how the translations described in Sections 4 and 5 and can beused in order to solve the nonemptiness problem for nondeterministic tree automata. Anondeterministic tree automaton is A = h�; d; Q; qin; �; �i, where �, Q, qin, and � are asin alternating word automata, d 2 IN is a branching degree, and � : Q � � ! 2Qd is atransition function that maps a state and a letter to a set of d-tuples over Q. The automatonA runs on in�nite �-labeled trees hT; V i of branching degree d, thus T = f1; : : : ; dg�. Aswith alternating word automata, �(q; �) describes a possible con�guration that A can moveinto when it is in state q and reads the letter �, which labels the root of the input tree. Forexample, a transition �(q; �) = fhq1; q2i; hq3; q4ig means that A accepts a binary tree withroot labeled � from state q if it accepts the left subtree from state q1 and the right subtreefrom state q2, or it accepts the left subtree from state q3 and the right subtree from state q4.A run of A on hT; V i is a Q-labeled tree hT; ri, such that the following hold:� r(") = qin.� Let x 2 T with r(x) = q. There exists hq1; : : : ; qdi 2 �(q; V (x)) such that for all1 � c � d, we have r(x � c) = qc.Note that each node of the input tree corresponds to exactly one node in the run tree. A runhT; ri is accepting i� all its paths satisfy the acceptance condition.It is shown in [BVW94] that the nonemptiness problem for nondeterministic tree automataand the nonemptiness problem for alternating word automata over a singleton alphabet areequivalent and that their complexities coincide. We refer to both problems as the nonempti-ness problem. Since the nonemptiness problem for weak alternating automata can be solvedin linear time [BVW94], Theorems 4.2 and 5.4 imply the following.



Theorem 6.1(1) The nonemptiness problem for parity automata with n states and degree k can be solvedin time O(nk).(2) The nonemptiness problem for Rabin automata with n states and degree k can be solvedin time O(n2k+1 � k!).The O(n2k+1 � k!) bound in Theorem 6.1 improves the known O((nk)3k) upper-bound forthe nonemptiness problem [EJ88, PR89] for Rabin automata. A similar bound for Streettautomata follows. Solving, however, the nonemptiness problem by translating a given au-tomaton to an equivalent weak automaton is not very appealing in practice, as such a solutionnever performs better than its worst-case complexity. Indeed, the blow-up is introduced al-ready in the translation of A to A0. We now describe an algorithm that uses the specialstructure of A0 without constructing it �rst. The worst-case complexity of this algorithmis as above, yet in practice it may perform better. We consider here the case where A is aparity automaton. The algorithm of Rabin automata follows the same ideas.An extended parity automaton is A = h�; Q; qin; �; �i, where � = h�; V; Ai is an acceptancecondition consisting of a parity condition � over Q, a visiting set V � Q, and an avoidingset A � Q. It is required that A\V = ;. The extended parity automaton A is equivalent tothe parity automaton A0 = h�; Q; qin; �0; �i, where �0 is de�ned, for all � 2 �, as follows:� For all q 2 V , we have �0(q; �) = true.� For all q 2 A, we have �0(q; �) = false.� For all q 2 Q n (V [A), we have �0(q; �) = �(q; �).Thus, in a run hTr; ri of A, no node x 2 Tr has r(x) 2 A, a node x 2 Tr with r(x) 2 V neednot have children, and hTr; ri is accepting i� all its in�nite paths satisfy the parity condition�. An extended co-parity alternating automaton is de�ned similarly with � = h�; V; Ai for aco-parity condition �. For a parity condition �, let � � be � when referred to as a co-paritycondition.Let A be an alternating word automaton with a singleton alphabet �, state space Q, andtransition function �. For a generalized parity or co-parity condition �, let accA(�) be the setof states in Q for which the automatonAq = h�; Q; q; �; �i is not empty. Similarly, letgaccA(�)be the set of states in Q for which the automaton Aq = h�; Q; q; ~�; �i is not empty. Clearly,a parity alternating automaton A = h�; Q; qin; �; �i is not empty i� qin 2 accA(h�; ;; ;i).Recall that our translation of parity and co-parity alternating automata to WAA proceedsinductively. In each iteration, we remove from the parity or the co-parity condition the min-imally indexed set and continue with a re�ned state space and a dual acceptance condition.The algorithm that follows works similarly. In each iteration, we calculate the set of accepting



states in an automaton with an acceptance condition fF1; F2; : : : ; Fkg by calculating, recur-sively, the accepting states in a dual automaton with an acceptance condition fF2; : : : ; Fkg.Formally, the algorithm employs the following two equivalences.Reduce: accA(fF1; F2; : : : ; Fkg; V; A) =�Y:accA(� fF2; : : : ; Fkg; V [ Y;A[ F1 n Y );where � is the least �xed-point operator (see the explanation below).Dual: accA(� �; V; A) = Q ngaccA(�;A; V ):Using Reduce, we calculate accA(fF1; F2; : : : ; Fkg; V; A) as the least �xed-point of theequation Y = accA(� fF2; : : : ; Fkg; V [ Y;A [ F1 n Y ):Let Y0 = ; and Yj+1 = accA(� fF2; : : : ; Fkg; V [ Yj ; A[ F1 n Yj). Intuitively, the set Yi, fori � 1, contains all states q for which there exists an accepting run of Aq in which all pathseither satisfy the co-parity condition fF2; : : : ; Fkg, or visit F1 at most j � 1 times.Using Dual, we can calculate the set of accepting states in an extended co-parity automa-ton by complementing the set of accepting states in an extended parity automaton with adual transition function and acceptance condition.References[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent programspeci�cations. In Proc. 16th Int. Colloquium on Automata, Languages and Programming,volume 372, pages 1{17. Lecture Notes in Computer Science, Springer-Verlag, July 1989.[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical Com-puter Science, 10:19{35, 1980.[B�uc62] J.R. B�uchi. On a decision method in restricted second order arithmetic. In Proc. Internat.Congr. Logic, Method and Philos. Sci. 1960, pages 1{12, Stanford, 1962. Stanford UniversityPress.[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model checking. In D. L. Dill, editor, Computer Aided Veri�cation, Proc. 6th Int.Conference, volume 818 of Lecture Notes in Computer Science, pages 142{155, Stanford,June 1994. Springer-Verlag, Berlin.[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Associationfor Computing Machinery, 28(1):114{133, January 1981.[DH94] D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata.Journal of the ACM, 41(3):517{539, 1994.
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