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Abstract

Automata on infinite words and trees are used for specification and verification of
nonterminating programs. The verification and the satisfiability problems of specifications
can be reduced to the nonemptiness problem of such automata. In a weak automaton,
the state space is partitioned into partially ordered sets, and the automaton can proceed
from a certain set only to smaller sets. Reasoning about weak automata is easier than
reasoning about automata with no restricted structure. In particular, the nonemptiness
problem for weak alternating automata over a singleton alphabet can be solved in linear
time. Known translations of alternating automata to weak alternating automata involve
determinization, and therefore involve a double exponential blow-up. In this paper we
describe simple and efficient translations, which circumvent the need for determinization,
of parity and Rabin alternating word automata to weak alternating word automata.
Beyond the independent interest of such translations, they give rise to a simple algorithm
for deciding the nonemptiness of nondeterministic parity and Rabin tree automata. In
particular, our algorithm for Rabin automata tuns in time O(nZ**! . k!), where n is
the number of states in the automaton and k 1s the number of pairs in the acceptance

condition. This improves the known O((nk)*) bound for the problem.
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1 Introduction

Finite automata on infinite objects were first introduced in the 1960’s. Motivated by decision
problems in mathematical logic, Biichi, McNaughton, and Rabin developed a framework for
automata on infinite words and infinite trees [Biic62, McN66, Rab69]. The framework has
proven to be very powerful. Automata, and their tight relation to second-order monadic
logics were the key to the solution of several fundamental decision problems in mathematical
logic [Tho90]. Today, automata on infinite objects are used for specification and verification
of nonterminating programs. By translating specifications to automata, we reduce questions
about programs and their specifications to questions about automata. More specifically,
questions such as satisfiability of specifications and correctness of programs with respect to
their specifications are reduced to questions such as nonemptiness and language containment
[VW86, Kur94, VW94]. The automata-theoretic approach separates the logical and the algo-
rithmic aspects of reasoning about programs. The translation of specifications to automata
handles the logic and shifts all the algorithmic difficulties to automata-theoretic problems.

Like automata on finite words, automata on infinite words either accept or reject an input
word. Since a run on an infinite word does not have a final state, acceptance is determined
with respect to the set of states visited infinitely often during the run. There are various
ways to classify an automaton on infinite words. One is the type of its acceptance condition.
For example, in Biichi automata, some of the states are designated as accepting states, and
a run is accepting iff it visits states from the accepting set infinitely often [Biic62]. Dually, in
co-Biichi automata, a run is accepting iff it visits states from the accepting set only finitely
often. More general are Muller, parity, and Rabin automata, whose acceptance conditions
involve several sets of states. For example, in parity automata [Mos84, EJ91], the acceptance
condition is a sequence {F, Fy, ..., Fi} of sets of states. A run is accepting iff the minimal
index 7 for which the set F; is visited infinitely often is even.

Another way to classify an automaton on infinite words is by the type of its branching
mode. In a deterministic automaton, the transition function é6 maps a pair of a state and a
letter into a single state. The intuition is that when the automaton is in state ¢ and it reads
a letter o, then the automaton moves to state 6(¢, o), from which it should accept the suffix
of the word. When the branching mode is ezistential or universal, § maps g and o into a set
of states. In the existential mode, the automaton should accept the suffix of the word from
one of the states in the set, and in the universal mode, it should accept the suffix from all the
states in the set. In an alternating automaton [BL80, CKS81], both existential and universal
modes are allowed, and the transitions are given as Boolean formulas over the set of states.
For example, 6(¢,0) = ¢1 V (g2 A ¢3) means that the automaton should accept the suffix of
the word either from state ¢; or from both states ¢o and ¢s.

Since the combinatorial structure of alternating automata is rich, translating specifications
to alternating automata is much simpler than translating them to nondeterministic automata

[Var94]. Alternating automata enable a complete partition between the logical and the al-



gorithmic aspects of reasoning about programs, and they give rise to cleaner and simpler
verification algorithms [Var96]. The rich structure of alternating automata also makes them
more succinct. For example, translating an alternating Biichi automaton to a nondetermin-
istic Biichi automaton might involve an exponential blow up [DH94]. The succinctness of
alternating automata is crucial when we use automata for the verification of branching-time
specifications. In this paradigm, each specification describes a set of allowed computation
trees, which can be described by an automaton over infinite trees. By translating branching-
time specifications to alternating tree automata, we can reduce satisfiability to the nonempti-
ness problem and reduce verification to the membership problem [BVW94, Var97]. Solving
the nonemptiness problem for an alternating tree automaton is done by translating the au-
tomaton to a nondeterministic tree automaton. Deciding the membership of a program in a
language of an alternating tree automaton is done by taking the product of the program and
the automaton. This product can be defined as an alternating word automaton over a single-
ton alphabet, and the program is correct with respect to the specification iff this automaton is
nonempty. Thus, reasoning about branching-time specifications concerns two problems: the
nonemptiness problem for nondeterministic tree automata and the nonemptiness problem for
alternating word automata over a singleton alphabet. It is shown in [BVW94] that these
problems are equivalent and that their complexities coincide. We refer to both problems as
the nonemptiness problem. The nonemptiness problem is important also for reasoning about
linear-time specifications of open systems, where the interaction between a correct system
and its environment can be formulated by a tree automaton [ALW89, PR89].

In [MSS86], Muller et al. introduced weak automata. In a weak automaton, the automa-
ton’s set of states is partitioned into partially ordered sets. Fach set is classified as accepting
or rejecting. The transition function is restricted so that in each transition, the automaton
either stays at the same set or moves to a set smaller in the partial order. Thus, each run of
a weak automaton eventually gets trapped in some set in the partition. Acceptance is then
determined according to the classification of this set. Weak automata are a special case of
Biichi automata. Indeed, the condition of getting trapped in an accepting set can be replaced
by a condition of visiting states of accepting sets infinitely often. The special structure of
weak automata is reflected in their attractive computational properties. In particular, the
nonemptiness problem for weak automata can be solved in linear time [BVW94]. As a com-
parison, the best known upper bound for the nonemptiness problem for Biichi automata is
quadratic time.

When defined on words, weak alternating automata are not less expressive than Biichi
alternating automata, and they can recognize all the w-regular languages. To prove this,
[MSS86, Lin88] suggest a linear translation of deterministic Muller automata to weak alter-
nating automata. Using, however, the constructions in [MSS86, Lin88] in order translate a
nondeterministic automaton A into a weak alternating automaton, one has no choice but to
first translate A into a deterministic Muller automaton. Such a determinization involves an

exponential blow-up [Mic88, Saf88, Saf92]. Even worse, if A is an alternating automaton,



then its determinization involves a doubly-exponential blow-up [DH94], and hence, so does
the translation to weak alternating automata. Can these blow-ups be avoided? In [KV97],
we described a quadratic translation of Biichi and co-Biichi alternating word automata to
weak alternating word automata, answering this question positively for the case A is either a
Biichi or a co-Biichi automaton. In this paper we extend the ideas in [KV97] and describe an
efficient translation of stronger types of alternating automata to weak alternating automata.
Since the nonemptiness problem for weak automata can be solved in linear time, this enables
us to improve the known upper bounds for the nonemptiness problem.

We start with parity automata. It is shown in [EJ91] that formulas of the p-calculus [Koz83]
can be linearly translated to alternating parity tree automatal. Since many properties of pro-
grams are naturally specified by means of fixed points, the p-calculus is an expressive and
important specification language [EL86]. Following [EJ91], the verification problem for u-
calculus can be linearly reduced to the nonemptiness problem for parity automata. This
makes the nonemptiness problem for parity automata of particular interest; the verification
problem for p-calculus is known to be in NP N co-NP [EJS93] and its precise complexity is an
open problem. Given an alternating parity word automaton with n states and k sets, we con-
struct an equivalent weak alternating word automaton with O(n*) states. The construction
goes through a sequence of k intermediate automata. Each automaton in the sequence refines
the state space of its predecessor and has one less set in its parity acceptance condition.

Parity automata can be viewed as a special case of Rabin automata. In Rabin automata, the
acceptance condition is a set a = {(G1, B1), (G2, Ba), ..., (Gk, Bi)} of pairs of sets of states.
A run is accepting if there exists an index 7 for which the set G is visited infinitely often and
the set B; is visited only finitely often. In [Rab69], Rabin describes a translation of formulas
of monadic second order logic to Rabin tree automata. Today, Rabin automata are used in
order to reason about specifications of the full branching time logic CTL* [ES84, VS85], as
well as to model programs with fairness conditions. The nonemptiness problem for Rabin
automata plays a crucial role in solving various decision problems in logic. As a result, many
efforts have been put in developing simple algorithms for nonemptiness checking. In [Rab69],
Rabin described a non-elementary procedure for checking the nonemptiness of a given Rabin
automaton and showed that the problem is decidable. In [HR72, Rab72], improved algorithms
were described, of complexity exponential in both n and k. Only in [EJ88, PR89], algorithms
that are exponential in £ and only polynomial in n have been describes. Both works described
algorithms that run in time O((nk)?f). Given an alternating Rabin word automaton with
n states and k pairs, we construct an equivalent weak alternating word automaton with
O(n*+1 . k!) states. Our constructions yield O(n*) and O(n?**! . k!) upper bounds for the
nonemptiness problem for parity and Rabin automata, respectively, matching the known

bound for parity automata [EJS93] and improving the known O(nk)** bound for Rabin

'In fact, alternating parity tree automata are exactly as expressive as the p-calculus [Niw88, EJ91]. On
the other hand, weak alternating tree automata are exactly as expressive as the alternation-free fragment of
p-calculus [KV98].



automata.

2 Alternating Automata

Alternation was studied in [CKS81] in the context of Turing machines and in [BL80, CKS81,
MHB84] for finite automata. In particular, [MH84] studied alternating automata on infinite
words. Alternation enables us to have both existential and universal branching choices. For a
given set X, let BT (X) be the set of positive Boolean formulas over X (i.e., Boolean formulas
built from elements in X using A and V), where we also allow the formulas true and false.
For Y C X, we say that Y satisfies a formula # € BT (X)) iff the truth assignment that assigns
true to the members of Y and assigns false to the members of X \ YV satisfies §. For example,
the sets {¢1,q5} and {q1, g3} both satisfy the formula (¢ V ¢2) A g3, while the set {¢1, g2} does
not satisfy this formula.

Given an alphabet X, an infinite word over Y. is an infinite sequence w = gg - 01 - 02 - - - of
letters in . We denote by w' the suffix o; - O141 - 0142 - - - of w. An alternating automaton on
infinite wordsis A = (¥, Q, ¢in, 0, ), where X is the input alphabet, ) is a finite set of states,
§:QxY — BT (Q) is a transition function, ¢;, € Q is an initial state, and « is an acceptance
condition. Intuitively, 6(q, o) describes possible configurations that A can move into when it
is in state ¢ and it reads the letter o. For example, a transition 6(q,0) = (g1 A g2) V (g3 A qa)

=1 from both ¢ and ¢

means that A accepts a suffix w' of w from state ¢, if it accepts w
or from both ¢3 and ¢g4. The acceptance condition « defines a subset of ()“. For a word

n=4qo-q---in Q¥, we define the set Inf(n) of states that n visits infinitely often, i.e.,
Inf(n) = {q € Q :for infinitely many [ > 0, we have ¢; = ¢}.

As @ is finite, it is guaranteed that Inf(n) # (. The way « refers to Inf(n) depends on its
type. In Biichi automata, a C @, and 7 satisfies « iff Inf(n) N« # 0. Dually, in co-Biichi
automata, 7 satisfies a iff Inf(n) N a = 0.

In order to define a run of an alternating automaton, we first define trees. A tree is a
(finite or infinite) nonempty set 7" C IN* such that for all z - ¢ € T, with « € IN* and ¢ € IN,
we have x € T. The elements of T are called nodes, and the empty word ¢ is the root of T.
For every @ € T, the nodes x - ¢ € T where ¢ € IN are the children of z. A node with no
children is a leaf. We refer to the length |z| of z as its level in the tree. A path © of a tree T
is a set 7 C T such that ¢ € 7 and for every & € 7, either x is a leaf, or there exists a unique
¢ € IN such that z - ¢ € w. Given a finite set X, a Y-labeled tree is a pair (T, V) where T'is a
tree and V' : T — X maps each node of T" to a letter in . A run of A on an infinite word
w=0g-01---1is a Q-labeled tree (T, r) such that the following hold:

o 7(¢) = ¢in.

o Let # € T, with r(z) = ¢ and é(q,0),) = 0. There is a (possibly empty) set 5 =
{q1,...,qr} such that S satisfies § and for all 1 < ¢ < k, we have 2 - ¢ € T, and



r(z-c) = qe.
For example, if 6(¢in,00) = (¢1 V ¢2) A (g3 V q4), then possible runs of A on w have a root
labeled ¢;,,, have one node in level 1 labeled ¢; or ¢2, and have another node in level 1 labeled
g3 or ¢4. Note that if # = true, then x need not have children. This is the reason why T
may have leaves. Also, since there exists no set 5 as required for § = false, we cannot have
a run that takes a transition with 8 = false.

A run (T, 7) is accepting iff all its infinite paths, which are labeled by words in Q¥, satisfy
the acceptance condition. A word w is accepted iff there exists an accepting run on it. Note
that while conjunctions in the transition function of A are reflected in branches of (T.,r),
disjunctions are reflected in the fact we can have many runs on the same word. The language
of A, denoted L(.A), is the set of infinite words that A accepts. Thus, each word automaton
defines a subset of 3. We denote by L(.A) the complement language of A, that is the set of
all words in X« \ L(A).

In [MSS86], Muller et al. introduce weak alternating automata (WAAs). In a WAA, the

acceptance condition is @ C ), and there exists a partition of ) into disjoint sets, ¢);, such

that for each set Q;, either @; C «, in which case @); is an accepting set, or Q; N a = (), in
which case ); is a rejecting set. In addition, there exists a partial order < on the collection of
the Q;’s such that for every ¢ € Q; and ¢’ € Q; for which ¢’ occurs in é(¢, o), for some o € X,
we have @); < ();. Thus, transitions from a state in ¢); lead to states in either the same ¢); or
a lower one. It follows that every infinite path of a run of a WA A ultimately gets “trapped”
within some );. The path then satisfies the acceptance condition if and only if ¢); is an
accepting set. Thus, we can view a WAA with an acceptance condition « as both a Biichi
automaton with an acceptance condition «, and a co-Biichi automaton with an acceptance
condition @ \ a. Indeed, a run gets trapped in an accepting set iff it visits infinitely many

states in a, which is true iff it visits only finitely many states in @ \ a.

3 Observations on Runs of Alternating Co-Biichi Automata

Let A= (X,0Q, ¢in, 6, ) a co-Biichi alternating automaton. Consider an accepting run (7}, r)
of A on a word w. For two nodes a7 and a9 in T,, we say that aq and a9 are similar
iff 21| = |2g| and r(z1) = r(z2). We say that the run (7},r) is memoryless iff for all
similar nodes z; and z,, and for all y € IN*, we have that zy -y € T, iff 25 -y € T,, and
r(z1-y) = r(x2-y). Intuitively, similar nodes correspond to two copies of A that have the same
“mission”: they should both accept the suffix w!*| from the state r(z1). In a memoryless
run, subtrees of (T,,r) with similar roots coincide. Thus, same missions are fulfilled in the
same way. It turns out that when we consider runs of co-Biichi automata, we can restrict
ourselves to memoryless runs. Formally, if a co-Biichi automaton A accepts a word w, then
there exists a memoryless accepting run of A on w [EJ91].

Let |Q| = n. It is easy to see that for every run (7,,r), every set of more than n nodes

of the same level contains at least two similar nodes. Therefore, in a memoryless run of A,



every level contains at most n nodes that are roots of different subtrees. Accordingly, we
represent a memoryless run (7,,7) by an infinite pAG (directed acyclic graph) G, = (V, E),

where

o V C @ x NN is such that (¢,{) € V iff there exists « € T} with |z| = [ and r(z) = ¢. For
example, (¢, 0) is the only vertex of G, in @ x {0}.

o ECUpo(@ x{l}) x (@ x {l+1}) is such that E((q,),
(¢', 1+ 1)) iff there exists ¢ € T, with |z| =1, r(2) = ¢, and r(z - ¢) = ¢ for some ¢ € IN.

Thus, G, is obtained from (7, r) by merging similar nodes into a single vertex. We say that
a vertex (¢,l) in G, is an a-vertex iff ¢ € a. It is easy to see that (T}, r) is accepting iff all
paths in G, have only finitely many a-vertices. Consider a (possibly finite) pac G C G,.. We
say that a vertex (q,!) is eventually safe in G iff only finitely many vertices in G are reachable
from (q,l). We say that a vertex (¢, 1) is currently safe in G iff all the vertices in G that are
reachable from (g¢,[) are not a-vertices. Note that, in particular, (¢,7) is not an a-vertex.
Given a memoryless accepting run (7, 7), we define an infinite sequence Gy 2 G 2 G3 D

... of DAGs inductively as follows.
o Go=G,.
o Ghir1 = Gy \{{q,1) ] {(q,1) is eventually safe in Gg;}.
o Goo = Gap1 \{{(g,0) | (g,1) is currently safe in Gg;41}.

It is shown in [KV97] that every vertex (q,!) in GG, has a unique index ¢ > 0 such that (g, [)
is either eventually safe in G'3; or currently safe in G'3;41. Given a vertex (q,[), we define the

rank of (q,1), denoted rank(q,!), as follows.

21 If (g,1) is eventually safe in G'y;.
rank(q,l) = , . i
24+ 1 If (q,1) is currently safe in G';41.

For m € IN, let [m] denote the set {0,1,...,m}, and let [m]®"®? and [m]°9d denote the
sets of even and odd members of [m], respectively. In [KV97], we proved that the rank of
every vertex in G, is in [2n]. Recall that when (7, r) is accepting, all the paths in G, visit
only finitely many a-vertices. Intuitively, rank(q,!) hints how difficult it is to get convinced
that all the paths of G, that visit the vertex (g, ) visit only finitely many a-vertices. Easiest
to get convinced about are vertices that are eventually safe in Gp. Accordingly, they get
the minimal rank 0. Then come vertices that are currently safe in the graph Gy, which is
obtained from Gy by throwing vertices with rank 0. These vertices get the rank 1. The
process repeats with respect to the graph G5, which is obtained from G4 by throwing vertices
with rank 1. As before, we start with the eventually safe vertices in G5, which get the rank
2. We continue with the currently safe vertices in G5, which get the rank 3. The process
repeats until all vertices get some rank. Note that no a-vertex gets an odd rank.

In the lemmas below, proven in [KV97], we make this intuition formal.



Lemma 3.1 For every two vertices (q,1) and (¢',U'} in G, if (¢',l'} is reachable from {q,l),
then rank(q',l') < rank(q,1).

Lemma 3.2 [In every infinite path in G, there exists a vertex (q,l) with an odd rank such that

all the vertices (¢',l") in the path that are reachable from (q,l) have rank(q',l') = rank(q,1).

We have seen that if a co-Buchi alternating automaton has an accepting run on w, then it
also has a very structured accepting run on w. In [KV97] we employed this structured run

in order to translate co-Biichi alternating automata to weak alternating automata:

Theorem 3.3 [KV97] Let A be an alternating co-Biichi automaton. There is a weak alter-
nating automaton A" such that L(A") = L(A) and the number of states in A’ is quadratic in
that of A.

We describe the automaton A’. Let A = (X, Q, ¢n, 6, a), and let n = |@Q)|. The state space
of the automaton A’ is @ X [2n]. Intuitively, when A’ is in state (¢, 7) as it reads the letter
oy (the I’th letter in the input), it guesses that in a memoryless accepting run of A on w, the
rank of {¢,1) is j. Accordingly, when A’ is in state (¢, 7) and it reads a letter o, it follows
the transition (¢, o) allowing the successors to move to states annotated by ranks in [j]. If,
however, ¢ € o and j is odd, then, by the definition of ranks, the current guessed rank is
wrong, and the run is rejecting. Each path in a run of A’ eventually gets trapped in a set of
the form @ x {j} for some j € [2n]. The set is accepting iff j is odd.

In the next section we extend the ideas in [KV97] in order to translate parity and Rabin

alternating automata to weak alternating automata.

4 From Parity to Weak Alternating Automata

A parity alternating automaton is A = (3,Q, ¢in, 0, 5), where 5 = (Fy, I, ..., F) with
Fy CFy, C--- C Fp = Q. We refer to k (the number of sets in ) as the degree of 5 (or A).
A word n € Q¥ satisfies a parity condition 3 iff the minimal index ¢ for which Inf(n)NF; # 0
is even. We also refer to co-parity acceptance conditions. A word n € Q¥ satisfies a co-parity
condition f iff the minimal index ¢ for which Inf(n)N F; # 0 is odd; that is, iff » does not
satisfy # when referred to as a parity condition. For a parity condition § = (Fy, Fy, ..., Fj)
and a set (), we use 3 X () to denote the parity condition (F1 X @, Fy x Q,..., F x Q).
Consider a parity automaton A = (X, Q, ¢in, 6, 5) with 5 = {F1, Fy, ..., Fi}, and the co-
Biichi automaton A, = (¥,Q, gin, 6, F1). That is, A. differs from A only in the acceptance
condition, which consists of the minimally indexed set in 3. Clearly, every accepting run
(T,,r) of Ais also an accepting run of A.. Indeed, all the paths of (7., r) must visit F; only
finitely often (otherwise, the minimal index ¢ for which £} is visited infinitely often is 1, which
is odd). It follows that when we consider accepting runs of A, we can restrict ourselves to

candidates from the set of accepting runs of A..



In Theorem 3.3, we translated the co-Biichi alternating automaton A, to a weak alternating
automaton A’. In the automaton A’ each path of a run gets trapped in some set @ x {j}.
When j is odd, no visits to F} are possible. Therefore, a path n that gets trapped in a set
Q x {j}, for an odd j, satisfies the parity condition 8 iff it satisfies the co-parity condition
8 = {Fy, F3,..., F;}. Indeed, since sets with an even index in [ have an odd index in /3,
the path n satisfies 4’ iff the minimal 7 in {2,...,k} for which Inf(n) N F; # 0 is even. In
addition, as Inf(n) N Fy = 0, it is guaranteed that ¢ is actually minimal in {1,..., k}.

The above observation suggests an inductive scheme for translating a parity or a co-parity
alternating automaton to a weak alternating automaton. Intuitively, the translation proceeds
as follows. Let A be a parity automaton with § = {Fy,..., Fi}. Translating the co-Biichi
automaton A, to a weak alternating automaton AL, the copies of A. that get trapped in sets
that enable infinitely many visits to Fy (that is, sets @ x {j} for an even j) are rejecting. On
the other hand, copies that get trapped in sets that disable visits to F} may satisfy 3, and
we check them further, with respect to the co-parity condition ' obtained from 3 by taking
out the set Fy. Checking these copies is done inductively, by referring to each set @ x {j}, for
an odd j, as a co-parity automaton. Formally, the induction proceeds by refining the state
space of the parity automaton by means of weak-parity alternating automata, defined below.

A weak-parity alternating automaton (WPAA, for short) is A = (X, 5, P, gin, 6, @, 3), where
S and P are disjoint sets of states (called simple and parity states, respectively), ¢;, € SU P
is an initial state, § : (S U P) x ¥ — BT(S5 U P) is a transition function, @ C § is a Biichi
acceptance condition, and 3 is a parity acceptance condition over P. We refer to the number
of sets in [ as the degree of g (or A). There exists a partition of S U P into disjoint sets,
such that the following hold.

o For each set () in the partition, one of the following holds.

1. ¢ C a, in which case @} is an accepting set,
2. Q@ C S and QNa=70,in which case Q is a rejecting set, or
3. Q@ C P, in which case @ is a parity set.

For a state ¢ € S U P, let [¢] denote the set of states in ¢’s set in the partition.

e There exists a partial order < on the collection of the sets such that for every two
states ¢ and ¢ for which ¢’ occurs in 6(¢,0), for some o € X, we have [¢'] < [g]. Thus,

transitions from a state in a set () lead to states in either the same set () or a lower set.

It follows that every infinite path 5 of a run of a WPAA ultimately gets trapped within some
set () in the partition. The path 5 then satisfies the acceptance condition iff either ¢) is an
accepting set, or () is a parity set and 75 satisfies 3. Thus, a WPAA A is very similar to a
WAA, only that in some of the sets in the partition, acceptance is determined according to
a parity acceptance condition. In particular, if P = (), then A is a WAA. On the other hand,

every parity automaton can be viewed as a WPAA with S = () (and a trivial partition with



a single set). If there exists p € IN such that the size of each set in the partition is exactly p,
we say that A is a WPAA of width p.

Consider a WPAA A of width p with 8 = {F, Fy, ..., Fi}. With each parity set ) of A
and state ¢ € @), we can associate a co-Biichi automaton A, = (X,0), ¢, g, F1), where 8¢ is
obtained from ¢ by replacing states not in ) by true. Each accepting run of A (in which ¢
is participating) induces an accepting run A,. Formally, if (T, r) is an accepting run of A on
some word w, and « € T, is such that r(z) = ¢, then the subtree of (T,,r) with root z and
nodes z -y for which r(z -y) € @, is an accepting run, embedded in (7}, r), of A, on wlhl,
For every node z € T, such that r(z) is a parity state, there exists a unique prefix z such
that 7(z) € [r(2)] and either 2 = ¢ or @ = y - ¢ with r(y) € [r(2)]; that is, « is the first node
labeled with a state in [r(z)] that is visited along the path from the root to z. We say that
z is a seed. If we consider, among the many runs of co-Biichi automata embedded in (T}, r),
only runs that start in seeds, then each node z for which r(z) is a parity state belongs to
exactly one run. Since the size of all parity sets (and thus also the size of the state space of
the co-Biichi automata) is p, we can associate with each such node z with seed z a rank in
[2p], corresponding to the rank of the vertex (r(z),|z| — |#|) in the induced accepting run of
A () on wl*l,

Recall that we want to translate parity alternating automata to weak alternating automata.
Thus, we want to start with a WPAA with S = ), go through a chain of WPAA of decreasing
degrees, and end-up with a WPAA with P = (. Defining the intermediate automata, it
is convenient to alternate between parity and co-parity acceptance conditions. A co-weak-
parity alternating automaton (co-WPAA, for short)is A = (X, 5, P, ¢;n, 6, v, 3), with the same
structure as a WPAA, only that an infinite path n that gets trapped within a set ) satisfies
the acceptance condition iff either @) is an accepting set, or () is a parity set and 7 satisfies
the co-parity condition 3. Proceeding from a WPAA with degree & > 1 to its successor in

the chain is described in the theorem below.

Theorem 4.1 Let A be a weak-parity alternating automaton of degree k > 1 and width p,
with m simple states and n parity states. There is a co-weak-parity alternating automaton
A" of degree k — 1 and width p, such that L(A") = L(A), the number of simple states in A’
is m+n(p+ 1), and the number of parity states in A’ is np.

Proof: Let A= (X,5,P,qin, 6, c,3), with § = {Fy,..., Fr.}. Wedefine A" = (X, 5", P'.q. ¢ o [,

where

o 5" = S U(P x[2p]¢V®"). That is, the simple states of A’ are the simple states of A,

with no annotation, and the parity states of A annotated with even ranks in [2p].

o P'=Px [Qp]Odd. That is, the parity states of A’ are parity states of A annotated with
odd ranks in [2p].

o If ¢;, € 9, then ¢!, = ¢in. Otherwise, ¢/, = (qin,2p).



o We define ¢’ by means of two functions (both parameterized with p).
annotate, : BY(SU P) — BT (S'u P')

and
release, : BY(SU P) x [2p] x 28 — BY(S' U P').

For a formula 8 € B* (.5 U P), the formula annotate,(6) is obtained from 6 by replacing
an atom ¢ € P by the disjunction V;¢[,,1(q,7). For example, if {p,p’} CPand s€S9,
then
annotates((sV p) Ap') = (sV \/ (p.7)) A\ (0.4).
J€l8] J€l8]

For a formula 8 € BT(S U P), a rank 7 € [2p], and a set @ C P, the formula
release,(#,1,()) is obtained from 6 by replacing an atom ¢ € @ by the disjunction
\/je[i]<‘]vj>v and replacing an atom ¢ € P\ @ by the disjunction \/je[zp]<q,j>. For
example,

releases((s V p) Ap',2,{p}) = (s vV \/ (p,3)) A \/ (W', 5)-

J€[2] JE[8]

Note that in annotate,(f) atoms in P can be annotated by any rank in [2p]. On the
other hand, in release, (6,1, Q) some atoms in P (these in ()) can be annotated only by
ranks in [¢]. Now, &' : (S"U P') x ¥ — BY(S"U P’) is defined as follows.

— For a state ¢ € S and o € X, we have §'(¢,0) = annotate,(6(q,0)).
— For a state (¢,7) € P x [2p] and o € ¥, we have

release,(6(q,0),t,[q]) If ¢ & Fy or i is even.

§'({q,1 =
SURNELY false If ¢ € Iy and 7 is odd.

That is, states that originate from A’s simple states follow their transitions in A, allow-
ing the run to move in its successors that belong to parity sets of A to any rank in [2p].
On the other hand, states that originate from A’s parity states follow the transitions
of the weak alternating automata that correspond to the co-Biichi automata induced
by their parity sets. Intuitively, annotating a state ¢ € P by a rank in [2p] corresponds
to guessing its rank in an accepting run of the co-Biichi alternating automaton with
state space [¢]. The initial state and states that are reachable by a transition from
states that originate from A’s simple states label nodes that are seeds. Therefore, we
can annotate them with any rank in [2p] (the rank of a seed is independent of the
rank of its predecessor in the run). On the other hand, states that are reachable by
a transition from states that originate from A’s parity states label nodes that are not
seeds. Therefore, the guessed rank of such a state is bounded by the rank of the state

labeling its predecessor.



e o/ = a. That is, getting trapped in a set () of simple states, a path is accepting if @ is
an accepting set of A, and is rejecting if () is either a rejecting set of A or it corresponds
to a copy of a parity set of A annotated with an even rank. Indeed, such sets enable

infinitely many visits to Fj.

o ' ={F,x [Qp]Odd, F3x [Qp]Odd, v By x [Qp]Odd}. That is, getting trapped in a parity
set of A’, a path should satisfy the co-parity condition obtained from 3 by taking out
Fy and annotating the other sets by odd ranks in [2p].

We first prove that A’ is a co-WPAA of width p. The partition of S’ U P’ into sets is as
follows. First, each accepting of rejecting set @ C S in A yields the set @) in A’. In addition,
each parity set @ C P in A yields 2p + 1 sets, @ x {j} for j € [2p], in A’. Clearly, in both
cases, the size of the sets in A’ is the same as their size in A, thus A’ is of width p. It is easy
to see that each of the sets of A’ is either accepting, rejecting, or parity. The partial order
on the collection of sets in A’ is induced by the partial order in A. For two sets O and O’ in
A’ we have O < O iff there exist sets ) and Q' in A such that one of the following hold:

e () < Q' and the following both hold:

— 0=Qor O=Q x{j} for some j € [2p], and
- 0'=Q" or O' = Q" x{j'} for some j' € [2p].

e ) = @' and the following both hold:

— 0 =Q x {j} for some j € [2p],

— 0" =Q" x {j'} for some j' € [2p], and

—-J<j.
It is easy to see that transitions from a state ¢ in A’ leads to states ¢’ for which [¢'] < [q],
thus the structural conditions for a co-WPAA hold.

We now prove the correctness of the construction. We first prove that £(A") C L(A).
Consider a word w accepted by A’. Let (T,,r') be the accepting run of A’ on w. Consider
the (S'U P)-labeled tree (T,,r) where for all « € T, with »'(z) = q or v(2) = (g, 1), we have
r(z) = q. Thus, (T;,r) projects the labels of (T;,7') on their S U P element. It is easy to
see that (T,,7) is a run of A on w. Indeed, the transitions of A" only annotate transitions
of A by ranks (or replace them by false, which cannot be taken in an accepting run of A’).
We show that (T,,r) is an accepting run. Consider an infinite path 7 C T,. Since A" is a

co-WPAA and (T, ') is accepting, there are two possible fates for 7 in (7T, r'):

1. Tt gets trapped in an accepting set. Then, as o' = «, it must be that in (7}, r), the

path 7 gets trapped in an accepting set as well.



2. It gets trapped in a parity set and satisfies the co-parity condition . Then, as the
parity sets are P x {i} for some odd ¢, it is guaranteed, by the definition of ¢’ (where
no run can visit a state (¢,¢) with an odd ¢ and ¢ € Fy), that = actually gets trapped
in the subset (P \ Fy1) x {¢} of P x {i}. Hence, it must be that in (7}, ), the path =
gets trapped in a parity set and satisfies 3.

It is left to prove that £(A) C L(.A"). Consider a word w accepted by A. Let (T,,r) be a
memoryless accepting run of A on w. Consider the (5"U P’)-labeled tree (T}, ') where where

for every node z € T, we have

r(z) If r(z) € 5.
r(z),2p) If r(z) € Pand z =¢.

rla) = (r(
(r(z),rank(z)) If r(z)€ P and o # «.

We claim that (T,,7') is an accepting run of A’. We first prove that it is a run. Since
r(e) = ¢ and ¢, is either ¢;,, in the case ¢, € 5, or (¢, 2p), in the case ¢;, € P, we
have that 7/(¢) = ¢/,,, thus the root of the tree (1,,7') is labeled legally. We now consider
the first level of (T),r'). Consider the state ¢/,. Note that for every ¢ € ¥ and Q C P,
we have annotate,(6(¢n,0)) = release,(6(¢in,0),2p,Q)). Hence, by the definition of &', we
have (independently of whether ¢/, = ¢, or ¢}, = (qin,2p)) that §'(q},,00) is obtained from
0(¢in,00) by replacing an atom ¢ € P by the disjunction \/je[zp]<q,j>. Let [k] be the set of
¢’s successors in T, and let ¢ = (qo,...,qr) be the set of labels of ¢’s successors in (T, 7).
Thus, @ satisfies 6(¢;n, 00). (We refer to @) as an ordered set, so it may contain repetitions.)
Counsider the set Q' = (q(,...,q)), where for all ¢ € [k], we have ¢ = ¢. in the case ¢. € 5,
and ¢, = (q., rank(c)) in the case ¢. € P. As 2p is the maximal rank that a node can get,
each successor ¢ of ¢ in T, has rank(c¢) < 2p. Therefore, the set ) satisfies 6’(¢},,, 00). Hence,
the first level of (T, 7'} is also labeled legally.

For the other levels, consider a node & € T, such that @ # ¢. Let [z -0,...,2 - k] be
the set of 2’s successors in 7} and let ) = (qo,...,qr) be the set of labels of z’s successors
in (T,,r). Consider the set @' = (¢(,...,q)), where for all ¢ € [k], we have ¢, = ¢. in
the case ¢. € 5, and ¢. = (q., rank(z - ¢)) in the case ¢. € P. We claim that Q' satisfies
o'(r'(x), 0y)). To prove this, we distinguish between two cases. Assume first that r'(z) = ¢ €
S. Then, ¢'(r'(z),0)y) = annotate,(6(q,0)y))). As 2p is the maximal rank that a node can
get, each successor x - ¢ of # in T, has rank(z - ¢) < 2p, and we are done. Assume now that
r'(x) = (q,i) € P x [2p]. Then, by the definition of 7/, we have that ¢ = rank(z). Since r
is accepting, then, by the definition of ranks, it cannot be that ¢ € Fy and ¢ is odd. Hence,
o'(r'(x), 01y)) = release,(8(q, o)), i, [q]). Since for each atom ¢. € [¢], we have, by Lemma 3.1,
that rank(z - ¢) < rank(z), and since for each atom ¢, € P\ [¢], we have rank(z - c¢) < 2p, the
set Q' satisfies release,(6(q,05|),7,[q]), and we are done. Hence, the tree (T}, r') is a run of
A’ on w.

Finally, to see that (T,,r') is accepting, consider an infinite path 7 C T,. Since A is a

WPAA and (7, r) is accepting, there are two possible fates for = in (7)., r):



1. Tt gets trapped in an accepting set. Then, for all + € 7 we have r(2) = #/(z) and
therefore, as o’ = «, it must be that in (T, 7’), the path = gets trapped in an accepting

set as well.

2. It gets trapped in a parity set and satisfies 3. Then, it visits F; only finitely often,
which implies, according to Lemma 3.2, that in (T,, "), the path = gets trapped in a
parity set P x {i} for some odd i. In addition, since 7 satisfies the parity condition /3

in (T,,r), it satisfies the co-parity condition 3’ as well.

O

As discussed in [MS87], one can complement an alternating automaton by dualizing its
transition function and acceptance condition. Formally, given a transition function 6, let 6
denote the dual function of §. That is, for every ¢ and o with 6(¢,0) = 6, we have 5((], o)= g,
where 6 is obtained from 6 by switching V and A and by switching true and false. If, for
example, = ¢ V (true A g3) then 0=q A (false V g2). The dual of an acceptance condition
v is a condition that accepts exactly all the words that are not accepted by . In particular,
when we dualize a WPAA, we get a co-WPAA. Consider a co-WPAA A. Let A be its dual
WPAA, and let A’ be the co-WPAA constructed from A in Theorem 4.1. By dualizing A
we obtain a WPAA that is equivalent to A. Hence, the construction in Theorem 4.1 can be
used also to go from a co-WPAA of degree k > 1 to a WPAA of degree k — 1.

Recall that a parity automaton A with n states can be viewed as a WPAA with 5 =
() and width n. By repeatedly employing the construction in Theorem 4.1 (and its dual
construction), we can translate A to a WPAA or a co-WPAA A’ of degree 1. Such an
automaton, however, can be viewed as a WAA. Indeed, its parity sets are either rejecting,
in the case A’ is a WPAA, or accepting, in the case A’ is a co-WPAA. We can therefore

conclude with the following theorem.

Theorem 4.2 Let A be a parity alternating automaton with n states and degree k. There is
a weak alternating automaton A’, such that L(A") = L(A) and the number of states in A’ is
O(n").

Proof: Given A, consider the chain Ag,..., Ax_1 of WPAA and co-WPAA, where 4y =
A, and A;4q is obtained from A; following the construction in Theorem 4.1 (or its dual
construction). For ¢ € [k], let m; and n; denote the number of simple and parity states in A;,
respectively. In particular, mg = 0 and ng = n. As the width p of all the automata in the
chain is n, then for i € [k — 2], we have m; 41 = m; + n; - (n + 1), and n;1y = n; - n. Hence,
n; = n'tl, Accordingly, m; = ﬂn_‘fb_ﬂl@ In particular, both ng_y and my_q are O(nk)
The automaton Aj_4 is of degree 1, and can therefore be viewed as a WAA with ni_1 +mg_q

states. Hence, we are done. L]



5 From Rabin to Weak Alternating Automata

A Rabin alternating automaton is A = (X, Q, ¢in, 6, 3), where g = {(G1, B1), ..., (G, Br)} C
29 x 29. We refer to k (the number of pairs in 3) as the degree of 3 (or A). A word
n € Q¥ satisfies a Rabin condition § iff there exists an index ¢ for which Inf(n) N G; # 0
and Inf(n)N B; # (. Note that a parity condition 3 with either an even degree k or an odd
degree k + 1 is equivalent to the Rabin condition {(F%, F1), (Fy, F5), ..., (Fi, Fr—1)}. Rabin
automata can be translated to parity automata with an exponential blow up [Tho97].

We now show how the same ideas used for parity automata can be used in order to
translate alternating Rabin automata to weak alternating automata. As in the parity case,
the construction goes through a sequence of intermediate automata. Each automaton in the
sequence refines the state space of its predecessor and has one less pair in its Rabin acceptance
condition. Unlike the parity case, where the sets in the acceptance condition are ordered,
here there is no order between the pairs in the acceptance condition. Therefore, while in
the parity case refinement essentially requires n copies of each state, resulting in an O(nk)
overall blow-up, here refinement also requires a guess of the pair to be removed, resulting in
an additional k! blow up.

Before we describe the translation, we first need some notations and definitions. For two
Rabin conditions 8y = {(G],Bi),...,(G},B})} and 8y = {(G%,B}),....(G%, B})}, of the

same degree k, let
B By ={(G1UGEBLUBY),....(GLUGEL By U BY)}

denote the Rabin condition of degree k obtained by “merging” the pairs of 31 and f,. It is

easy to see that when (; and (3, are defined over disjoint sets ()1 and (), of states, then a

word 1 € QY satisfies 31 @ B, iff 7 satisfies 31, and similarly for 5 € Q4 and ;. We generalize

the operators ¢ to an arbitrary number of conditions.

A weak-Rabin alternating automaton of degree k (WRAA(k), for short)is A = (X, 5, R, ¢in, 0, @, ),

where S and R are sets of states (called simple and Rabin states, respectively), ¢;, € S U R

is an initial state, § : (S U R) x ¥ — BT(S U R) is a transition function, a C S is a Biichi
acceptance condition, and 3 = {(G1, B1),...,(Gk, Bx)} is a Rabin acceptance condition with

k pairs over R. There exists a partition of S'U R into disjoint sets, such that the following

hold.

o For each set () in the partition, one of the following holds.

1. ¢ C a, in which case @} is an accepting set,
2. Q@ C S and QNa=70,in which case Q is a rejecting set, or
3. Q@ C R, in which case ) is a Rabin set.

For a state ¢ € S U R, let [¢] denote the set of states in ¢’s set in the partition.



e There exists a partial order < on the collection of the sets such that for every two
states ¢ and ¢ for which ¢’ occurs in 6(¢,0), for some o € X, we have [¢'] < [g]. Thus,

transitions from a state in a set () lead to states in either the same set () or a lower set.

It follows that every infinite path 7 of a run of a WRAA ultimately gets trapped within some
set () in the partition. The path © then satisfies the acceptance condition iff either ¢) is an
accepting set, or ¢) is a Rabin set and 7 satisfies 5. Thus, a WRAA A is very similar to
a WAA, only that in some of the sets in the partition, acceptance is determined according
to a Rabin acceptance condition. In particular, if R = (J, then A is a WAA. On the other
hand, every Rabin automaton with k pairs can be viewed as a WRAA(k) with 5 = () (and a
trivial partition with a single set). If there exists p € IN such that the size of each set in the
partition is exactly p, we say that A is a WRAA of width p. (One could also define the width
p to be a bound on the size of the sets. The results in the paper hold also for this definition).

A weak-Rabin-Biichi alternating automaton of degree k (WRBAA(k), for short) is A =
(3,5, R, ¢in, 6,0, 3,7), with the same structure as a WRAA, only that A now contains also
an additional Biichi condition v C R. An infinite path © that gets trapped within a set ¢) of
a WRBAA satisfies the acceptance condition iff either ) is an accepting set, or @) is a Rabin

set and 7 either satisfies the Biichi condition + or satisfies the Rabin condition 3.

Theorem 5.1 Let A be a weak-Rabin alternating automaton of degree k > 0, and width p,
with m simple states and n Rabin states. There is a weak-Rabin-Buchi alternating automaton
A" of degree k — 1 and width p, such that L(A") = L(A), the number of simple states in A’
is m+n(p+1), and the number of Rabin states in A" isn-p-k.

Proof: Let A = (X, 5, R, qin, 6,0, 3), with g = {(G1, B1),...,{Gr, B)}. We define A’ =
<E7 Sl7 R/7 qZ/’n,76/7 a/7 ﬁ/7’y>7 Where

o 5" = SU(R x [2p]¢V®™"). That is, the simple states of A’ are the simple states of A,
with no annotation, and the Rabin states of A annotated with even ranks in [2p]. The
partition of the states in 5 into sets is as follows. Fach simple set ¢) in A yields the
simple set @ in A’. Each Rabin set ) in A yields p + 1 simple sets of the form @ x {r}
for r € [2p]¢Vem.

o M = Rx [Qp]Odd x {1,...,k}. That is, the Rabin states of A" are Rabin states of A
annotated with odd ranks in [2p] and indices in {1,...,k}. The partition of the states
in R into sets is as follows. Fach Rabin set @ in A yields p - & Rabin sets of the form
Q x {r} x {i} for r € [2p]°% and i € {1,...,k}.

o If ¢;, € 9, then ¢, = q;n,. Otherwise, ¢/, = (¢in,2p).
o We define ¢’ by means of three functions (parameterized with p and k).

annotate, ) : BT (S UR) — BY(5"UR),



even_release,, j, : BT(SUR)x 2 « [2p]¢7¢" — BT(S"U P'), and

odd _release,, ;, : BY(S U R) x 2 x [Qp]Odd x {1,....k} — BT(S"uP).

Given a formula § € BY(S U R), the formula annotate,;(8) is obtained from 6 by
replacing an atom ¢ € R by the disjunction Vje[Zp]e"e”<‘Z7j>\/Vje[zp]odd _— k}<q,j, i).
For example, if s € § and {p,p’'} C R, then annotates((sV r)Ar')is

sv /iy wad|al N @y )
7€{0,2,4,6} JE{1,3,5} ;j€{0,2,4,6} je{1,3,5}
i€{1,2,3} i€{1,2,3}
Given a formula # € BT (S U R), aset O C R, and a rank r € [2p]*¥*", the formula
even_release, (8,0, r)is obtained from é by replacing an atom ¢ € O by the disjunction
'\/je[T].even<q,j> % vje[r]?dd,ie{l,...,k}<q’j’ i), and re.pllacing an atom ¢ € R\ O by the dis-
Junctlj)n Vje[Ql).]even<q,]> Y vje[2p]0dd,ie{1,...,k}<q’]’ i). For example, even_releases o((sV
p) AP {p}.2)is

(sVV{p,0)V(p,2)V(p, L, 1)V (p,.2)A | \/ W)V \/ 0.h0)
j€4{0,2,4,6} je{1,3,5}
ie{1,2}
Given a formula § € BY(SUR), aset O C R, a rank r € [Qp]Odd, and an index ¢ €
{1,...,k}, the formula odd_release, 1(8, O, r, 1) is obtained from # by replacing an atom
q€ O by the disjunction (g, r, i>\/.\/{€[7“—1.]even<q’j>\/vje[r—.l]Odd,ie{l,...,k}<q’j’ i), and. r?_
placing an atom ¢ € R\O by the disjunction VJG[QP]GVGH<q"]>\/v]‘e[2p]0dd,ie{1,...,k}<q’]’ i).
For example, odd_releases o((sV p) A p',{p},3,1)is

(s V{p,3, 1)V (p,0)V (p,2) V (p, 1, 1)V (p, 1,2)) A Vo v\ W)
]6{0727476} JE{1,3,5}
ie{1,2}

Note that in annotate,;(#) atoms in R can be annotated by any rank in [2p] and
any index in {1,...,k}. On the other hand, in even_release, (6,0, r) some atoms in R
(thesein O) can be annotated only by ranks in [r]. Moreover, in odd_release, (6,0, r, 1),
the atoms in O can either keep the rank r, in which case they also have to keep the
index ¢, or move to a smaller rank [r — 1], in which case they can move to any index.

Now, ¢’ : (S"U R') x ¥ — BT(S"U R') is defined, for all o € ¥, as follows.

— For a state ¢ € 5, we have ¢'(¢,0) = annotate, ;(6(q, 0)).
— For astate (¢, 7) € Rx[2p]°V®", we have §'((¢,r),0) = even_release, 1(6(q,0),[q], 7).



— For a state (¢,7,¢) € R x [Qp]Odd x {1,...,k}, we have

§'((g, 1), 0) = odd_release, 1(6(q,0),[q],r,t) If ¢ ¢ B;.
T false If g € B;.

That is, states that originate from A’s simple states follow their transitions in A,
allowing the run to move in its successors that belong to Rabin sets of A to any rank in
[2p] and any relevant index. On the other hand, states that originate from A’s Rabin
states follow the transitions of the weak alternating automata that correspond to the
co-Biichi automata induced by B; for some i € {1,...,k}. Intuitively, annotating a
state ¢ € R by a rank in [2p] corresponds to guessing its rank in an accepting run
of the co-Biichi alternating automaton with state space [¢] and accepting condition
B;, for some guessed index i € {1,...,k}. When the guessed rank is even, A" is not
committed to a specific index i¢. However, whenever the rank is odd and A" does not
move to a smaller rank, it also have to stay with the current guessed index. As with
parity automata, the initial state and states that are reachable by a transition from
states that originate from A’s simple states label nodes that are seeds. Therefore, we
can annotate them with any rank in [2p] (the rank of a seed is independent of the
rank of its predecessor in the run) and, in the case the rank is odd, with any index in
{1,...,k} (as in the case of parity automata, the annotation of the initial state enables
the automaton to move to any rank and index). On the other hand, states that are
reachable by a transition from states that originate from A’s Rabin states label nodes
that are not seeds. Therefore, the guessed rank of such a state is bounded by the rank
of the state labeling its predecessor. In addition, when the rank is odd, the run should

stick to the guessed index.

e o/ = a. That is, getting trapped in a set @ of simple states, a path is accepting if @ is
an accepting set of A, and is rejecting if () is either a rejecting set of A or it corresponds
to a copy of a Rabin set of A annotated with an even rank. Indeed, such sets enable

infinitely many visits to the sets B;.

o For each 1 <7 <k, let 3; be the Rabin condition obtained from # by eliminating the
path <G27 B2> I'e'7 ﬁl = {<G17 B1>7 ) <Gi—17 Bi—1>7 <Gi-|—17 Bi-|—1>7 ceey <Gk7 Bk>} Then7

B = Br1<i<p Bi ¥ [Qp]Odd x{1,...,k}.
Since the degree of the conditions 3; is k — 1, so is the degree of 3.

o 7= Uicick Gi x [29]°99 5 {i}.

We prove that A" is a WRBAA of width p. The partition of 5’ U R’ into sets is as follows.
First, each accepting of rejecting set ) C S in A yields the set @ in A’. In addition, each
Rabin set @ C R in A yields p+ 1 sets, @ x {r} for r € [2p]°V®", and p -k sets, @ x {r} x {i}



for r € [Qp]Odd and i € {1,...,k}, in A’. Clearly, in both cases, the size of the sets in A’ is
the same as their size in A, thus A’ is of width p. It is easy to see that each of the sets of
A’ is either accepting, rejecting, or Rabin. The partial order on the collection of sets in A’
is induced by the partial order in A. For two sets O and O" in A’, we have O < O’ iff there
exist sets @ and @’ in A such that one of the following hold:

e () < @' and the following both hold:
-0 =0Q,0 = Q x{r} for some r € [2p]°"" or O = @ x {r} x {¢} for some
re[2p°9 and i € {1,...,k}, and
- 0'=Q", 0" =Q" x {r'} for some 1" € [2p]®V" or O' = Q' x {r'} x {i'} for some
e [2p]°9 and ¢/ € {1,...,k}, and
e () = Q' and the following all hold:
— 0 = Q x{r} for some r € [2p]®"", or O = Q x {r} x {i} for some r € [2p]°9d and
ie{l,...,k}, and

— 0 = Q' x {r'} for some 1’ € [2p]®V", or O = Q x {r'} x {i'} for some 1’ € [2p]°dd
and i" € {1,...,k}, and

—r<r.

Note that sets @ x {r} x {¢} and Q' x {r'} x {¢'} for which @ = Q" and r = ' are not
related by <. Intuitively, while transitions can only go to smaller guessed ranks, they

can switch between the guessed indices arbitrarily.

It is easy to see that transitions from a state ¢ in A’ leads to states ¢’ for which [¢'] < [q],

thus the structural conditions for a WRBAA hold. [l

When we dualize a WRAA, we get a co-WRAA and when we dualize a WRBAA, we get
a co-WRBAA.

Theorem 5.2 Let A be a co-weak-Rabin-Buchi alternating automaton of degree k and width
p, with m simple states and n Rabin states. There is a co-weak-Rabin alternating automaton
A’ of degree k and width p, such that L(A") = L(A), the number of simple states in A’ is
m+n(p+ 1), and the number of Rabin states in A’ is np.

Proof: The construction is very similar to the one in Theorem 4.1. Let A = (¥, 5, R, ¢in, 6, a0, 3,7),
with 8 = {(G1, B1),...,{(Gg, B)}. We define A" = (X, 5" R, ¢}, ¢, o, (), where

o 5" = SU(R X [2p]°V®"). That is, the simple states of A" are the simple states of A,

with no annotation, and the Rabin states of A annotated with even ranks in [2p].

e R =RxX [Qp]Odd. That is, the Rabin states of A" are Rabin states of A annotated with
odd ranks in [2p].



o If ¢;, € 9, then ¢!, = ¢in. Otherwise, ¢/, = (qin,2p).
o We define ¢’ by means of two functions (both parameterized with p).
annotate, : BY(SU R) — BT(S" U P')

and
release, : BY(SU R) x 2f x [2p] — BT (S U R).

Given a formula 6 € B*(SUR), the formula annotate,(#) is obtained from @ by replacing
an atom ¢ € R by the disjunction V;¢[,,)(¢, j). For example, if {p,p’} CRand s €9,
then
annotates((sV p) Ap') = (sV \/ (p.7)) A\ (0.4).
J€l8] J€l8]

Given a formula 8 € BY(S U R), a set O C P, and a rank r € [2p], the formula
release,(#,0,r) is obtained from 6 by replacing an atom ¢ € O by the disjunction
\/je[T]<q,j>, and replacing an atom ¢ € R\ O by the disjunction \/je[zp]<q,j>. For
example,

releaseq((s V p) Ap', {p},2) = (s vV \/ (p,3)) A\ (W', 4)-

J€[2] JE[8]

Note that in annotate,(f) atoms in R can be annotated by any rank in [2p]. On the
other hand, in release, (6,0, r) some atoms in R (these in O) can be annotated only by

ranks in [r]. Now, § : (S’U R') x ¥ — BT(S"U R’) is defined as follows.

— For a state ¢ € S and o € X, we have §'(¢,0) = annotate,(6(q,0)).
— For a state (¢,i) € R X [2p] and o € X, we have

§'((q, i), 0) = release,(6(q,0),[q),r) If ¢ & G y(q)[2) OF T is even.

| false If ¢ € Gy(g)[z and 7 is odd.

That is, states that originate from A’s simple states follow their transitions in A,
allowing the run to move in its successors that belong to Rabin sets of A to any rank
in [2p]. On the other hand, states that originate from A’s (v, ¢)-Rabin states follow the
transitions of the weak alternating automata that correspond to the co-Biichi automata
induced by G;. Intuitively, annotating a state ¢ € R by a rank in [2p] corresponds
to guessing its rank in an accepting run of the co-Biichi alternating automaton with
state space [¢] and acceptance condition f(¢)[2]. The initial state and states that are
reachable by a transition from states that originate from A’s simple states label nodes
that are seeds. Therefore, we can annotate them with any rank in [2p] (the rank of a
seed is independent of the rank of its predecessor in the run). On the other hand, states
that are reachable by a transition from states that originate from A’s Rabin states label
nodes that are not seeds. Therefore, the guessed rank of such a state is bounded by the

rank of the state labeling its predecessor.



e o/ = a. That is, getting trapped in a set () of simple states, a path is accepting if @ is
an accepting set of A, and is rejecting if () is either a rejecting set of A or it corresponds
to a copy of a Rabin (v,7)-set of A annotated with an even rank. Indeed, such sets

enable infinitely many visits to G.
o 8= {(Gr x [20°0, By x [201°0), (G x [20)°0, By x [20]°0)).

O

Consider a co-WRBAA A. Let A be its dual WRBAA, and let A’ be the co-WRAA
constructed from A in Theorem 5.2. By dualizing A’, we obtain a WPAA that is equivalent
to A. Hence the following theorem.

Theorem 5.3 Let A be a weak-Rabin-Biichi alternating automaton of degree k > 1, and
width p, with m simple states and n parity states. There is a weak-Rabin alternating automa-
ton A" of degree k and width p, such that L(A") = L(A), the number of simple states in A’
is m+n(p+1), and the number of parity states in A’ is np.

Recall that a Rabin automaton A of degree k with n states can be viewed as a WRAA(k)
with § = (0 and width n. By repeatedly employing Theorems 5.1 and 5.3, we can translate
A to a WRAA of degree 0. A computation that gets trapped in a Rabin set in such an
automaton does not satisfy the acceptance condition. Hence, we can regard the Rabin sets
as rejecting sets and we end up with a WAA.

Theorems 5.1 and 5.3 therefore imply the following theorem.

Theorem 5.4 Let A be a Rabin alternating automaton with n states and degree k. There is
a weak alternating automaton A', such that L(A") = L(A) and the number of states in A’ is
O(n+1 . 1),

Proof: Given A, consider the chain Ay, A}, Ay, ..., A}, Ap of WRAA and WRBAA, where
Ap = Ais a WRAA, Al , is the WRBAA obtained from A; following the construction
described in Theorem 5.1, and .A; is the WRAA obtained from A/ following the construction
described in Theorem 5.3. For i € [k], let m;, n;, and d;, and denote the number of simple
states, number of Rabin states, and degree of A;, respectively, and similarly for m!, n!, and

d: and A.. As the width p of all the automata in the chain is n, we have the following.
e mg=20,n9=n,and dyg = k.
e Lor ¢ € [k — 1], we have
—mig =mi+n-(n+ 1), 0l =nion-dg, di =di — 1.
— Mg =My gy (nd L) iy = gy ns dipy = diy .

Thus, d; = k — 7 and



o mip1=mi+n;-(n+1)-(1+ n(k—1)).
o nipq =n;-n?-(k—1).

It follows that

n2it .
® = TGS
o m; = O(Zé‘:o n;).
Accordingly, both ny and my, are O(n?*+1. k1), U

Note that while the degree of a parity condition 3 denotes the number of sets in 3, the
degree of a Rabin condition 3 denotes the number of pairs, which is half the number of sets,
in 3. Thus, the blow ups in Theorems 4.2 and 5.4 indeed differ only in k! (the explanation
to the additional 4+1 factor in the blow up in Theorem 5.4 is the fact that a parity condition
of an odd degree 2k + 1 is equivalent to a Rabin condition with k pairs).

6 The Nonemptiness Problem

In this section we show how the translations described in Sections 4 and 5 and can be
used in order to solve the nonemptiness problem for nondeterministic tree automata. A
nondeterministic tree automaton is A = (X,d,Q, ¢in,0,a), where ¥, Q, ¢;, and « are as
in alternating word automata, d € IN is a branching degree, and ¢ : () X ¥ — 20 is a
transition function that maps a state and a letter to a set of d-tuples over (. The automaton
A runs on infinite Y-labeled trees (T, V) of branching degree d, thus T' = {1,...,d}*. As
with alternating word automata, 6(¢, o) describes a possible configuration that A can move
into when it is in state ¢ and reads the letter o, which labels the root of the input tree. For
example, a transition 6(q,0) = {(¢1,¢2), (g3, ¢s)} means that A accepts a binary tree with
root labeled o from state ¢ if it accepts the left subtree from state ¢; and the right subtree
from state ¢o, or it accepts the left subtree from state g3 and the right subtree from state g4.

A run of Aon (T,V)is a Q-labeled tree (T, ), such that the following hold:
o 7(¢) = ¢in.

o Let z € T with r(2) = ¢. There exists (q1,...,q1) € 6(q,V(z)) such that for all
1 <e<d, we have r(z - ¢) = ¢..

Note that each node of the input tree corresponds to exactly one node in the run tree. A run
(T,r) is accepting iff all its paths satisfy the acceptance condition.

It is shown in [BVW94] that the nonemptiness problem for nondeterministic tree automata
and the nonemptiness problem for alternating word automata over a singleton alphabet are
equivalent and that their complexities coincide. We refer to both problems as the nonempti-
ness problem. Since the nonemptiness problem for weak alternating automata can be solved
in linear time [BVW94], Theorems 4.2 and 5.4 imply the following.



Theorem 6.1

(1) The nonemptiness problem for parity automata with n states and degree k can be solved
in time O(n*).

(2) The nonemptiness problem for Rabin automata with n states and degree k can be solved
in time O(n?+1 . k).

The O(n**! . k!) bound in Theorem 6.1 improves the known O((nk)**) upper-bound for
the nonemptiness problem [EJ88, PR89] for Rabin automata. A similar bound for Streett
automata follows. Solving, however, the nonemptiness problem by translating a given au-
tomaton to an equivalent weak automaton is not very appealing in practice, as such a solution
never performs better than its worst-case complexity. Indeed, the blow-up is introduced al-
ready in the translation of A to A’. We now describe an algorithm that uses the special
structure of A’ without constructing it first. The worst-case complexity of this algorithm
is as above, yet in practice it may perform better. We consider here the case where A is a
parity automaton. The algorithm of Rabin automata follows the same ideas.

An extended parity automaton is A = (X, Q), ¢in, 0, ), where o = (3, V, A) is an acceptance
condition consisting of a parity condition 3 over @), a wvisiting set V' C @), and an avoiding
set A C Q. It is required that ANV = (. The extended parity automaton A is equivalent to
the parity automaton A" = (X, Q, ¢in, ¢, 3), where ¢ is defined, for all o € X, as follows:

e lLorall ¢ € V, we have ¢'(¢q,0) = true.
e lorall ¢ € A, we have §'(¢,0) = false.
e Forall g e @\ (VUA), we have 6'(q,0) = é(q,0).

Thus, in a run (7,,r) of A, no node € T, has r(z) € A, a node x € T, with 7(z) € V need
not have children, and (7, r) is accepting iff all its infinite paths satisfy the parity condition
B. An extended co-parity alternating automaton is defined similarly with a = (3, V, A) for a
co-parity condition 8. For a parity condition 3, let ~ 3 be 3 when referred to as a co-parity
condition.

Let A be an alternating word automaton with a singleton alphabet . state space ), and
transition function é. For a generalized parity or co-parity condition a, let acc () be the set
of states in ) for which the automaton A? = (¥, Q, q, ¢, ) is not empty. Similarly, let acc4(a)
be the set of states in @ for which the automaton A? = (X,0Q, ¢, 8, a) is not empty. Clearly,
a parity alternating automaton A = (X, Q, ¢in, 6, ) is not empty iff ¢;,, € acc4((53,0,0)).

Recall that our translation of parity and co-parity alternating automata to WAA proceeds
inductively. In each iteration, we remove from the parity or the co-parity condition the min-
imally indexed set and continue with a refined state space and a dual acceptance condition.

The algorithm that follows works similarly. In each iteration, we calculate the set of accepting



states in an automaton with an acceptance condition {F, Fy,..., Fi} by calculating, recur-
sively, the accepting states in a dual automaton with an acceptance condition {F5, ..., Fi}.

Formally, the algorithm employs the following two equivalences.

Reduce:
accA({ 11, Fo, ..., Fp},V,A) =

pY.acca(~ {Fo, .. F ), VUY AU 1\ Y),

where p is the least fixed-point operator (see the explanation below).

Dual:
aCC.A(N ﬁvvv A) = Q \ aNCCA(ﬁ,A,V)

Using Reduce, we calculate acc4({F1, Fy, ..., Fi},V, A) as the least fixed-point of the
equation

Y =acca(~{Fz, ..., 1}, VUY AU\ Y).
Let Yy = 0 and Y;4q = acca(~ {Fs,.... F;},VUY;, AU Fy \ Y;). Intuitively, the set Y;, for

¢ > 1, contains all states ¢ for which there exists an accepting run of A? in which all paths
either satisfy the co-parity condition {F,..., Fi}, or visit Fy at most j — 1 times.

Using Dual, we can calculate the set of accepting states in an extended co-parity automa-
ton by complementing the set of accepting states in an extended parity automaton with a

dual transition function and acceptance condition.
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